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ABSTRACT

Context. Stellar winds are an integral part of the underlying dynamo, the motaelidusactivity. The wind controls the star's angular
momentum loss, which depends on the magnetic field geometry which, invaries significantly in time and latitude.

Aims. Here we study basic properties of a self-consistent model that inchirdege representations of both the global stellar dynamo
in a spherical shell and the exterior in which the wind accelerates andniescsupersonic.

Methods. We numerically solve an axisymmetric mean-field model for the inducti@mentum, and continuity equations using
an isothermal equation of state. The model allows for the simultaneoesagem of a mean magnetic field and the development of
a Parker wind. The resulting flow is transonic at the critical point, which ma&nge to be between the inner and outer radii of the
model. The boundary conditions are assumed to be such that the mdgghe e antisymmetric about the equator, i.e., dipolar.
Results. At the solar rotation rate, the dynamo is oscillatory and’dfype. In most of the domain, the magnetic field corresponds to
that of a split monopole. The magnetic energy flux is largest betweendifer surface and the critical point. The angular momentum
flux is highly variable in time and can reach negative values, especiallydétitudes. At rapid rotation of up to 50 times the solar
value, most of the magnetic field is lost along the axis within the inner tangepytiatler of the model.

Conclusions. The model reveals unexpected features that are not generally argttipam models that are designed to reproduce
the solar wind: highly variable angular momentum fluxes even from just’aitynamo in the star. A major caveat of our isothermal
models with a magnetic field produced by a dynamo is the difficulty to reaeli smough plasma betas without the dynamo itself
becoming unrealistically strong inside the star.
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1. Introduction rotation becomes antisolar-like (Gastine et al., 2014dpya et
) ) al., 2014), i.e., the equator spins slower than the poledlast

The emergence of awind around stars is a remarkable and so@igrds can also be important for the dynamo itself in that they
w_hat counter-intuitive phenomenon. The existence of tharsocan transport magnetic helicity away from the dynamo region
wind was already suggested by the fact that the tails of coalet and thereby alleviate what is known as catastrophic quaggchi
ways point away from the Sun (Biermann, 1951). Neverthelesge Mitra et al. (2011) for mean-field models and Del Sordo et
the wind was thought to be a relatively slow phenomenon ass@-(2013) for computations of the magnetic helicity flux ims
ciated with an evaporation of the corona (Chamberlain, 196@|ations in a turbulent wind. Magnetic winds also affect dea-
The physical nature and mathematical theory of the solad wisity and dynamics of cosmic rays in the heliosphere. Comguti
was first understood by Parker (1958). His theory showed thaifconsistently the dynamo-generated magnetic fieldugool
the wind starts off as a subsonic flow some distance above fhghe heliosphere is therefore crucial and for modelingnttag-
corona. It gradually gains in speed as the gravitationatefornetic shielding of Galactic cosmic rays on the Earth.
diminishes and the effective outward pull resulting frone th  The theory of a magnetized stellar wind by Weber & Davis
quad_ratlc increase of the Crogs-sectlonal area in 3enf&;dallv. (1967) employes a prescribed and time-independent stetigr
This is a purely hydrodynamic phenomenon, unlike what wagstic field, so any feedback on the underlying dynamics was ig
suggested by the popular notion of the solar corpusculaa+achored. This is also true of the recent numerical modelsafile:
tion at the time. etal. (2015), who compared different magnetic multipokemia

Stellar winds play a crucial role in a star’s life. Withoueth tial conditions of their models. This has changed only irergc
wind, the Sun would still be spinning rapidly and magnetical years. Given that the wind normally dominates over the mag-
superactive. A proper understanding of the rotationalwiah netic field, one can separate the dynamics of the wind froin tha
of a star through magnetic braking via a wind is important naff the solar dynamo. Pinto et al. (2011), and more recentlyi Pe
only for stellar evolution, but it also plays a role in undarsl- et al. (2018), modeled this by using two separate codes that a
ing the diversity of magnetic activity as a function of radat magnetically coupled through a matching condition at tHarso
rate and age (van Saders et al., 2016). As the star reachegdahesurface. In more recent work, Perri et al. (2020) have exténd
of the Sun, the magnetic field either changes its geometty subeir model to include also a mean-field dynamo solutiontinéo
that stellar braking is reduced (Metcalfe & van Saders, 28&¢ Pluto code, rather than matching the solutions of two sépara
et al., 2019) or it can continue to brake and the star’s d@ifigal codes. This allows for a feedback of the wind onto the dynamo.
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This is therefore similar to the work presented here, extieit We begin by discussing first the basic equations, boundary

they still invoke what they call a multilayered boundary dbon conditions, and parameters in Sect. 2. We then presentsuitse

tion. This means that different equations are being solusidié in Sect. 3, and draw our conclusions in Sect. 4.

and outside the star. The model is therefore still not fuéif s

consistent, but in some ways more realistic than ours. h del
The purpose of the present paper is to explore some ba%icT € moade

properties of stellar winds in the presence of dynamo-geeér \We adopt spherical polar coordinatés,f, ¢), with the origin at
magnetic fields. It is appropriate to adopt a mean-field modehe center of the star. The vectopoints away from the center,
where we solve the equations for the azimuthally averagest ménhe colatituded increases away from the north pole, andn-

netic and velocity fields. In this paper, those mean fieldslare creases in the eastward direction. We assume axisymmety, i
noted by an overbar. The effects of turbulence are then paramoe = 0.

