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ABSTRACT

Context. Stellar winds are an integral part of the underlying dynamo, the motor of stellar activity. The wind controls the star’s angular
momentum loss, which depends on the magnetic field geometry which, in turn, varies significantly in time and latitude.
Aims. Here we study basic properties of a self-consistent model that includessimple representations of both the global stellar dynamo
in a spherical shell and the exterior in which the wind accelerates and becomes supersonic.
Methods. We numerically solve an axisymmetric mean-field model for the induction, momentum, and continuity equations using
an isothermal equation of state. The model allows for the simultaneous generation of a mean magnetic field and the development of
a Parker wind. The resulting flow is transonic at the critical point, which we arrange to be between the inner and outer radii of the
model. The boundary conditions are assumed to be such that the magneticfield is antisymmetric about the equator, i.e., dipolar.
Results. At the solar rotation rate, the dynamo is oscillatory and ofα2 type. In most of the domain, the magnetic field corresponds to
that of a split monopole. The magnetic energy flux is largest between the stellar surface and the critical point. The angular momentum
flux is highly variable in time and can reach negative values, especially at midlatitudes. At rapid rotation of up to 50 times the solar
value, most of the magnetic field is lost along the axis within the inner tangentialcylinder of the model.
Conclusions. The model reveals unexpected features that are not generally anticipated from models that are designed to reproduce
the solar wind: highly variable angular momentum fluxes even from just anα2 dynamo in the star. A major caveat of our isothermal
models with a magnetic field produced by a dynamo is the difficulty to reach small enough plasma betas without the dynamo itself
becoming unrealistically strong inside the star.
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1. Introduction

The emergence of a wind around stars is a remarkable and some-
what counter-intuitive phenomenon. The existence of the solar
wind was already suggested by the fact that the tails of comets al-
ways point away from the Sun (Biermann, 1951). Nevertheless,
the wind was thought to be a relatively slow phenomenon asso-
ciated with an evaporation of the corona (Chamberlain, 1960).
The physical nature and mathematical theory of the solar wind
was first understood by Parker (1958). His theory showed that
the wind starts off as a subsonic flow some distance above the
corona. It gradually gains in speed as the gravitational force
diminishes and the effective outward pull resulting from the
quadratic increase of the cross-sectional area in Bernoulli’s law.
This is a purely hydrodynamic phenomenon, unlike what was
suggested by the popular notion of the solar corpuscular radia-
tion at the time.

Stellar winds play a crucial role in a star’s life. Without the
wind, the Sun would still be spinning rapidly and magnetically
superactive. A proper understanding of the rotational evolution
of a star through magnetic braking via a wind is important not
only for stellar evolution, but it also plays a role in understand-
ing the diversity of magnetic activity as a function of rotation
rate and age (van Saders et al., 2016). As the star reaches theage
of the Sun, the magnetic field either changes its geometry such
that stellar braking is reduced (Metcalfe & van Saders, 2017; See
et al., 2019) or it can continue to brake and the star’s differential

rotation becomes antisolar-like (Gastine et al., 2014; Käpyl̈a et
al., 2014), i.e., the equator spins slower than the poles. Stellar
winds can also be important for the dynamo itself in that they
can transport magnetic helicity away from the dynamo region,
and thereby alleviate what is known as catastrophic quenching;
see Mitra et al. (2011) for mean-field models and Del Sordo et
al. (2013) for computations of the magnetic helicity flux in sim-
ulations in a turbulent wind. Magnetic winds also affect theden-
sity and dynamics of cosmic rays in the heliosphere. Computing
selfconsistently the dynamo-generated magnetic field evolution
in the heliosphere is therefore crucial and for modeling themag-
netic shielding of Galactic cosmic rays on the Earth.

The theory of a magnetized stellar wind by Weber & Davis
(1967) employes a prescribed and time-independent stellarmag-
netic field, so any feedback on the underlying dynamics was ig-
nored. This is also true of the recent numerical models of Réville
et al. (2015), who compared different magnetic multipoles as ini-
tial conditions of their models. This has changed only in recent
years. Given that the wind normally dominates over the mag-
netic field, one can separate the dynamics of the wind from that
of the solar dynamo. Pinto et al. (2011), and more recently Perri
et al. (2018), modeled this by using two separate codes that are
magnetically coupled through a matching condition at the solar
surface. In more recent work, Perri et al. (2020) have extended
their model to include also a mean-field dynamo solution intothe
Pluto code, rather than matching the solutions of two separate
codes. This allows for a feedback of the wind onto the dynamo.
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This is therefore similar to the work presented here, exceptthat
they still invoke what they call a multilayered boundary condi-
tion. This means that different equations are being solved inside
and outside the star. The model is therefore still not fully self
consistent, but in some ways more realistic than ours.

The purpose of the present paper is to explore some basic
properties of stellar winds in the presence of dynamo-generated
magnetic fields. It is appropriate to adopt a mean-field model,
where we solve the equations for the azimuthally averaged mag-
netic and velocity fields. In this paper, those mean fields arede-
noted by an overbar. The effects of turbulence are then param-
eterized through a turbulent viscosity and a turbulent magnetic
diffusivity. In the star’s convection zone, there are also cyclonic
convective motions giving rise to kinetic helicity of opposite
signs in the two hemispheres. This is modeled through anα ef-
fect (Krause & R̈adler, 1980). The turbulent magnetic diffusivity
is here assumed constant.

The presence of the magnetic field causes the kinetic and
magnetic stresses to be different from zero. The turbulent viscos-
ity is itself a result of kinetic and magnetic stresses caused by the
fluctuating components of the magnetic and velocity fields. In
the theory of turbulent accretion discs (Frank et al., 1992), those
stresses are parameterized by the Shakura & Sunyaev (1973) pa-
rameter,αSS. It quantifies the stress in terms of the background
differential rotation, the sound speed, and the scale height. In
accretion discs, where the differential rotation is Keplerian, this
amounts to a scaling of the stress by the sound speed squared.
In our case, the differential rotation is not related to the sound
speed, but the basic mechanism of angular momentum transfer
is the same, and we can still express the total stress in a similar
fashion.

