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ABSTRACT
Recent studies have demonstrated that in fully developed turbulence, the effective magnetic pressure of a

large-scale field (non-turbulent plus turbulent contributions) can become negative. In the presence of strongly
stratified turbulence, this was shown to lead to a large-scale instability that produces spontaneous magnetic flux
concentrations. Furthermore, using a horizontal magneticfield, elongated flux concentrations with a strength
of a few per cent of the equipartition value were found. Here we show that a uniformvertical magnetic field
leads to circular magnetic spots of equipartition field strengths. This could represent a minimalistic model of
sunspot formation and highlights the importance of two critical ingredients: turbulence and strong stratification.
Radiation, ionization, and supergranulation may be important for realistic simulations, but are not critical at
the level of a minimalistic model of magnetic spot formation.
Subject headings: magnetohydrodynamics (MHD) – starspots – sunspots – turbulence

1. INTRODUCTION

Over the last 30 years, there has been a growing consensus
that sunspots are the surface interceptions of long thin flux
tubes that are anchored deep near the bottom of the convec-
tion zone (Parker 1975; Spiegel & Weiss 1980; D’Silva &
Choudhuri 1993). By contrast, direct numerical simulations
(DNS) of global convectively driven dynamos produce a mag-
netic field that is distributed throughout the convection zone
(Brown et al. 2011), either with a maximum at the bottom
of the convection zone (Racine et al. 2011) or at mid depths
(Käpyl̈a et al. 2012a). Furthermore, while DNS have been
able to demonstrate the ascent of thin flux tubes within a strat-
ified layer (Fan 2001), convection simulations such as thoseof
Guerrero & K̈apyl̈a (2011) have not produced evidence that
sufficiently strong tubes are a natural result of a dynamo. On
the contrary, once simulations develop large-scale dynamoac-
tion, they produce a more diffusive large-scale field with a fill-
ing factor close to unity (K̈apyl̈a et al. 2008), which suggests
that the large-scale field is more densely packed and not in
the form of thin tubes. These types of arguments have led to
the proposal that the solar dynamo may be a distributed one
and that sunspots and active regions may be a shallow phe-
nomenon (Brandenburg 2005).

The alternative scenario of a shallow origin of active re-
gions and sunspots faces difficulties too. Simulations of Rem-
pel (2011) have shown that a realistic, sunspot-like appear-
ance of the magnetic field can be obtained when the field is
kept fixed at the bottom of the domain. Related simulations
have also been done for bipolar spots (Cheung et al. 2010).
Both studies emphasize the importance of radiative transfer.
While this is also true for the simulations of Stein & Nordlund
(2012), they do demonstrate that keeping the flux tubes fixed
in space might not be needed if the computational domain is
big enough and new horizontal field of 1 kG is continuously
supplied from the bottom of their domain. They interpret their
findings in terms of magnetic flux being swept down and kept
in place at greater depth by the strong converging flows asso-
ciated with the supergranulation. Yet another radiative mag-

netohydrodynamics simulation with realistic physics is that
of Kitiashvili et al. (2010), who also find spontaneous flux
concentrations as a result of strongly converging flows, even
though their domain is more shallow and without supergran-
ulation. This work might also be related to that of Tao et al.
(1998), who showed that magneto-convection tends to segre-
gate into magnetized and unmagnetized regions.

The purpose of the present paper is to emphasize that
the spontaneous assembly of magnetic flux can be caused
by purely hydromagnetic effects without involving convec-
tion, supergranulation, radiative transport, or even energy
flux. Our proposal is based on recent numerical evidence that
the so-called negative effective magnetic pressure instability
(NEMPI), which was originally discovered in analytical stud-
ies by Kleeorin et al. (1989, 1990), does really work (Bran-
denburg et al. 2011; Kemel et al. 2012a,b, 2013). However, a
serious problem with this approach was that in the presence of
an imposed horizontal magnetic field, the strongest flux con-
centrations are typically just some 10% of the equipartition
value. We now show that this restriction is alleviated when
there is a small vertical net flux through the domain. In that
case the magnetic field arranges itself in the form of a spot-
like assembly that is fully confined by the turbulent flow itself,
without the need for keeping it in place by artificial means.