eterized through a turbulent viscosity and a turbulent reéign
diffusivity. In the star’s convection zone, there are algolanic ) .
convective motions giving rise to kinetic helicity of opjtes 2-1- Basic equations

signs in the two hemispheres. This is modeled through @t \ve \rite the mean magnetic field @ = V x A, whereA is
fect (Krause & Radler, 1980). The turbulent magnetic diffusivitythe mean vector potential. This ensures tWat B = 0 at all

is here assumed constant. . .. _times. The evolution equations fet, the mean velocity/, and
The presence of the magnetic field causes the kinetic attp]ra logarithmic mean densiy, are

magnetic stresses to be different from zero. The turbulisobe- '

ity is itself a result of kinetic and magnetic stresses cdligethe OA . _ _

fluctuating components of the magnetic and velocity fields. | 5, = U x B +aB —nruol, (1)

the theory of turbulent accretion discs (Frank et al., 198®)se

stresses are parameterized by the Shakura & Sunyaev (1873) p% = —CSV Inp— G7J2\4?2 =+ ij x B —upQ, (2)
rameterass. It quantifies the stress in terms of the background D? r p
differential rotation, the sound speed, and the scale heigh DInp v.T 3)

accretion discs, where the differential rotation is Kejalerthis D¢

amounts to a scaling of the stress by the sound speed squared. — . . I
In our case, the differential rotation is not related to thars yvenereD/]?t = 9/0t + U - V is the advective derivatively
speed, but the basic mechanism of angular momentum trandji/éwton’s constant}/ is the stellar mass; = r/r is the ra-

is the same, and we can still express the total stress in tasimfia unit vectoryr andvr are the sums of turbulent and micro-
fashion. physical values of magnetic diffusivity and kinematic \asity,

Unlike the work of Perri et al. (2018), we consider the evd€SPectivelya is the aforementioned coefficient in theeffect,
lution of the dynamo and the wind within a single code. At thid = V X B/uo is the mean current densifyy is the vacuum
point, our aim is not to produce a realistic model of the Sun, bPermeability,
rather a physically consistent model under conditions eliee & _ w277 , 1 T7 . 9% . —
dynamics of the wind can no longer be separated from thaeof th Q=VU+3VV.-U+25 Vin(vrp) (4)
dynamo. Our models can also be applied to conditions of rapiga term appearing in the viscous force, wh&iis the traceless
rotation, which strongly affects the wind. This can be @arti (ate of strain tensor of the mean flow with componeﬁys:

larly relevant to young stars in their T Tauri phase. We b&yin 1 77 | 7 \ _ 15 v .77 :
presenting the basic equations of our model and turn themeto gé(r{t?éc:riogjg\aer tﬁgzlnge ir%égg?lgg;%) Eq. (4) denotes the

discussion of our resuits. The mean magnetic field is generated by theffect. This

The simplest wind solution is the isothermal one that was %'ads to exponential arowth. provided the valueds above a
ready found by Parker (1958). Heating is not explicitly iked. .o ai critiEaI value.%ventdaﬁly the dynamo must satubee-
Its physics resembles that of a siphon flow. Once a fluid parc<§ X

: o : cause the Lorentz force from the mean fieldx B, drives fluid
has moved over the top of the effective gravitational paagnt . P .
it simply continues to fall and pulls the remaining fluid bedhi motions that feed back onto the dynamo to limit its growthisTh

it. The top of the effective potential corresponds to théical way of achieving saturation is sometimes referred to as Malk

point where the flow speed crosses the sonic point. We arra groctor (1975) mechanism. In addition, there can be feeldba

X . . . . . m the small-scale magnetic field that leads to a nonlineps
this point to be in the middle of the computational domainhsuc ?ssion of, which is referred to as quenching. We assume

that the flow speed becomes supersonic well before the o . . ) N ; .
point r.,¢. We fit the dynamo-active zone (or stellar envelopei %?oa;rilmple quenching function fer which is then written in

with an « effect different from zero into a spherical shell be-

tween the inner point of the computational domaig, and a =\ g fa(r)cosfsin™ 0
i i OZ(T‘, 07 B) - —

radiusR, which models the surface of the star. 1+Q 32/32
The usefulness of an isothermal solution can be justified by “ e

considering the fact that the sound speed both at the bottomneren = 6 is chosen to concentrate theeffect to low lati-

the convection zone and in the solar wind is abtitkms™—*, tudes (Jabbari et al., 2015; Cole et al., 2018),is a quenching

corresponding to a temperature of a million degrees. Thedowparameter that determines the typical field strength, wisietx-

temperature near the photosphere is obviously ignoredaforpected to be of the order qygl/QBeq, and

isothermal gas, the mean pressptiie then simply proportional

to the gas density with p = pcZ, wherec is the isothermal f,(r) = @((r - R)/wa) (6)

sound speed. The pressure gradient is then givefMp) /5 =

c2V Inp. The implications of a cool photosphere will be disis a radial profile function witt©(x) being a smoothened step

cussed at the end of the paper. function from O to 1 ag crosses zero. Her& andw,, determine

(5)
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the location and width of the transition. The value@f, de- where®, = —3/2 is obtained by inserting the values= r. =
termines the nonlinear equilibration of the dynamo, in &ddi 1 for the critical point. We solve the Bernoulli equation #er
to the macroscopic feedback from the Lorentz force mentiongvely. Forr < r., usingu = c¢,r/r. initially, we iterate

above. Our model thus comprises three distinct layers with
Inuii(r) = 3uf — Zlnr® — GM/r — &, (14)
Tin < R < Te < Tout, (7)

. . . while for , usin = 2¢; initially, we iterate
wherer;, < r < R is the dynamo region (modeling the stellar T gio = 26 y

envelope),R < r < rc is the wind acceleration region (model-%ufﬂ(r) =cnu; + A Inr?+GM/r+ @. (15)
ing the locations of the solar corona and the A&livpoint), and =~ . .

Te < 1T < Tou IS the supersonic wind region with = G M /2¢2 This iteration procedure was implemented byndWarnecke and
being the critical point. Dhrubaditya Mitra into the BNcIL CoDE! in 2012. We choose

the initial value ofM to be M,.