Unlike the work of Perri et al. (2018), we consider the evo-
lution of the dynamo and the wind within a single code. At this
point, our aim is not to produce a realistic model of the Sun, but
rather a physically consistent model under conditions where the
dynamics of the wind can no longer be separated from that of the
dynamo. Our models can also be applied to conditions of rapid
rotation, which strongly affects the wind. This can be particu-
larly relevant to young stars in their T Tauri phase. We beginby
presenting the basic equations of our model and turn then to the
discussion of our results.

The simplest wind solution is the isothermal one that was al-
ready found by Parker (1958). Heating is not explicitly invoked.
Its physics resembles that of a siphon flow. Once a fluid parcel
has moved over the top of the effective gravitational potential,
it simply continues to fall and pulls the remaining fluid behind
it. The top of the effective potential corresponds to the critical
point where the flow speed crosses the sonic point. We arrange
this point to be in the middle of the computational domain such
that the flow speed becomes supersonic well before the outer
point rout. We fit the dynamo-active zone (or stellar envelope)
with an α effect different from zero into a spherical shell be-
tween the inner point of the computational domain,rin, and a
radiusR, which models the surface of the star.

The usefulness of an isothermal solution can be justified by
considering the fact that the sound speed both at the bottom of
the convection zone and in the solar wind is about100 km s−1,
corresponding to a temperature of a million degrees. The lower
temperature near the photosphere is obviously ignored. Foran
isothermal gas, the mean pressurep is then simply proportional
to the gas densityρ with p = ρc2s , wherecs is the isothermal
sound speed. The pressure gradient is then given by(∇p)/ρ =
c2s∇ ln ρ. The implications of a cool photosphere will be dis-
cussed at the end of the paper.

We begin by discussing first the basic equations, boundary
conditions, and parameters in Sect. 2. We then present our results
in Sect. 3, and draw our conclusions in Sect. 4.

2. The model

We adopt spherical polar coordinates,(r, θ, φ), with the origin at
the center of the star. The vectorr points away from the center,
the colatitudeθ increases away from the north pole, andφ in-
creases in the eastward direction. We assume axisymmetry, i.e.,
∂/∂φ = 0.

2.1. Basic equations

We write the mean magnetic field asB = ∇ ×A, whereA is
the mean vector potential. This ensures that∇ · B = 0 at all
times. The evolution equations forA, the mean velocityU , and
the logarithmic mean densityρ, are

∂A

∂t
= U ×B + αB − ηTµ0J , (1)

DU

Dt
= −c2s∇ ln ρ−

GM

r2
r̂ +

1

ρ
J ×B − νTQ, (2)

D ln ρ

Dt
= −∇ ·U , (3)

whereD/Dt = ∂/∂t + U · ∇ is the advective derivative,G
is Newton’s constant,M is the stellar mass,̂r = r/r is the ra-
dial unit vector,ηT andνT are the sums of turbulent and micro-
physical values of magnetic diffusivity and kinematic viscosity,
respectively,α is the aforementioned coefficient in theα effect,
J = ∇ × B/µ0 is the mean current density,µ0 is the vacuum
permeability,

−Q = ∇2U + 1
3
∇∇ ·U + 2S ·∇ ln(νTρ) (4)

is a term appearing in the viscous force, whereS is the traceless
rate of strain tensor of the mean flow with componentsSij =
1
2
(U i,j + U j,i) −

1
3
δij∇ · U . The dot in Eq. (4) denotes the

contraction over the free index of∇ ln(νTρ).
The mean magnetic field is generated by theα effect. This

leads to exponential growth, provided the value ofα is above a
certain critical value. Eventually, the dynamo must saturate be-
cause the Lorentz force from the mean field,J ×B, drives fluid
motions that feed back onto the dynamo to limit its growth. This
way of achieving saturation is sometimes referred to as Malkus
& Proctor (1975) mechanism. In addition, there can be feedback
from the small-scale magnetic field that leads to a nonlinearsup-
pression ofα, which is referred to asα quenching. We assume
here a simple quenching function forα, which is then written in
the form

α(r, θ,B) =
α0fα(r) cos θ sin

n θ

1 +QαB
2
/B2

eq

, (5)

wheren = 6 is chosen to concentrate theα effect to low lati-
tudes (Jabbari et al., 2015; Cole et al., 2016),Qα is a quenching
parameter that determines the typical field strength, whichis ex-
pected to be of the order ofQ−1/2

α Beq, and

fα(r) = Θ
(

(r −R)/wα

)

(6)

is a radial profile function withΘ(x) being a smoothened step
function from 0 to 1 asx crosses zero. Here,R andwα determine
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the location and width of the transition. The value ofQα de-
termines the nonlinear equilibration of the dynamo, in addition
to the macroscopic feedback from the Lorentz force mentioned
above. Our model thus comprises three distinct layers with

rin < R < rc < rout, (7)

whererin < r < R is the dynamo region (modeling the stellar
envelope),R < r < rc is the wind acceleration region (model-
ing the locations of the solar corona and the Alfvén point), and
rc < r < rout is the supersonic wind region withrc = GM/2c2s
being the critical point.

2.2. Boundary conditions

In most of the cases, we apply a uniform angular velocityΩ0 on
the inner boundaryr = rin by settinguφ = rin sin θΩ0. For
the other two velocity components, we adopt “open” boundary
conditions by setting the second radial derivative to zero.This
condition turns out to be stable in all cases considered in this
paper. It allows for a weak inflow to replenish the mass loss on
the outer boundaryr = rout, where we apply open boundary
conditions for all three velocity components. No precautions are
taken to ensure that the mass in the computational domain stays
constant. It turns out, however, that the total mass remainsnearly
unchanged. This is, to some extent, also explained by the fact
that the total mass loss rate is small compared with other inverse
time scales in the problem.

For the magnetic field, we adopt a perfect conductor bound-
ary conditions on the inner radius, i.e.,

∂Ar

∂r
= Aθ = Aφ = 0 on r = rin, (8)

and a radial field condition on the outer radius, i.e.,

Ar =
∂Aθ

∂r
+

Aθ

r
=

∂Aφ

∂r
+

Aφ

r
= 0 on r = rout. (9)

On the pole, we assume

∂Ar

∂θ
= Aθ = Aφ = 0 on θ = 0◦ , (10)

while on the equator, we assume

∂Ar

∂θ
= Aθ =

∂Aφ

∂θ
= 0 on θ = 90◦. (11)

Since our simulations are axisymmetric, the magnetic field is
conveniently represented viaBφ andAφ. In particular, contours
of r sin θ Aφ give the magnetic field lines of the poloidal field,
Bpol = ∇× (Aφφ̂).