The underlying mechanism of NEMPI is based on the sup-
pression of turbulent pressure and has been studied analyti-
cally (Kleeorin & Rogachevskii 1994; Rogachevskii & Klee-
orin 2007) and numerically (Brandenburg et al. 2012; Losada
et al. 2012, 2013a; Jabbari et al. 2013a), using mean-field sim-
ulations (MFS). It can be understood as a negative contribu-
tion of turbulence to the effective mean magnetic pressure
(the sum of non-turbulent and turbulent contributions). At
large Reynolds numbers this turbulent contribution becomes
large and NEMPI can be excited. The presence of strong den-
sity stratification (small density scale height,Hρ) is crucial,
because it leads to a negative magnetic buoyancy force. (A
local increase of the magnetic field causes negative effective
magnetic pressure, which is compensated for by enhanced gas



2

FIG. 1.— Evolution from a uniform initial state toward a circular spot forBz0/Beq0 = 0.02. Here,Bz/Beq0 is shown on the periphery of the domain. Dark
shades correspond to strong vertical fields. Time is in units of τtd. An animation is available onhttp://youtu.be/Um 7Hs 1RzA.

pressure, leading to enhanced gas density, so the gas is heav-
ier than its surroundings and sinks.) This results in a positive
feedback loop: downflow compresses the field, the effective
magnetic pressure becomes more negative, gas pressure in-
creases, so the density increases, and the downflow acceler-
ates; see Equations (4)–(9) of Kemel et al. (2013) for a phe-
nomenological approach. However, for magnetic fields close
to equipartition, the effective magnetic pressure becomespos-
itive again, so the instability saturates. Significant scale sep-
aration between the forcing scale and the size of the domain
(about 15–30) is important, because smaller turbulent eddies
imply smaller turbulent diffusion; see Figure 17 of Branden-
burg et al. (2012).

2. DETAILS OF THE MODEL

Our goal is to present a minimalistic model capable of pro-
ducing a magnetic spot. Within the framework of NEMPI,
all that is needed is turbulence, large enough scale separation,
and strong stratification. Our basic setup was described in
Brandenburg et al. (2011, 2012), where non-helically driven
turbulence was simulated in an isothermally stratified domain.
In that case,Hρ is constant, so the effects of strong stratifica-
tion are distributed over all heights. The forcing consistsof
random plane waves with constant amplitude, so the rms ve-
locity of the turbulence,urms, is independent ofz. As shown
by Kemel et al. (2012a), the theoretically expected maximum
growth rate of NEMPI,λ0 ≈ β⋆urms/Hρ, is then the same for
magnetic fields at different heights, although the depth where
NEMPI is excited, increases with increasing field strength.
Here,β⋆ is a non-dimensional parameter that was found to
be around 0.3 for magnetic Reynolds numbers in the range
1 <
∼ ReM <

∼ 60, and 0.2 is for larger ReM , when small-scale
dynamo action is possible (Brandenburg et al. 2012). Fur-
thermore, in addition to isothermal stratification, the equation
of state is assumed isothermal, so the stabilizing effects from
Brunt-Väis̈alä oscillations are absent (see Käpyl̈a et al. 2012b,
where this has been relaxed in some of their MFS). The scale

FIG. 2.— Growth ofB
max

z /Beq(z) (solid) andBmax
z /Beq(z) (dotted)

at the top boundary. The straight red line corresponds to a growth rate of
1.3 ηt0/H2

ρ .

separation ratio is taken to be 30, i.e., there are on average30
turbulent cells across the domain; see Losada et al. (2013a)
and Brandenburg et al. (2013), where magnetic energy spec-
tra are shown.

The simulations are performed with the PENCIL CODE,1

which uses sixth-order explicit finite differences in spaceand
a third-order accurate time stepping method. The magnetic
field B is expressed in terms of the magnetic vector potential
A such thatB = B0 + ∇ × A is divergence-free andB0 =
(0, 0, B0) is the imposed vertical field. We use a numerical
resolution of2563 mesh points in a Cartesian domain(x, y, z)
of sizeL3 such that−L/2 < x, y, z < L/2. Our boundary
conditions are periodic in the horizontal directions (so vertical

1 http://pencil-code.googlecode.com
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FIG. 3.— Cuts ofBz/Beq(z) in thexy plane at the top boundary (z/Hρ = π) and thexz plane through the middle of the spot aty = 0. In thexz cut, we
also show magnetic field lines and flow vectors obtained by numerically averaging in azimuth around the spot axis.

magnetic flux is conserved), and stress free on the upper and
lower boundaries where the field is assumed to be vertical,
i.e., Bx = By = 0. Unless mentioned otherwise, the initial
magnetic field is uniform (A = 0, so B = B0) and our
simulations are started from scratch.