2.2. Boundary conditions

. . 2.4. Parameters and estimates for the Sun
In most of the cases, we apply a uniform angular veloQigyon

the inner boundary = r, by settingu, = ri,sinf Qg. For It is convenient to work with nondimensional units by measur
the other two velocity components, we adopt “open” boundaiyg speeds in units of the isothermal sound speed and lengths
conditions by setting the second radial derivative to z&tos in units of the critical radiusy. = GM/2¢2. In the following,
condition turns out to be stable in all cases consideredig thve use tildae to denote nondimensional quantities. Usipigay
paper. It allows for a weak inflow to replenish the mass loss aumbers for the Sun, we have
the outer boundary = r.., Where we apply open boundary B B
conditions for all three velocit i s =107 cms ™" = 100kms™! (16)

y components. No precaugiare ©s )
taken to ensure that the mass in the computational domqis Stay; — GM, ~ 1.3 x 1026 cm3 s~2, and therefore
constant. It turns out, however, that the total mass renmaady
unchanged. This is, to some extent, also explained by the fac— GM /2¢2 ~ 7 x 10" em ~ 10R, ~ 0.05 AU. a7
that the total mass loss rate is small compared with othersay
time scales in the problem. In the Sun, the turbulent viscosity iBr ~ wumsl/3 =

For the magnetic field, we adopt a perfect conductor bount'? cm? s~*. The nondimensional viscosity is then

ary conditions on the inner radius, i.e., 9
_ 2alTCy

_ by = ~2x1076, (18)
8147- = Z@ = Z¢ =0 onr=ry, (8) GM@
or o N o which is rather small.
and a radial field condition on the outer radius, i.e., For numerical stability, as already alluded to, we cannot
_ 9A, Ay 04, A, choose the value ofr to be too small. In practice, for a numeri-
A, =—+ —=—+—=0 onr=rgyu- (9) cal resolution ofi28 x 32 mesh points in the andé directions,
or r or r we can choosér ~ 0.01. For4096 x 1024 mesh points, on the
On the pole, we assume other hand, we can reduce it by a factor of 128to~ 8 x 10~°.
Py This then also means that in the stellar convection zoneane c
" —Ag=A43=0 onf=0°, (10) not adopt significantly smaller values, as is expected #teor
00 cally based on our earlier estimatesf,s and/.
while on the equator, we assume The nondimensional value of the angular velocity is given by
aafé;r _ ZQ _ % _ 0 on 9 _ 900' (11) Q = T’CQ()/CS = GM90/2CS ~ 027 (19)

. . _ _ _ .. where we have usel; = 3 x 10~%s~!. The strength of the
Since our simulations are axisymmetric, the magnetic fisld dynamo is determined by the two dynamo numbers,
conveniently represented via, andA,. In particular, contours

of rsinf A, give the magnetic field lines of the poloidal fieldCo = aoR/nr  and Cq = AQR? /. (20)

Bpol =V x (449). The excitation conditions for dipolar and quadrupolar {iesi

are generally fairly close together (Roberts, 1972). Thibe-
2.3. Wind solution as initial condition cause the magnetic field is strongest at high latitudes, so th
L » _ hemispheric coupling is weak. In the following we restriat-o
As initial condition forlU' = (u, 0, 0) andp, we adopt the Parker gelyes to solutions with dipolar parity. We vary the valueof
wind solution. In some cases we also add a finite angular \gq focus on values that are about twice supercritical.

locity with constant angular momentum, although its efiect In our simulations, we adopt nondimensional units by sgttin
the dynamics is ignored in the initial condition. We begin by _

discussing the Parker wind solution, which can be obtained b. = ¢, = My = jg =1, (21)
solving the Bernoulli equation,

Lo o which implies thatGM = 2. Our unit of mass is thepM| =
30+ ¢ Inp — GM/r = const, (12) Myr./cs. For the Sun, we havél, ~ 6 x 10'2gs~!, so
along with the equation of mass conservation, which stéias tthat our unit of density i§p] = My/c.r2, which is about
the mass loss rate is given By = 47r-2pu. We then obtain

Y http://github. conf pencil - code (Pencil Code
1u? —Zlnu—c2nr® — GM/r = @, (13) Collaboration., 2020), DOI:10.5281/zenodo.2315093
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1.2 x 1078 gem =2 for the Sun. Therefore, our unit dB is 2.0

[B] = (p0[p])/?cs, which is aboud.04 G for the Sun. The value i 0 f H0 . (2) 1
of Newton’s constan€ never enters on its own. It could be de-  1.5F 307 <0 <60 .
termined a posteriori, if we knew the total stellar mass.un o _¢ i 6 > 60° ]
model, we can compute the masA. of the stellar envelope in . 1.0F {| [ —————e >
rn < r < R, but this still leaves the mass of the stellar core™™ r ]
undetermined. In the following, it is often convenient toaia 05F .
the symbols-., ¢, My, and g to remind ourselves of the nor- [ ]
malization. 0.0t ‘ ‘ ‘ ]
There are a few other parameters of the model that we keep 0.0 0.5 1.0 1.5 2.0

fixed. In all cases we use, = 0.02 for the transition thickness
of « near the surface; see Eq. (6). We always take= 0.1 and 10*F ‘ ‘ ‘ (b) |
R = 0.2. This corresponds to a fractional shell thickness of 50%-, L
instead of the 30% in the case of the Sun, but we should keep-in L2 |
mind that there are other properties that agree with the 8lyn o
qualitatively. Another example is our smaller choicefofr;, = <2 N

5 instead of the solar value of about 10. In all our simulations= 10°F | T —__m,m_ -
with 4096 x 1024 meshpoints, we user = 8 x 10~°. B