2.3. Wind solution as initial condition

As initial condition forU ≡ (u, 0, 0) andρ, we adopt the Parker
wind solution. In some cases we also add a finite angular ve-
locity with constant angular momentum, although its effecton
the dynamics is ignored in the initial condition. We begin by
discussing the Parker wind solution, which can be obtained by
solving the Bernoulli equation,
1
2
u2 + c2s ln ρ−GM/r = const, (12)

along with the equation of mass conservation, which states that
the mass loss rate is given bẏM = 4πr2ρu. We then obtain
1
2
u2 − c2s lnu− c2s ln r

2 −GM/r = Φ0, (13)

whereΦ0 = −3/2 is obtained by inserting the valuesu = rc =
1 for the critical point. We solve the Bernoulli equation itera-
tively. Forr ≤ rc, usingu = csr/rc initially, we iterate

c2s lnui+1(r) =
1
2
u2
i − c2s ln r

2 −GM/r − Φ0, (14)

while for r > rc, usingu0 = 2cs initially, we iterate

1
2
u2
i+1(r) = c2s lnui + c2s ln r

2 +GM/r +Φ0. (15)

This iteration procedure was implemented by Jörn Warnecke and
Dhrubaditya Mitra into the PENCIL CODE1 in 2012. We choose
the initial value ofṀ to beṀ0.

2.4. Parameters and estimates for the Sun

It is convenient to work with nondimensional units by measur-
ing speeds in units of the isothermal sound speed and lengths
in units of the critical radius,rc = GM/2c2s . In the following,
we use tildae to denote nondimensional quantities. Using typical
numbers for the Sun, we have

cs = 107 cm s−1 = 100 km s−1, (16)

GM = GM⊙ ≈ 1.3× 1026 cm3 s−2, and therefore

rc = GM⊙/2c
2
s ≈ 7× 1011 cm ≈ 10R⊙ ≈ 0.05AU. (17)

In the Sun, the turbulent viscosity isνT ≈ urmsℓ/3 ≈
1013 cm2 s−1. The nondimensional viscosity is then

ν̃T ≡
2νTcs
GM⊙

≈ 2× 10−6, (18)

which is rather small.
For numerical stability, as already alluded to, we cannot

choose the value ofνT to be too small. In practice, for a numeri-
cal resolution of128× 32 mesh points in ther andθ directions,
we can choosẽνT ≈ 0.01. For4096× 1024 mesh points, on the
other hand, we can reduce it by a factor of 128 toν̃T ≈ 8×10−5.
This then also means that in the stellar convection zone, we can-
not adopt significantly smaller values, as is expected theoreti-
cally based on our earlier estimates ofurms andℓ.

The nondimensional value of the angular velocity is given by

Ω̃ = rcΩ0/cs = GMΩ0/2c
3
s ≈ 0.2, (19)

where we have usedΩ0 = 3 × 10−6 s−1. The strength of the
dynamo is determined by the two dynamo numbers,

Cα = α0R/ηT and CΩ = ∆ΩR2/ηT. (20)

The excitation conditions for dipolar and quadrupolar parities
are generally fairly close together (Roberts, 1972). This is be-
cause the magnetic field is strongest at high latitudes, so the
hemispheric coupling is weak. In the following we restrict our-
selves to solutions with dipolar parity. We vary the value ofCα

and focus on values that are about twice supercritical.
In our simulations, we adopt nondimensional units by setting

rc = cs = Ṁ0 = µ0 = 1, (21)

which implies thatGM = 2. Our unit of mass is then[M ] =

Ṁ0rc/cs. For the Sun, we haveṀ0 ≈ 6 × 1012 g s−1, so
that our unit of density is[ρ] = Ṁ0/csr

2
c , which is about

1 http://github.com/pencil-code (Pencil Code
Collaboration., 2020), DOI:10.5281/zenodo.2315093
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1.2 × 10−18 g cm−3 for the Sun. Therefore, our unit ofB is
[B] = (µ0[ρ])

1/2cs, which is about0.04G for the Sun. The value
of Newton’s constantG never enters on its own. It could be de-
termined a posteriori, if we knew the total stellar mass. In our
model, we can compute the massM∗ of the stellar envelope in
rin ≤ r ≤ R, but this still leaves the mass of the stellar core
undetermined. In the following, it is often convenient to retain
the symbolsrc, cs, Ṁ0, andµ0 to remind ourselves of the nor-
malization.

There are a few other parameters of the model that we keep
fixed. In all cases we usewα = 0.02 for the transition thickness
of α near the surface; see Eq. (6). We always takerin = 0.1 and
R = 0.2. This corresponds to a fractional shell thickness of 50%
instead of the 30% in the case of the Sun, but we should keep in
mind that there are other properties that agree with the Sun only
qualitatively. Another example is our smaller choice ofR/rin =
5 instead of the solar value of about 10. In all our simulations
with 4096× 1024 meshpoints, we usẽνT = 8× 10−5.

2.5. Comparison of characteristic time scales

In our simulations, sound speed and the critical radius are set to
unity, so the characteristic sound travel time,

τs = rc/cs (22)

is therefore also unity. When we adopt the stellar rotation rate,
Ω̃ = 0.2, the corresponding rotational time scale

τΩ = Ω−1
0 (23)

is then five, and the rotation period is2π/Ω̃ ≈ 30. The charac-
teristic time scale for the dynamo is the turbulent diffusive time
(e.g., Stix, 1974),

τTD = R2/ηT, (24)

which is around500 in our models. Another interesting time
scale for our models is the mass loss time,

τmassloss = M/〈Ṁ〉 ≈ M0/Ṁ0. (25)

In our models,M0 ≈ 7000 andṀ0 = 1, soτmassloss ≈ 7000. It
turns out that the spindown time is of a similar order of magni-
tude. It is given by

τspindown = J∗/〈J̇〉, (26)

whereJ∗ =
∫

∗
ρ̟2Ω dV is the angular momentum of the stel-

lar envelope, with̟ = r sin θ being the cylindrical radius,
Ω = Uφ/̟ is the local angular velocity, anḋJ is the angular
momentum loss, which we calculate in Sect. 3.5. The asterisk
on the integral denotes the volume of the envelope. The mass
loss and spindown times are the longest among the time scales
considered here, so the mass in the envelope cannot change sig-
nificantly during the time scales of interest for the wind andthe
dynamo.