Time is expressed in turbulent-diffusive times,τtd =
H2

ρ/ηt0, whereηt0 = urms/3kf is the estimated turbulent
magnetic diffusivity andkf is the wavenumber of the energy-
carrying eddies. Their turnover time isτto = 1/urmskf =
τ/kf Hρ, whereτ = Hρ/urms is the natural time scale in
a stratified layer. Thus,τtd/τ = 3 kf Hρ and τtd/τtd =
3 (kf Hρ)

2. We use a setup that is similar to that of Kemel
et al. (2012b), whereHρ = 1 and L = 2π, so we have
L/Hρ = 2π ≈ 6 scale heights across the domain. The
magnetic Reynolds number based on the wavenumberkf is
ReM = urms/ηkf ≈ 19, with η being the microphysical mag-
netic diffusivity, while that based on the scaleHρ is about 570.
The magnetic Prandtl number is 1/2 and the fluid Reynolds
number is 38, but simulations at resolutions of up to10243

and ReM = 95 give similar results (Brandenburg et al. 2013).
The magnetic field is normalized by the local equipartition
field strength,Beq(z) = (µ0ρ)1/2urms, whereµ0 is the vac-
uum permeability,ρ(z) is the horizontally averaged density,
while for urms we take the root-mean-square based on a vol-
ume average, because the turbulent velocity is driven such that
it does not show systematic height dependence. (SinceB0 is
small, the globalurms does not change noticeably during the
simulation.) We also defineBeq0 = Beq(z = 0) to specify
the strength of the imposed vertical magnetic field, as well as
Beq(x) andBeq(x) to characterize the local horizontal varia-
tion of (µ0ρu

2)1/2 through the magnetic spot. Overbars de-
note Fourier filtering, as explained below.

3. RESULTS

We have studied cases with different values ofB0. We be-
gin with B0/Beq0 = 0.02 and show in Figure 1 the time evo-
lution of the vertical magnetic field,Bz, on the periphery of
the domain. Here, dark shades correspond to strong fields,
so as to give an idea how the temperature might look like if
we relaxed the isothermal assumption. Note in particular the
gradual assembly of a magnetic spot from a uniform turbu-

lent background. The color table is clipped for field strengths
above the equipartition value, while the field peaks at twice
this value. The time required for the development a magnetic
spot is 2–5 turbulent diffusive times.

The growth of the large-scale field is compatible with an
exponential one with a growth rateλ ≈ 1.3 ηt0/H2

ρ ; see
Figure 2, where we show, at the top layer, the maximum
field strength,Bmax

z , and the maximum value of the large-
scale field,B

max

z , obtained by Fourier filtering to include only
fields with horizontal wavenumbers belowkf /6. Our value of
λ agrees with that of earlier studies of magnetic flux concen-
trations in DNS in the presence of a horizontal field and re-
lated MFS of NEMPI (Kemel et al. 2012b). However, our
domain might not be large enough to include the horizon-
tal wavenumberk⊥ of the fastest growing mode, which has
k⊥Hρ ≈ 0.7 (Brandenburg et al. 2013). On the other hand,
once the instability saturates, the magnetic field in the direc-
tion of the imposed field gets more concentrated and is then
fully confined in the domain. Betweent/τtd = 2 and 5, it de-
velops into a nearly circular spot, as might be expected from
cylindrical symmetry arguments.

In Figure 3 we show horizontal and vertical cuts through
the spot. In the horizontal cut, again, strong fields correspond
to dark shades. The vertical cut is with a different color table
where strong fields now correspond to light shades. It shows
that the magnetic field (in units of the local equipartition field
strength) decreases with depth, but that fluctuations of both
signs (blue and yellow shades, respectively) become stronger.
We also consider the field averaged azimuthally about the ver-
tical axis of the tube. Field lines correspond to contours of
̟Aθ(̟, z), where(̟, θ, z) are cylindrical polar coordinates
with ̟ being the cylindrical radius,θ the azimuthal angle,
andz is identical to the Cartesian vertical coordinate. This
shows that the field in the tube fans out toward the bottom of
the domain and that the spot is only loosely anchored.

To analyze the magnetic spot quantitatively, we show in
Figure 4 horizontal and vertical cross-sections for the snap-
shot shown in Figure 3. It turns out that at some levelz = z1,
the increase ofBz(x) at the position of the tube is matched
by a corresponding decrease inBeq(x); see Figure 4(a). We
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FIG. 4.— Horizontal cross-tube profiles ofBeq(x) andBz , where the smooth curves show respectively the spatial distribution ofBeq(x) andBz , normalized
by B0, throughz = z1 ≡ 0.4 Hρ (a) andz = z2 ≡ 2.4 Hρ (b), and vertical profiles ofB

max

z , Bmax
z , andBeq(x) normalized byB0 (c) and byBeq(z) (d)

for the snapshot shown in Figure 1. Dash-dotted lines denotein (c) the heightzB whereB0/Beq(zB) ≈ 0.03, and in (d) the positionsz1 andz2.

recall thatBeq(x) was defined in Sect. 2 without averaging so
as to see its local suppression at the position of the spot.