2& 1072 B B “T
r= |
2.5. Comparison of characteristic time scales ‘ ‘ ‘
_ _ - , 0.0 0.5 1.0 1.5 2.0
In our simulations, sound speed and the critical radius etréos r/7,
unity, so the characteristic sound travel time,
Ts = Tc/Cs (22) Fig. 1. Radial dependence of (&Y for different latitude ranges, and (b)

M, (solid line) for Model A. The dotted line in (b) refers to the mass

is therefore also unity. When we adopt the stellar rotatide, ra, ithin the computational domain only, so it vanishe o

Q = 0.2, the corresponding rotational time scale
o =0" (23)

is then five, and the rotation periodds /Q ~ 30. The charac-
teristic time scale for the dynamo is the turbulent diffesiime
(e.g., Stix, 1974),

o = R?/nr, (24)

which is around500 in our models. Another interesting time
scale for our models is the mass loss time,

Tmassloss — M/<M> ~ MO/MO~ (25) -2

[

field strength
o

: ‘ ‘ ‘ L
In our models My ~ 7000 and My = 1, SOTmassloss =~ 7000. It
turns out that the spindown time is of a similar order of magni 760 780 SOtO / 820 840 860
tude. Itis given by Cs/ Te

Tspindown = Jx/(J), (26) Fig. 2. Time series of the three magnetic field components at one point

whereJ, = [ 5w?QdV is the angular momentum of the stelfor Model A. Here,By and B4 are multiplied by 25 to make those com-

lar envelope, withw = rsiné being the cylindrical radius, Ponents better visible. Note that all three componentBafre asym-
O — U(,)/w is the local angular velocity and is the angular metric about zero. The 12 long tick marks on the lower abscissa show

: . the ti f hich hots will be di d lat .
momentum loss, which we calculate in Sect. 3.5. The astensl? IMes for which snapshots wilt be discussed fater on

on the integral denotes the volume of the envelope. The mass

loss and spindown times are the longest among the time scalesOur main model is called Model A, which has the solar value
considered here, so the mass in the envelope cannot changedi2 and a minimal amount of viscosity and magnetic diffusivity
nificantly during the time scales of interest for the wind &mel that can still be tolerated. Later, we also consider moralhap
dynamo. rotating models cases (Models B and C).

3. Results 3.1. Mass loss

After some preliminary studies at low resolution 8 x 32 In Figure 1la, we show the local mass loss density,
meshpoints withvy = nr = 10~%r.c;, we performed high- . ) _

resolution simulations witd096 x 1024 me5$hpoints, where we M (r,0,t) = 4mr=p(r,0,t) U, (r,0,1), (27)
were able to decreasg andnr to8 x 10~ °r.cs. These values . Y )

are still above the physicalK/ motivated value, but for name WhoSe average over and t*'<M> = Jo too+ M dt sin 0 do,
cal stability reasons, they cannot be decreased furthéwouiit is close to the initial value\/y. This is not too surprising, but
invoking artificial viscosity and magnetic diffusivity. it should be emphasized that this is not enforced as a conditi



P. Jakab and A. Brandenburg: The effect of a dynamo-gendiiatédan the Parker wind

The good agreement suggests that the open boundary conditiothe Sun in a Maunder’s butterfly diagram of sunspot locetio
at the bottom draws in a similar amount of mass at the innegrsus time and latitude.

boundary as what is lost at the outer boundary. Itis interesting to note the appearancé&/eshaped field lines
To get a sense of the radial mass distribution in our modé, the panels for = 822-834 and perhaps also fdr = 846.
we plot in Figure 1b the cumulative mass, This means that there are magnetic field lines in the wind that
- are not anchored in the star. This may be a bit surprisingywbut
_ 12— 1 / have to remember that the magnetic field is time-dependeht an
M (r,6,1) = /T Amr=p(rr, 0,¢) dr (28) the medium electrically conducting. The time-varying metim

) field can therefore induce toroidal currents in the stellardy
for different values ob) at¢ = 858. We see that the total mass afyhich then produce poloidal field lines that are closed oetsi

T = rin is @about 7000 mass units; one mass unit hefdgs. /c;.  the star. This phenomenon may be similar to what is known as
The mass above the surface is about 10, so 99.9% of the to&glitchbacks” in the solar wind (Bale et al., 2019; Squirelet

mass in the computational domain is contained in the steflar 2020).

velope inr;, < r < R. Thus, if no mass was replenished on

the inner boundary, the time it would take to lose all masbeat t _

initial rate would berassioss = M /M = 7000. 3.4. Poynting flux

We emphasize at this point that the full stellar mass is undehe wind carries with it not only mass, but also kinetic andyma

termined, because the value of Newton’s constintever en- netic energies. The latter is quantified by the mean Poyfitirg
ters on its own. We could, in principle, constrain it by asswgn

for example, that the density in the core is constant andleq =
to that atr = ry,. This would give for the minimal core mass Poy (1, 1) = %(E x B/ o) - dS, (29)
Meore > 36000, which is five times the mass in the envelope. _ _ . o
USINg G Meore = 2, We findG < 6 x 10~5¢3 /My, which is sat- WhereE = nruoJ —aB — U x B is the mean electric field.
isfied by a large margin for the values quoted above. We stre55e magnetic energy loss is thély = 472 Fpoy . In the steady
however, that this estimate was done only for illustrative-p state,(Fy;) would be independent of if there was no Ohmic
poses. dissipation and no conversion between kinetic and mageatic
ergies in the wind.