3. Results

After some preliminary studies at low resolution of128 × 32
meshpoints withνT = ηT = 10−2rccs, we performed high-
resolution simulations with4096× 1024 meshpoints, where we
were able to decreaseνT andηT to 8 × 10−5rccs. These values
are still above the physically motivated value, but for numeri-
cal stability reasons, they cannot be decreased further without
invoking artificial viscosity and magnetic diffusivity.

Fig. 1. Radial dependence of (a)̇M for different latitude ranges, and (b)
Mr (solid line) for Model A. The dotted line in (b) refers to the mass
within the computational domain only, so it vanishes onr = rout.

Fig. 2. Time series of the three magnetic field components at one point
for Model A. Here,Bθ andBφ are multiplied by 25 to make those com-
ponents better visible. Note that all three components ofB are asym-
metric about zero. The 12 long tick marks on the lower abscissa show
the times for which snapshots will be discussed later on.

Our main model is called Model A, which has the solar value
of Ω and a minimal amount of viscosity and magnetic diffusivity
that can still be tolerated. Later, we also consider more rapidly
rotating models cases (Models B and C).

3.1. Mass loss

In Figure 1a, we show the local mass loss density,

Ṁ(r, θ, t) = 4πr2ρ(r, θ, t)U r(r, θ, t), (27)

whose average overθ and t, 〈Ṁ〉 =
∫ π

0

∫ t0+T

t0
Ṁ dt sin θ dθ,

is close to the initial valueṀ0. This is not too surprising, but
it should be emphasized that this is not enforced as a condition.
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The good agreement suggests that the open boundary condition
at the bottom draws in a similar amount of mass at the inner
boundary as what is lost at the outer boundary.

To get a sense of the radial mass distribution in our model,
we plot in Figure 1b the cumulative mass,

Mr(r, θ, t) =

∫ ∞

r

4πr′2ρ(r′, θ, t) dr′, (28)

for different values ofθ at t = 858. We see that the total mass at
r = rin is about 7000 mass units; one mass unit here isṀ0rc/cs.
The mass above the surface is about 10, so 99.9% of the total
mass in the computational domain is contained in the stellaren-
velope inrin ≤ r ≤ R. Thus, if no mass was replenished on
the inner boundary, the time it would take to lose all mass at the
initial rate would beτmassloss = M/Ṁ = 7000.

We emphasize at this point that the full stellar mass is unde-
termined, because the value of Newton’s constantG never en-
ters on its own. We could, in principle, constrain it by assuming,
for example, that the density in the core is constant and equal
to that atr = rin. This would give for the minimal core mass
Mcore ≫ 36000, which is five times the mass in the envelope.
UsingGMcore = 2, we findG ≪ 6×10−5c3s/Ṁ0, which is sat-
isfied by a large margin for the values quoted above. We stress,
however, that this estimate was done only for illustrative pur-
poses.

3.2. Oscillatory model at solar rotation rate

We focus on a simulation with the solar value of the angular
velocity, i.e.,Ω̃ = 0.2 (Model A). In these cases, the magnetic
field is oscillatory, but in a rather nonlinear fashion; see Figure 2,
where we plot the time dependence of the three magnetic field
components at one point in the wind. TheBr component is pos-
itive most of the time and much smoother than theBθ andBφ

components. The periodT is about 41 time units. This corre-
sponds to about0.1 yr, which is short compared with the actual
solar 22 year cycle, but still about five times longer than thecy-
cle period in the model of Perri et al. (2020). Their parameters
are otherwise comparable to ours:ηT ≈ 4 × 1014 cm2 s−1 in
both models,Ṁ = 3× 10−14M⊙ yr−1 (a third of our value), an
Alfv én radius of about two stellar radii, and a domain size of 20
solar radii (twice our value).

3.3. Magnetic field geometry

In Figure 3 we show a sequence of magnetic field visualiza-
tions at different times. To make the magnetic field in the outer
parts better visible, we multiplyBφ by r2. Here, we show the
time span from̃t = 814 to 858, covering just a little over a pe-
riod. We overplot the surfaces whereUr is transalfv́enic (solid
white lines), i.e., whereUr exceeds the Alfv́en speedvA =

(B
2
/µ0ρ)

1/2. The surface is corrugated, but its mean radius is
around0.4 rc. We also shows the surfaces whereUr is transmag-
netosonic, i.e., whereUr exceeds the fast magnetosonic speed
cms (dashed white line), which obeysc2ms = c2s + v2A. The mean
radius of the magnetosonic surface is close torc.

Butterfly diagrams ofBr(θ, t) andBφ(θ, t) are shown in
Figure 4. The field in the wind does not show any migration
in latitude, as is expected from models of the solar dynamo.
Figure 5 shows only the inner part of the domain. We see regions
with open and closed field lines at different times. However,
there is no clear magnetic field migration that manifests itself

in the Sun in a Maunder’s butterfly diagram of sunspot locations
versus time and latitude.

It is interesting to note the appearance ofV-shaped field lines
in the panels fort = 822–834 and perhaps also fort = 846.
This means that there are magnetic field lines in the wind that
are not anchored in the star. This may be a bit surprising, butwe
have to remember that the magnetic field is time-dependent and
the medium electrically conducting. The time-varying magnetic
field can therefore induce toroidal currents in the stellar wind,
which then produce poloidal field lines that are closed outside
the star. This phenomenon may be similar to what is known as
“switchbacks” in the solar wind (Bale et al., 2019; Squire etal.,
2020).

3.4. Poynting flux

The wind carries with it not only mass, but also kinetic and mag-
netic energies. The latter is quantified by the mean Poyntingflux,

FPoy(r, t) =

∮

(E ×B/µ0) · dS, (29)

whereE = ηTµ0J − αB − U ×B is the mean electric field.
The magnetic energy loss is thenĖM = 4πr2FPoy. In the steady
state,〈ĖM〉 would be independent ofr if there was no Ohmic
dissipation and no conversion between kinetic and magneticen-
ergies in the wind.

As a good estimate for the magnetic energy loss of the
solar wind, Brandenburg et al. (2011) computedĖM(r) ≈

4πr2〈(B
2
/2µ0)Ur〉, which they found to be of the order of

1018 W and slowly decreasing with radius. Estimating the to-
tal magnetic energy content within the convection zone based
on a mean field of300G over the convection zone of volume
4π(R3 − r3in)/3, we find a time scale of about 10 years, which
is comparable with the solar cycle period.

Figure 6 shows the latitudinal dependence ofĖM at differ-
ent times for Model A. It depends not only on latitude and time,
but also somewhat on radius. There is a window at high lati-
tudes where it is almost constant inθ, but the width of this win-
dow changes with time. It can have a width of over45◦ (e.g., at
t = 818 and 858), but it can also be almost nonexistent (e.g.,
at t = 842). Comparing with Figure 3, we see that this window
of nearly constantĖM corresponds to regions where the radial
field in the wind ist mostly negative. The dips iṅEM correspond
to regions where the radial field is weak and changes sign. Near
the equator,ĖM shows a sharp drop for most times, except for
t = 826. Again, comparing with Figure 3, we see that nothing
special happens near those dips, except that fort = 826 the field
is a bit weaker. These dips are probably a consequence of the
radial field reversal in the equatorial plane and the existence of
a field component that is purely vertical to the equatorial plane,
thus inhibiting the wind.

Next, we look at the radial dependence of the kinetic and
magnetic energy losses for different times and latitudes. The re-
sult is shown in Figure 7, where we define compute them as

ĖK = 4πr2(ρU
2
/2)ur, (30)

ĖM = 4πr2(B
2
/2µ0)ur, (31)

respectively. It turns out thaṫEM is much smaller thaṅEK. To
accommodate both quantities in the same plot, we have multi-
plied ĖM by a factor of 20.

5



P. Jakab and A. Brandenburg: The effect of a dynamo-generatedfield on the Parker wind

Fig. 3. Color representation ofr2Bφ(r, θ) for different times for Model A. The nearly concentric red solid lines show the surfaces whereUr is
transalfv́enic and the red dashed ones show the surfaces where it is transmagnetosonic. The times correspond to the long tick marks of Figure 2.

Fig. 4. Butterfly diagrams ofBr(r, θ) andBφ(r, θ) for Model A atr/rc = 1.9. Note again the asymmetry of those components with respect to
zero, which is different from the properties of the solar magnetic field.

We see thatĖK increases with radius. This is a peculiar
feature of isothermal models which is absent both in isentropic
models with constant specific entropy and in nonisentropic mod-
els with variable specific entropy; see Figs. 9.18 and 9.20 of
Brandenburg (2003), respectively. This is mainly because in
those models the sound speed decreases with radius in such a
way that the Mach number still increases, just as in the isother-
mal models. Thus, the basic dynamics is similar in that the flow

becomes supersonic. In isothermal models, where the sound
speed is constant, this transition must always be accompanied
by a radial increase of the wind speed. In this sense, a polytropic
model would seem more realistic, but it would still ignore the
internal energy or entropy equation, which would be even more
important for making our models more realistic, as is discussed
below; see Sect. 3.8.
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Fig. 5. Similar to Figure 3, but this time with a color representation ofBφ(r, θ) showing only the region close to the center. Note the occurrence
of V-shaped field lines during certain times at822 ≤ t ≤ 834, and846. The field shows radial outward migration during certain times: negative
Bφ at low latitudes for814 ≤ t ≤ 826, and positiveBφ at midlatitudes for834 ≤ t ≤ 854.

Fig. 6. Latitudinal dependence of the magnetic energy loss at different times for Model A. Note the occurrence of a plateau for small values ofθ
for 814 ≤ t ≤ 830 and aftert = 854.
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Fig. 7. Radial dependence oḟEK andĖM for different latitude ranges at different times for Model A. Note thatĖM has been multiplied by a factor
of 20. ĖK shows only little variability and always increases radially outward, whileĖM has a maximum near the Alfvén surface atr/rc ≈ 0.4.
The maxima are particularly high for822 ≤ t ≤ 826.

Fig. 8. Similar to Figure 7, for a semilogarithmic representation, without having rescaledĖM. Blue (red) lines indicate kinetic (magnetic) energy
losses. Note thaṫEM ≈ ĖK near the Alfv́en surface atr/rc ≈ 0.4, which is marked by a vertical line.

We also see that fort = 826, when the field was a bit weaker
further out in the wind (Figure 3), the kinetic energy loss ispar-
ticularly strong around the Alfv́en surface; see Figure 7. At other
times, especially fort ≤ 842 ≤ 850, the kinetic energy loss
is generally much weaker. Comparing again with Figure 3, this
corresponds to times when the radial field near the equator is
strong.

In Figure 8, we showĖM andĖK for r ≤ rc as a semilog-
arithmic representation. We see thatĖM ≈ ĖK at r/rc ≈ 0.4.
The radial profiles ofĖK are fairly independent ofθ andt. This
is because the wind is rather powerful and not much affected
by rotation or magnetic fields, which are the main factors that
provide non-spherically symmetric contributions to the system.

It is interesting to note thaṫEM(r) has a maximum atr ≈
rc/2. This radius is a certain distance above the stellar surface
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Fig. 9. Latitudinal dependence of the angular momentum lossJ̇(r, θ, t) for 1.5 ≤ r/rc ≤ 2 at different times for Model A. The blue (red) lines
refer to kinetic (magnetic) contributions, and the black lines denote the turbulent viscous contribution. Positive (negative) values are shown as
solid (dotted) lines. Note the strong latitudinal variability ofJ̇ .

and still below the critical point. This radius coincides with the
Alfv én radius; see Figure 3. This is the point where most of the
star’s magnetic energy has been deposited into the wind. In the
Sun, we expect that this energy deposition occurs in the corona.
One may tentatively associate the location of the maximum of
ĖM(r) with some representation of the star’s corona, although it
is unclear whether there is any relation to the real corona ofthe
Sun.

At large radii,r ≫ rc, the magnetic energy loss declines
slowly with radius. Such a decline has also been seen for the
solar wind (Brandenburg et al., 2011). In the Sun, it may be
connected with the conversion of magnetic energy into heat.In
Figure 8, we see thaṫEM ≈ ĖK at r/rc ≈ 0.4.