As a good estimate for the magnetic energy loss of the
solar wind, Brandenburg et al. (2011) computeg;(r) ~

We focus on a simulation with the solar value of the angulafr,rrz<(§2/2uo)ﬁr>' which they found to be of the order of
velocity, i.e.,©2 = 0.2 (Model A). In these cases, the magnetig0'® W and slowly decreasing with radius. Estimating the to-
field is oscillatory, butin a rather nonlinear fashion; segife 2, tal magnetic energy content within the convection zone dase
where we plot the time dt_ependence of the three magnetic fighd a mean field oB00 G over the convection zone of volume
components at one point in the wind. The component is pos- 47 (R? — 13 )/3, we find a time scale of about 10 years, which

mn

itive most of the time and much smoother than Bgand B,  is comparable with the solar cycle period.

components. The periodl is about 41 time units. This corre-  Figure 6 shows the latitudinal dependencelaf at differ-
sponds to about.1yr, which is short compared with the actuaknt times for Model A. It depends not only on latitude and time
solar 22 year cycle, but still about five times longer thandj)e byt also somewhat on radius. There is a window at high lati-
cle period in the model of Perri et al. (2020). Their paramsetey,des where it is almost constantdnbut the width of this win-
are otherwise comparable to oursi ~ 4 x 10" cm®s™" in dow changes with time. It can have a width of ovsF (e.g., at
both models)M = 3 x 10~ Mg, yr~* (a third of our value), an ¢ = 818 and 858), but it can also be almost nonexistent (e.g.,
Alfv én radius of about two stellar radii, and a domain size of 20+ = 842). Comparing with Figure 3, we see that this window

3.2. Oscillatory model at solar rotation rate

solar radii (twice our value). of nearly constanty; corresponds to regions where the radial
field in the wind ist mostly negative. The dips i, correspond
3.3. Magnetic field geometry to regions where the radial field is weak and changes sigm. Nea

. L . . the equatorF); shows a sharp drop for most times, except for
In Figure 3 we show a sequence of magnetic field visualiza— g5 Again, comparing with Figure 3, we see that nothing
tions at dlfferen_t times. To m_ake the m2agnet|c field in thesoutspecia| happens near those dips, except thatfo826 the field
parts better visible, we multiply3, by r=. Here, we show the 5 g pit weaker. These dips are probably a consequence of the
time span fromt = 814 to 858, covering just a little over a pe- radial field reversal in the equatorial plane and the exéstenf
riod. We overplot the surfaces whelg. is transalfénic (solid 3 field component that is purely vertical to the equatoriahpl
white lines), i.e., wherd/,. exceeds the Alfén speedva = thus inhibiting the wind.
(§2/Noﬁ)1/2- The surface is corrugated, but its mean radius is Next, we look at the radial dependence of the kinetic and
around).4 r.. We also shows the surfaces whéfgis transmag- magnetic energy losses for different times and latitudes. re-
netosonic, i.e., wher&, exceeds the fast magnetosonic speedyllt is shown in Figure 7, where we define compute them as
cms (dashed white line), which obeyd . = ¢ + v%. The mean

_==2
radius of the magnetosonic surface is close.to Ex = 4mr*(pU" /2) uy, (30)
Butterfly diagrams ofB,.(¢,t) and B,(6,t) are shown in . ) =2
Figure 4. The field in the wind does not show any migratiofin = 477 (B”/240) w,., (31)

in latitude, as is expected from models of the solar dynamo. . .

Figure 5 shows only the inner part of the domain. We see regidiespectively. It turns out thaty; is much smaller tha’k. To

with open and closed field lines at different times. Howeveaccommodate both quantities in the same plot, we have multi-
there is no clear magnetic field migration that manifestslfits plied Fy; by a factor of 20.
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Fig. 3. Color representation of’ B, (r, §) for different times for Model A. The nearly concentric red solid lineswhhe surfaces wheré . is
transalfienic and the red dashed ones show the surfaces where it is transasagine The times correspond to the long tick marks of Figure 2.
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Fig. 4. Butterfly diagrams of3,.(r, 6) and B, (r, 6) for Model A atr/r. = 1.9. Note again the asymmetry of those components with respect to
zero, which is different from the properties of the solar magnetic field.

We see thatFx increases with radius. This is a peculiabecomes supersonic. In isothermal models, where the sound
feature of isothermal models which is absent both in is@ntro speed is constant, this transition must always be accomgani
models with constant specific entropy and in nonisentroidm by a radial increase of the wind speed. In this sense, a ppigtr
els with variable specific entropy; see Figs. 9.18 and 9.20 wiodel would seem more realistic, but it would still ignore th
Brandenburg (2003), respectively. This is mainly because internal energy or entropy equation, which would be evenemor
those models the sound speed decreases with radius in sual@ortant for making our models more realistic, as is diseds
way that the Mach number still increases, just as in the &ethbelow; see Sect. 3.8.
mal models. Thus, the basic dynamics is similar in that the flo
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Fig. 8. Similar to .Figure.7, for a semilogarithmic representation, without havincated £y:. Blue (red) lines indicate kinetic (magnetic) energy
losses. Note thaty; ~ Ex near the Alfien surface at/r. =~ 0.4, which is marked by a vertical line.

We also see that far= 826, when the field was a bit weaker  In Figure 8, we showEy; and Ex for r < 7. as a semilog-
further out in the wind (Figure 3), the kinetic energy lospas-  arithmic representation. We see thaf; ~ Ex atr/r. ~ 0.4.
t?cularly stron_g around the Aln surface; see Fi_gure 7. Atothefrpe radial profiles ofy are fairly independent of and¢. This
times, especially for < 842 < 850, the kinetic energy 0SS is pecause the wind is rather powerful and not much affected
is generally much weaker. Comparing again with Figure 3 t y rotation or magnetic fields, which are the main factors tha
c?rresponds to times when the radial field near the equatorp%vide non-spherically symmetric contributions to theteyn.
strong.