3.5. Angular momentum flux

There are no sinks or sources to the angular momentum, to
the angular momentum density,ρ̟2Ω, satisfies a conservation
equation of the form (Mestel, 1968, 1999)

∂

∂t

(

ρ̟2Ω
)

= −∇ · FAM, (32)

where

FAM = ρ̟2ΩU −̟BφB/µ0 − ρνT̟
2∇Ω (33)

is the angular momentum flux. Analogously to the energy
loss, the expression for the angular momentum loss isJ̇ =
4πr2FAM

r , which is shown in Figure 9 for1.5 ≤ r/rc ≤ 2

for the kinetic, magnetic, and viscous contributions,J̇K, J̇M,
andJ̇ν , respectively. We see that the angular momentum flux is
highly structured, with positive and negative contributions at dif-
ferent latitudes and times. At these radii, the kinetic termpropor-
tional toUφUr dominates over the magnetic term proportional
toBφBr, and the turbulent viscous term is negligible.

The strongly negative contributions to the angular momen-
tum flux are unexpected and may be connected with the time

Fig. 10. Time averaged radial profiles of latitudinally averagedJ̇ for
θ < 70◦ (upper panel) andθ > 70◦ (lower panel). The blue (red) lines
refer to kinetic (magnetic) contributions, and the black lines denote the
turbulent viscous contribution. Positive (negative) values are shown as
solid (dotted) lines. The kinetic contributions from different times are
shown in gray.

dependence of the solution. It may be of interest to study angu-
lar momentum fluxes along magnetic field lines; see the work
of Pantolmos & Matt (2017), who compare flow speeds along
different field lines. For our unsteady wind solutions, thispro-
cedure may no longer be particularly advantageous. However,
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Fig. 11. Angular velocity contours superimposed on a color representation ofUr(r, θ) for Model A. Positive (negative) values ofΩ are shown as
solid (dotted) black contours. Note the extended region at midlatitudes wereΩ < 0.

to get some idea about the latitudes contributing to the negative
angular momentum flux, we show in Figure 10 the radial depen-
dence of the time- and latitude-averaged profiles ofJ̇ separately
for the conesθ < 70◦ (away from the equator) andθ ≥ 70◦

(around the equator). We see that negative angular momentum
fluxes dominate and originate mainly from regions away from
the equator. Nevertheless, in the range0.2 ≤ r/rc ≤ 0.6, J̇K
andJ̇M can be of comparable magnitude, as is expected from the
theory of Weber & Davis (1967). This range agrees well with the
Alfv én radius; see Figure 3.

To understand the variability ofΩ and the occurrence of neg-
ative values at certain times, we show in Figure 11 angular veloc-
ity contours superimposed on a color representation ofUr(r, θ).
Note thatΩ is often negative over an extended range of mid-
latitudes. As we have seen above, this is chiefly responsiblefor
the inward angular momentum transport discussed above. This
could be related to our rather primitive modeling of the hydro-
dynamics inside the star, which lacks realistic differential rota-
tion, for example. We return to this question briefly in the con-
clusions. Note also thatUr(r, θ) shows clear latitudinal varia-
tions. The occurrence of regions with negative angular momen-
tum transport is interesting in view of the recent discoveryof fast
wind episodes observed with Parker Solar Probe at certain lon-
gitudes (Finley et al., 2020a,b). Our model is of course axisym-
metric and cannot address longitudinal variations, but it reminds
us that negative angular momentum transport is not impossible.

We should point out thaṫJ is given here in standard units
whereṀ = cs = 1. Therefore, Figure 9 can be directly inter-
preted as a plot of the mean-field (MF) analogoue of the Shakura
& Sunyaev (1973) parameter,

αMF
SS = (ρUrUφ −BrBφ/µ0)/c

2
s . (34)

Here, the superscript MF indicates that this expression is ap-
plied to the two-dimensional mean fields rather than to the fluc-
tuations, as in the usual turbulent case. This parameter is also
frequently used in solar wind studies (see Eq. (2) of Finley
et al., 2019); see also Keppens & Goedbloed (1999), Réville
et al. (2015), and Pantolmos & Matt (2017) for earlier two-
dimensional stellar wind models.

The angular momentum in the dynamo zone isJ∗ ≈ 68 in
our units. Owing to cancelation, it is difficult to determinereli-
able values ofJ̇ andαMF

SS , but for the purpose of a preliminary
assessment, it suffices to estimateJ̇ ≈ 0.01. As we discuss be-
low in more detail, there can be certain periods whereJ̇ can
even be negative. This then implies spindown or spinup at a rate
τspin ≈ 7000, which is indeed similar to the value ofτmassloss

quoted in Sect. 2.5. It may well be thatαMF
SS is much less than

0.01. This would then imply an even larger value ofτspindown.
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Fig. 12. Angular velocity contours superimposed on a color represen-
tation ofUr(r, θ) for Model B (a) withΩ̃ = 1 and Model C (b) with
Ω̃ = 10. The nearly concentric red solid lines show the surfaces where
Ur is transalfv́enic and the red dashed ones show the surfaces where it
is transmagnetosonic.

3.6. Resulting dynamo parameters

In our model, differential rotation is automatically established as
a result of magnetic braking. Since our turbulent viscosityis as-
sumed to be purely isotropic, differential rotation can only result
from the torque on the star established by the magnetized wind
(Mestel, 1968). This leads to a nearly constant angular momen-
tum per unit mass, i.e.,̟ 2Ω ≈ const. The contours of con-
stant angular velocity tends to approach a pattern that is close
to cylindrical, as will be discussed below in the context of rapid
rotation. Given thatΩ ∝ ̟−2, the angular velocity difference
between therin andR is ∆Ω = (1 − r2in/R

2)Ω0 = 0.75Ω0.
Therefore, we have for the second dynamo parameter in Eq. (20)
the valuesCΩ = 75, 375, and3750 for Ω̃ = 0.2, 1, and10, re-
spectively. The first dynamo parameter in Eq. (20) isCα = 125,
where we have used̃α0 ≡ α0/cs = 0.05 for Model A, and
ηT = 8× 10−5rccs.