It is interesting to note thak);(r) has a maximum at ~
r./2. This radius is a certain distance above the stellar surface
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Fig. 9. Latitudinal dependence of the angular momentum lb(ss&t) for 1.5 < r/r. < 2 at different times for Model A. The blue (red) lines
refer to kinetic (magnetic) contributions, and the black lines denote thelémtoviscous contribution. Positive (negative) values are shown as

solid (dotted) lines. Note the strong latitudinal variability.bf

and still below the critical point. This radius coincidegiwihe .

Alfv én radius; see Figure 3. This is the point where most of the oy e<wr oo
star's magnetic energy has been deposited into the windheint 10?2
Sun, we expect that this energy deposition occurs in thengoro o
One may tentatively associate the location of the maximum o:f\
FEx(r) with some representation of the star’s corona, although it 1074
is unclear whether there is any relation to the real corortaef 10-5
Sun.

At large radii,r > r., the magnetic energy loss declines 107°L
slowly with radius. Such a decline has also been seen for the 0.
solar wind (Brandenburg et al., 2011). In the Sun, it may be
connected with the conversion of magnetic energy into Heat.

1073

wl vl vl ol

o B

o
o
(9]
—
o
—
(o)}
[AV]
o

Figure 8, we see thdfy; ~ Fx atr/r. ~ 0.4. 107 E
107% E

3.5. Angular momentum flux QO 1078 q

There are no sinks or sources to the angular momentum, o 1074 q

the angular momentum densifyz2(2, satisfies a conservation s 3

equation of the form (Mestel, 1968, 1999) 10 . E
10~ ]

0

(p=?Q) = -V . FAM, (32) 0.0 0.5 1.0 1.5 2.0

ot /7,

where

FAM = ﬁw%lﬁ - WE¢§//$0 - ﬁVTW2VQ (33) Fig.10. Time averaged radial profiles of latitudinally averagédor

A < 70° (upper panel) and > 70° (lower panel). The blue (red) lines

is the angular momentum flux. Analogously to the energrgfer to kinetic (magnetic) contributions, and the black lines denote the
loss, the expression for the angular momentum losd is=  turbulent viscous contribution. Positive (negative) values are shewn a
47rr2F,{W[, which is shown in Figure 9 fot.5 < r/r. < 2 solid (dotted) lines. The kinetic contributions from different times are
for the kinetic, magnetic, and viscous contributiodg, Jy;, Shownin gray.
andJ,, respectively. We see that the angular momentum flux is
highly structured, with positive and negative contribosat dif-
ferent latitudes and times. At these radii, the kinetic tpropor- dependence of the solution. It may be of interest to studyang
tional toU 4 U, dominates over the magnetic term proportionahr momentum fluxes along magnetic field lines; see the work
to B, B,., and the turbulent viscous term is negligible. of Pantolmos & Matt (2017), who compare flow speeds along

The strongly negative contributions to the angular momedifferent field lines. For our unsteady wind solutions, this-
tum flux are unexpected and may be connected with the tirmedure may no longer be particularly advantageous. However
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2.0

1.5

Fig. 11. Angular velocity contours superimposed on a color representatioh. of, 9) for Model A. Positive (negative) values 6f are shown as
solid (dotted) black contours. Note the extended region at midlatitudestivere.

to get some idea about the latitudes contributing to thethega ~ We should point out that/ is given here in standard units
angular momentum flux, we show in Figure 10 the radial depefhere M/ = ¢, = 1. Therefore, Figure 9 can be directly inter-
dence of the time- and latitude-averaged profiled sEparately preted as a plot of the mean-field (MF) analogoue of the Slaakur
for the coned) < 70° (away from the equator) anl > 70° & Sunyaev (1973) parameter,

(around the equator). We see that negative angular momentum

fluxes dominate and originate mainly from regions away from

the equator. Nevertheless, in the rgmg?; < 7;/71: < 0.6, Jx oMF — (30, Uy — B, By /o)) 2. (34)
and.y; can be of comparable magnitude, as is expected from the

theory of Weber & Davis (1967). This range agrees well with th

Alfv én radius; see Figure 3. Here, the superscript MF indicates that this expressiorpis a
To understand the variability 6t and the occurrence of neg-plied to the two-dimensional mean fields rather than to the flu
ative values at certain times, we show in Figure 11 angulacve tuations, as in the usual turbulent case. This parametdsds a
ity contours superimposed on a color representatidi,gf, ¢).  frequently used in solar wind studies (see Eq. (2) of Finley
Note that() is often negative over an extended range of migt al., 2019); see also Keppens & Goedbloed (1998)ilR

IatitL_Jdes. As we have seen above, this is c_hiefly respongible et al. (2015), and Pantolmos & Matt (2017) for earlier two-
the inward angular momentum transport discussed abovs. Thimensional stellar wind models.

could be related to our rather primitive modeling of the toydr h | in the d P
dynamics inside the star, which lacks realistic differantota- The angular momentum in the dynamo zondjs~ 68 in
tion, for example. We return to this question briefly in theco CUF units. Owing to cilﬁnFcelatlon, itis difficult to determirei-
clusions. Note also that, (r,#) shows clear latitudinal varia- @Pe values off andagg’, but for the purpose of a preliminary
tions. The occurrence of regions with negative angular memeassessment, it suffices to estimdtez 0.01. As we discuss be-
tum transport is interesting in view of the recent discowarfast  low in more detail, there can be certain periods whérean
wind episodes observed with Parker Solar Probe at certain I@ven be negative. This then implies spindown or spinup aiea ra
gitudes (Finley et al., 2020a,b). Our model is of courseyamis Tspin ~ 7000, which is indeed similar to the value of;.ssioss
metric and cannot address longitudinal variations, beritinds quoted in Sect. 2.5. It may well be thak{f is much less than
us that negative angular momentum transport is not implessib0.01. This would then imply an even larger valuergfdown-

10
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Fig.12. Angular velocity contours superimposed on a color represen-  0.00 0.05 0.10 ®) 0.15

tation of U,.(r, 0) for Model B (a) withQ2 = 1 and Model C (b) with

Q = 10. The nearly concentric red solid lines show the surfaces where

U, is transalfénic and the red dashed ones show the surfaces wherEifl- 13- Magnetic field lines superimposed on a color representation of
iS transmagnetosonic_ B¢(’I“, 9) fOr MOdel B Wlth Q = 1. Strong f|e|ds Only OCCUr near =

rin; the weak-field regions elsewhere cannot be seen.