3.7. Rapid rotation

The study of models at rapid rotation is motivated by the in-
terest in understanding the evolution of magnetic activityof
young stars, i.e., before they have slowed down to the solar ro-
tation rate. For us, there is also another motivation in thatall
our models were ofα2 type, i.e., theΩ effect was weak andCΩ

was not much larger thanCα, as required for anαΩ dynamo
(Brandenburg and Subramanian, 2005). To increaseCΩ, the ro-
tation rate could be increased. Another possibility is to lowerCα.
However, to prevent the dynamo from decaying, one would need
to decreaseηT even further, but this is computationally difficult.

For rapid rotation, the magnetic field lines and contours
of the toroidal magnetic field are much more concentrated to
the bottom of the dynamo region,r ≈ rin. At faster rotation,
the contours become more cylindrical. This is an effect of the
Taylor–Proudman theorem and results generally in small varia-
tions along the rotation axis.

Fig. 13. Magnetic field lines superimposed on a color representation of
Bφ(r, θ) for Model B with Ω̃ = 1. Strong fields only occur nearr =
rin; the weak-field regions elsewhere cannot be seen.

The Taylor–Proudman theorem applies primarily the angular
velocity contours. This can be seen by writing the relevant part
of theU ·∇U nonlinearity of Eq. (2) in the form

φ̂ ·∇×
(

−U ·∇U
)

p
= ̟

∂

∂z
Ω2 + ..., (35)

whereΩ = Uφ/̟ is the local angular velocity, and the dots indi-
cate the presence of other terms not relevant here. In Figure12a
we show contours ofΩ together with a color-coded represen-
tation of Ur. We see that theΩ contours are already strongly
cylindrical for Ω̃ = 1. As we increase the value of̃Ω to 10, the
cylindrical contours begin to extent much further out alongthe
rotation axis; see Figure 12b.

For Ω̃ = 10, the radial velocity develops a marked indenta-
tion inside of what is known as the inner tangent cylinder where

̟ ≥ rin (inner tangent cylinder); (36)

see Figure 12b. Here the outflow is suppressed and supersonic
flows occur only forz ≥ 2rc ≈ rout, i.e., near the outer bound-
ary of the computational domain. For̃Ω = 1, by comparison,
the contours ofUr(r, θ) are almost perfect spherically symmet-
ric – much more so than even for the case withΩ̃ = 0.2; cf.
Figure 11. Similar results have also been found by Washimi &
Shibata (1993) in their rotating models where a central dipole
magnetic field was assumed.

It turns out that our models are now no longer oscillatory
and are thus still not ofαΩ type, contrary to what was originally
hoped for. Visualizations of the toroidal and poloidal fields for
Models B and C are shown in Figures 13 and 14. The fields are
strong only inside the star, where the dynamo is active. Outside
the star, the field is much weaker and not visible in our graphical
representation, but it is never vanishing.

To discuss the nonoscillatory nature of these two models, it
is useful to consider the dynamo parametersCα andCΩ. We find
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Fig. 14. Similar to Figure 13, but for Model C with̃Ω = 10. Stronger
fields now extend along the axis outside the star.

Cα = 125 andCΩ = 3750 for ηT = νT = 8×10−5; see Table 1.
To get an idea about the latitudinal variation of the magnetic field
in the wind, the plotĖM as a function ofθ for different radii.
The result is shown in Figure 15. It turns out that the magnetic
activity is confined to a narrow cone with an opening angle of
about15◦.

Noticeable magnetic energy losses are found only near the
rotation axis. As a function of radius, similarly to the caseof
slow rotation,ĖM(r) has a maximum somewhere inR < r <
rc, which is where the Alfv́en point lies. Furthermore, Model B
has a much smaller magnetic energy loss at large radii than
Model A.

Table 1. Summary of the simulations discussed in this paper.

Model α̃ Qα Ω̃ Cα CΩ Bmax Pcyc

A 0.05 10−2 0.2 125 75 6–13 41.0
B 0.1 10−2 1 250 375 16.0 —
C 0.1 10−1 10 250 3750 8.8 —

Fig. 15. Latitudinal dependence oḟEM for different radius ranges for
Model B. Note thatĖM is large only near the axis.

Fig. 16. Radial profiles of the latitudinally averageḋJ for Models A–C
in panels (a)–(c). The blue (red) lines refer to kinetic (magnetic) contri-
butions, and the black lines denote the turbulent viscous contribution.
Positive (negative) values are shown as solid (dotted) lines. The total
(kinetic, magnetic, and viscous) angular momentum transport is domi-
nated by the kinetic contribution, except for Model A, where the mag-
netic contribution is rather strong, but negative in the outer parts.

The model shows similarities with earlier simulations of
outflows emanating from stellar accretion disc dynamos (von
Rekowski et al., 2003, 2004), but there the opening angle was
closer to30◦. In the present simulations, the opening angle is
essentially zero. It corresponds to a cylinder in which mostof
the magnetic fields are ejected, although the flow speed is here
strongly reduced.

For these rapidly rotating models, we expect significant out-
ward angular momentum transport. To demonstrate this in more
detail, we show in Figure 16 the radial profiles of the latitu-
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Fig. 17. Radial dependence of the plasmaβ for Models A (dotted black
lines), B (dashed red line), and C (solid blue line).

dinally averagedJ̇ for Models A–C for the kinetic, magnetic,
and viscous contributions, just as we did in Figure 10. Since
Models B and C are steady, time averaging is only needed for
Model A.

Figure 16 shows that in Models B and C, the angular mo-
mentum transport is outward anḋJ is independent ofr through-
out most of the wind. For Model A, however, the time-averaged
angular momentum transport becomes negative some distance
away from the Alfv́en point. Note also thaṫJ is more than ten
times larger in Model C than in the ten times more slowly ro-
tating Model B. For Model B, the viscous contribution exceeds
the magnetic one at all radii, while in Model C, the magnetic
contribution exceeds the viscous one forr/rc > 1.5. Inside the
star, the angular momentum transport is negative and causedby
a strong poleward circulation. The viscous contribution isalso
rather strong, but positive.

3.8. Comparison of the plasma betas for our models

We have seen that in Model A with the slowest rotation, the
angular momentum flux was occasionally inward, especially at
midlatitudes. We then considered Models B and C with faster ro-
tation in the hope that not only the outward angular momentum
flux would be outward, but also that the dynamo in the star would
be in theαΩ regime. We found that the angular momentum flux
was then indeed outward, but the dynamo was still in theα2

regime. In the introduction, we did already emphasize that the
lack of a cool photosphere just beneath the corona was ignored.
This makes it generally very difficult to reach low plasma betas,
which we define as

β = 2ρc2s/B
2. (37)

In Figure 17, we plot the radial dependencies of the minimum
value ofβ, βmin, for Models A–C. We see that the largest values
of βmin occur for Model B with an intermediate angular velocity.
Increasing the angular velocity further (Model C) increases the
field strength and does therefore also lead to a smaller valueof
βmin. The smallest values occur for Model A. This is mainly
because Model A is the only model where the magnetic field
in the wind is of comparable strength at all latitudes. For faster
rotation, the field in the wind is strongly concentrated around the
axis.

Let us now return to the potential role of the photosphere.
The photosphere of a star is the region where it cools and loses
specific entropy. Everywhere else in the wind, the specific en-
tropy does not change much, and therefore the potential enthalpy

Fig. 18. Ur (red solid lines) andUφ (blue dashed lines) at the stellar
surface atr = R as a function of colatitude for the same times as in
Figure 10.Ur is usually positive, but|Uφ| is much larger and most
of the time in the prograde direction, but sometimes it is retrograde,
which is a consequence of the low low moment of inertia of the stellar
envelope in our model.

must be approximately constant (von Rekowski et al., 2003).The
potential enthalpy is defined asH = h + Φ, whereh = cpT is
the specific enthalpy withcp being the specific heat at constant
pressure andT the temperature, andΦ = −GM/r is the poten-
tial energy. Hydrostatic equilibrium requires that

0 = −∇H + h∇s/cp, (38)

where s is the specific entropy. For the corona, this implies
T = GM/rcp ≈ 2 × 106 K, which is realistic and agrees also
with our model. Toward the photosphere,T decreases abruptly
because of surface cooling, and therefore the density increases
abruptly. Thus, the density would then be much larger than what
was possible in our models. This, in turn, would allow us to reach
much larger field strengths and therefore smaller plasma betas.

Another important consequence of having larger densities in
the stellar envelope would be that the angular velocity at the stel-
lar surface would always be in the prograde direction. In our
present models, this is not always the case, as can be seen from
Figure 18, where we show the radial and azimuthal velocities
at the stellar surface. We see that the local rotational velocity is
there occasionally in the retrograde direction, especially near the
equator.

4. Conclusions

Our work has shown that a simplified realization of a dynamo
with a stellar wind can easily be treated self-consistentlyin
one and the same model, provided certain compromises are be-
ing made. The assumption of an isothermal equation of state
has simplified matters conceptionally. Relaxing this restriction
would allow us to include the energy deposition in the corona
and to model the effects of a sharp density drop at the stellarsur-
face. This might require a significant increase in resolution near
the surface, which in turn requires the use of a nonuniform mesh.
Another restriction has been the use of a relatively large turbu-
lent magnetic diffusivity and viscosity. This was mainly needed
to resolve shocks that develop within the wind. Those typically
emerged in response to rapid changes in the magnetic field. This
could probably be avoided by allowing for an additional shock
viscosity, but this has been avoided in the present work. On the
other hand, the angular momentum flux associated with turbu-
lent viscosity was already negligible, so its presence may not
have caused any artifacts.
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Future work might involve the inclusion of aΛ effect
(Rüdiger, 1980, 1989), which would allow for the development
of differential rotation in the stellar envelope. Without including
the effects of stellar winds, such models with combinedα and
Λ effects were studied by Brandenburg et al. (1990, 1991), who
found significant alignment of theΩ contours with the rotation
axis unless the baroclinic term was also included (Brandenburg
et al., 1992). But this may change when their boundary condi-
tion on r = R is replaced by a continuous transition to the so-
lar exterior; see Warnecke et al. (2013) for spherical convection
simulations with a simplified representation of a stellar corona.

The inclusion of theΛ effect might allow us to model the
stellar dynamo more realistically. It would be interestingto see
how this affects the angular momentum transport and whether
it could help in producing predominantly outward angular mo-
mentum transport in cases of slow rotation. It might then allow
us to study dynamos in theαΩ regime. This has not been pos-
sible in the present model for reasons that we are not entirely
clear, because the value ofCΩ was thought to be already large
enough. There could have been other side effects arising from
the coupling to the outflow that are not yet fully understood.
Nevertheless, it is interesting to note that the inward angular
momentum transport occurs even in the Sun within fast-wind
regions at certain longitudes; see Finley et al. (2020a,b).

Another important aspect requiring further attention is the
study of angular momentum losses from mean-field stresses. Our
work has shown that the angular momentum loss can be quan-
tified in terms of a nondimensional Shakura–Sunyaev parame-
ter. This is a somewhat unusual concept in the context of stellar
winds, but it may help putting the theories of turbulent stellar
winds and accretion disk on a common footing.
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Finley, A. J., Matt, S. P., Ŕeville, V., Pinto, R. F., Owens, M., Kasper, J. C.,
Korreck, K. E., Case, A. W., Stevens, M. L., Whittlesey, P., Larson, D., &
Livi, R. 2020a, ApJ, 902, L4

Finley, A. J., McManus, M. D., Matt, S. P., Kasper, J. C., Korreck, K. E.,
Case, A. W., Stevens, M. L., Whittlesey, P., Larson, D., Livi,R., Bale,
S. D., Dudok de Wit, T., Goetz, K., Harvey, P. R., MacDowall, R. J.,
Malaspina, D. M., & Pulupa, M. 2020b, A&A, in press, arXiv:2011.00016,
https://doi.org/10.1051/0004-6361/202039288

Frank, J., King, A. R., & Raine, D. J. 1992, Accretion power inastrophysics
(Cambridge: Cambridge Univ. Press)

Gastine, T., Yadav, R. K., Morin, J., Reiners, A., & Wicht, J.2014, MNRAS,
438, L76

Jabbari, S., Brandenburg, A., Kleeorin, N., Mitra, D., & Rogachevskii, I. 2015,
ApJ, 805, 166

Jakab, J. & Brandenburg, A., 2020, Datasets for “The effect of a
dynamo-generated field on the Parker wind,” v2020.11.22, Zenodo,
DOI:10.5281/zenodo.4284439
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