3.6. Resulting dynamo parameters The Taylor—Proudman theorem applies primarily the angular
In our model, differential rotation is automatically edtsbed as Vvelocity contours. This can be seen by writing the relevant p

a result of magnetic braking. Since our turbulent viscaoisitys- of theU - VU nonlinearity of Eq. (2) in the form

sumed to be purely isotropic, differential rotation canyaelsult P

from the torque on the star established by the magnetized wij . v x (_ﬁ. VU) —w—0%+ .., (35)
(Mestel, 1968). This leads to a nearly constant angular meme P 0z

tum per unit mass, i.ez%Q) ~ const. The contours of con-
stant angular velocity tends to approach a pattern thabosecl
to cylindrical, as will be discussed below in the contextaysid
rotation. Given thaf) « w2, the angular velocity difference
between the, and R is AQ = (1 — r2 /R*)Qo = 0.75Qy.
Therefore, we have for the second dynamo parameter in Ej. (
the value, = 75, 375, and3750 for Q = 0.2, 1, and10, re-
spectively. The first dynamo parameter in Eq. (20)is= 125,
where we have used, = «g/cs = 0.05 for Model A, and
Nt =8 x 107 °rcs.

where2 = U, /w is the local angular velocity, and the dots indi-
cate the presence of other terms not relevant here. In Fidae
we show contours of) together with a color-coded represen-
tation of U,.. We see that th€ contours are already strongly
%Iindrical forQ) = 1. As we increase the value 6fto 10, the
cylindrical contours begin to extent much further out aldng
rotation axis; see Figure 12b.

For Q2 = 10, the radial velocity develops a marked indenta-
tion inside of what is known as the inner tangent cylinder rghe

w >y (inner tangent cylinder) (36)

3.7. Rapid rotation see Figure 12b. Here the outflow is suppressed and supersonic

The study of models at rapid rotation is motivated by the iflows occur only forz > 2rc ~ roy, i.., near the outer bound-
terest in understanding the evolution of magnetic actigfy ary of the computational domain. For = 1, by comparison,
young stars, i.e., before they have slowed down to the sotar the contours ot/,.(r, 0) are almost perfect spherically symmet-
tation rate. For us, there is also another motivation in #ilat ric — much more so than even for the case vith= 0.2; cf.
our models were of? type, i.e., the effect was weak and,  Figure 11. Similar results have also been found by Washimi &
was not much larger tha@',, as required for am(2 dynamo Shibata (1993) in their rotating models where a central ldipo
(Brandenburg and Subramanian, 2005). To incréasethe ro- magnetic field was assumed.
tation rate could be increased. Another possibility is wedoC,, . It turns out that our models are now no longer oscillatory
However, to prevent the dynamo from decaying, one would neadd are thus still not ok type, contrary to what was originally
to decrease@r even further, but this is computationally difficult.hoped for. Visualizations of the toroidal and poloidal fefdr

For rapid rotation, the magnetic field lines and contourdodels B and C are shown in Figures 13 and 14. The fields are
of the toroidal magnetic field are much more concentrated $trong only inside the star, where the dynamo is active. iQeits
the bottom of the dynamo region, ~ r;,. At faster rotation, the star, the field is much weaker and not visible in our gregdhi
the contours become more cylindrical. This is an effect ef threpresentation, but it is never vanishing.
Taylor—Proudman theorem and results generally in smaihvar ~ To discuss the nonoscillatory nature of these two models, it
tions along the rotation axis. is useful to consider the dynamo parametérsandC,. We find

11
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To getan idea about the latitudinal variation of the magrfegid 0.0 05 10 15 20
in the wind, the plotFE); as a function of) for different radii. /7,

The result is shown in Figure 15. It turns out that the magneti

agt'v'ty 'OS confined to a narrow cone with an opening angle ﬁg. 16. Radial profiles of the latitudinally averageidfor Models A-C
aboutl5°®. in panels (a)—(c). The blue (red) lines refer to kinetic (magnetic) contri-

Noticeable magnetic energy losses are found only near #igions, and the black lines denote the turbulent viscous contribution.
rotation axis. As a function of radius, similarly to the cade Positive (negative) values are shown as solid (dotted) lines. The total
slow rotation,EM(r) has a maximum somewhere i < » <  (kinetic, magnetic, and viscous) angular momentum transport is domi-
r., which is where the Alfén point lies. Furthermore, Model B natgd by the k'|net'|c contribution, except for'Mo'deI A, where the mag-
has a much smaller magnetic energy loss at large radii tHagtic contribution is rather strong, but negative in the outer parts.
Model A.

The model shows similarities with earlier simulations of
outflows emanating from stellar accretion disc dynamos (von
Table 1. Summary of the simulations discussed in this paper. Rekowski et al., 2003, 2004), but there the opening angle was
closer t030°. In the present simulations, the opening angle is
essentially zero. It corresponds to a cylinder in which nudst

Model & Qa  Q Ca Co  Bumax Peye the magnetic fields are ejected, although the flow speed & her
A 005 107° 02 125 75 6-13 410 strongly reduced.
B 0.1 10‘? 1 250 375 160 — For these rapidly rotating models, we expect significant out
c 01 107" 10 250 3750 88 — ward angular momentum transport. To demonstrate this imor

detail, we show in Figure 16 the radial profiles of the latitu-

12
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, _ Fig.18. U, (red solid lines) and/,; (blue dashed lines) at the stellar
Fig. 17. Radial dependence of the plaspéor Models A (dotted black gyrface at- = R as a function of colatitude for the same times as in
lines), B (dashed red line), and C (solid blue line). Figure 10.U . is usually positive, butU,| is much larger and most
of the time in the prograde direction, but sometimes it is retrograde,
which is a consequence of the low low moment of inertia of the stellar

dinally averagedj for Models A—C for the kinetic, magnetic, :
ggvelope in our model.

and viscous contributions, just as we did in Figure 10. Sin

Models B and C are steady, time averaging is only needed for

Model A. must be approximately constant (von Rekowski et al., 2003.
Figure 16 shows that in Models B and C, the angular mpotential enthalpy is defined & = h + ®, whereh = ¢,T'is

mentum transport is outward adds independent of through- the specific enthalpy with,, being the specific heat at constant

out most of the wind. For Model A, however, the time-averaggatessure and’ the temperature, antl = —G M /r is the poten-

angular momentum transport becomes negative some distati@esnergy. Hydrostatic equilibrium requires that

away from the Alfien point. Note also thaf is more thanten ,

times larger in Model C than in the ten times more slowly roQ = —VH+hVs/cp, (38)

tating Model B. For Model B, the viscous contribution exceedwvhere s is the specific entropy. For the corona, this implies

the magnetic one at all radii, while in Model C, the magnetit' = GM/rc, ~ 2 x 10° K, which is realistic and agrees also

contribution exceeds the viscous one fgr, > 1.5. Inside the with our model. Toward the photosphef® decreases abruptly

star, the angular momentum transport is negative and cduysetecause of surface cooling, and therefore the densitydsese

a strong poleward circulation. The viscous contributiomlio  abruptly. Thus, the density would then be much larger thaatwh

rather strong, but positive. was possible in our models. This, in turn, would allow us e

much larger field strengths and therefore smaller plasnasbet
Another important consequence of having larger densities i

the stellar envelope would be that the angular velocityastkl-

We have seen that in Model A with the slowest rotation, thar surface would always be in the prograde direction. In our

angular momentum flux was occasionally inward, especidlly present models, this is not always the case, as can be seen fro

midlatitudes. We then considered Models B and C with faster rFigure 18, where we show the radial and azimuthal velocities

tation in the hope that not only the outward angular momentuah the stellar surface. We see that the local rotationalcitglds

flux would be outward, but also that the dynamo in the star dioulhere occasionally in the retrograde direction, espgcredbr the

be in thea2 regime. We found that the angular momentum flugquator.

was then indeed outward, but the dynamo was still indRe

regime. In the introduction, we did already emphasize that t Conclusi

lack of a cool photosphere just beneath the corona was ignoré' onclusions

This makes it generally very difficult to reach low plasmaaset Our work has shown that a simplified realization of a dynamo

which we define as with a stellar wind can easily be treated self-consisteimly

8 = 2pc2/B2. 37) one and the same model_, provided_ certain compromises are be-

S ing made. The assumption of an isothermal equation of state

In Figure 17, we plot the radial dependencies of the minimuhas simplified matters conceptionally. Relaxing this festm

value of 3, Buin, for Models A—C. We see that the largest valuesould allow us to include the energy deposition in the corona

of Bmin 0ccur for Model B with an intermediate angular velocityand to model the effects of a sharp density drop at the stllar

Increasing the angular velocity further (Model C) increate face. This might require a significant increase in resotutiear

field strength and does therefore also lead to a smaller \wdluethe surface, which in turn requires the use of a nonuniforsime

Bmin. The smallest values occur for Model A. This is mainlyAnother restriction has been the use of a relatively largleutu

because Model A is the only model where the magnetic fielent magnetic diffusivity and viscosity. This was mainlyecied

in the wind is of comparable strength at all latitudes. Fetda to resolve shocks that develop within the wind. Those typica

rotation, the field in the wind is strongly concentrated abthe emerged in response to rapid changes in the magnetic fielsl. Th

axis. could probably be avoided by allowing for an additional $hoc
Let us now return to the potential role of the photosphereiscosity, but this has been avoided in the present work.Hen t

The photosphere of a star is the region where it cools and los¢her hand, the angular momentum flux associated with turbu-

specific entropy. Everywhere else in the wind, the specific elent viscosity was already negligible, so its presence may n

tropy does not change much, and therefore the potentiahkayth have caused any artifacts.

3.8. Comparison of the plasma betas for our models

13
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Future work might involve the inclusion of & effect

Finley, A. J., Hewitt, A. L., Matt, S. P., Owens, M., Pinto, R, & Réville, V.

(Rudiger, 1980, 1989), which would allow for the development 2019, ApJ, 885, L30

of differential rotation in the stellar envelope. Withontiuding
the effects of stellar winds, such models with combinednd
A effects were studied by Brandenburg et al. (1990, 1991), w
found significant alignment of th@ contours with the rotation
axis unless the baroclinic term was also included (Brandenb

et al., 1992). But this may change when their boundary condi-

Finley, A. J., Matt, S. P., Bville, V., Pinto, R. F., Owens, M., Kasper, J. C.,
Korreck, K. E., Case, A. W., Stevens, M. L., Whittlesey, P.rdom, D., &
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tion onr = R is replaced by a continuous transition to the SGank, J., King, A. R., & Raine, D. J. 1992, Accretion poweraistrophysics

lar exterior; see Warnecke et al. (2013) for spherical cotve

simulations with a simplified representation of a stellaooa.
The inclusion of theA effect might allow us to model the

stellar dynamo more realistically. It would be interestingsee

(Cambridge: Cambridge Univ. Press)
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