At higher levels, only a small portion of the turbulent ki-
netic energy is required to sustain the spot; see Figure 4(b)
at z = z2. As a function of height,Beq(z) decreases
monotonously. Therefore, although the large-scale field rep-
resenting the spot,B

max

z /B0, has a maximum atz/Hρ ≈ 1,
as seen in Figure 4(c), the field in units of the equipartition
field, B

max

z /Beq(z), reaches a plateau in1.5 <
∼ z/Hρ <

∼ 3;
see Figure 4(d). This is compatible with results by Losada et
al. (2013b) that for a vertical field the instability is strongest
at a heightzB whereB0/Beq(zB) ≈ 0.03. This is the case
somewhere betweenz1 and z2, whereBeq(z)/B0 ≈ 30 in
Figure 4(c). Yet, in the nonlinear regime, near-equipartition
field strengths are possible in the upper part–both in DNS and
the aforementioned MFS (Brandenburg et al. 2013). Such sus-
tained flux concentrations might be assisted by slow inflows,
as seen in the upper part of Figure 3(b).

Finally, in Figure 5 we compare simulations with different
imposed field strengths withB0/Beq0 from 5 × 10−3 to 0.2.
The third panel corresponds to the last one of Figure 1, which
was also used as initial condition for the other runs. The spot
becomes smaller for weaker fields, while for stronger fields
the surface is eventually fully covered. Note, however, that
in all cases the large-scale field is approximately of equipar-
tition strength and roughly independent of the strength of the
imposed fields. This is interesting in view of the fact that
photospheric magnetic fields of active stars are found to be
of thermal equipartition strength such that the filling factor

grows as the star becomes more active (Saar & Linsky 1985).
We emphasize that the magnetic field is not uniform across

the spot, as is assumed in a monolithic sunspot model, but
it is more reminiscent of the fibril sunspot model of Parker
(1979). In our case, there can even be regions where the field
has the opposite sign. This explains why in the last panel of
Figure 5 the field reaches peak values above the equipartition
value over the entire horizontal plane—without violating flux
conservation, even though the large-scale field is only 20%
of the equipartition value. The value ofurms/cs ≈ 0.094 is
slightly less than its original value of≈ 0.12.

4. CONCLUSIONS

The present work has demonstrated two important aspects
in the production of magnetic flux concentrations: the pres-
ence of a vertical magnetic field favors the formation of cir-
cular structures and their field strengths can exceed the lo-
cal equipartition value. The reason for such a strong effect
in comparison with the case with a horizontal imposed field
is the apparent absence of the so-called “potato sack” effect
(cf. Brandenburg et al. 2011). We argue that this is a di-
rect consequence of the negative effective magnetic pressure,
making such horizontal magnetic structures heavier than their
surroundings. The potato sack effect is a nonlinear mecha-
nism responsible for a premature saturation of NEMPI with a
horizontal field, because it removes horizontal magnetic flux
structures from regions in which NEMPI is excited. For a ver-
tical magnetic field, the heavier fluid moves downward along
the field without affecting the flux tube, so that NEMPI is not
stabilized by the potato sack effect. Instead, NEMPI saturates
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FIG. 5.— Magnetic field structure forB0/Beq0 ranging from 0.005 to 0.2 showing the gradual transition from a small spot to a fully covered surface.

whenB
max

z /Beq(z) = O(1); see Figure 4(d).
Application to the Sun is premature, but tentatively we

might estimate the time of spot formation in solar values
by using urms = 1km s−1 and Hρ = 300 km, so τ =
Hρ/urms ≈ 5min. This, together withkf Hρ ≈ 2πγ/αmix ≈

6.5 (Losada et al. 2013a), givesτtd ≈ 3×6.5×τ ≈ 100min,
and thus 5 turbulent diffusive times correspond to 8 hours
on a NEMPI length scale of(2π/0.7) × 300 km ≈ 3Mm;
see Sect. 2. Here,γ = 5/3 is the ratio of specific heats,
αmix = 1.6 is the mixing length parameter, andk⊥Hρ ≈

0.7 has been used (Brandenburg et al. 2013). Conversely,
at a depth whereHρ = 3Mm, the length scale would be
30Mm and5τtd ≈ 80 hours ≈ 3 days. Furthermore, using
ρ = 10−5 g cm−3, we haveBeq ≈ 1 kG, so our model with
B

max

z /Beq(z) ≤ 1 might fall short of explaining the3 kG
field strengths observed in sunspots.

Our estimates are based on a minimalistic model of sunspot
formation. Nevertheless, these new findings of flux concen-
trations with vertical fields warrant further research in study-
ing the origin of sunspots and active regions. Future de-
velopments include the addition of (i) a radiating surface to
move the top boundary condition away from the upper bound-
ary of the spot, (ii) hydrogen ionization to allow for an ex-
treme temperature jump that might enhance the local growth
of NEMPI, (iii) dynamo-generated instead of imposed fields
to allow spots to come and go as the large-scale field evolves,
and finally (iv) convection instead of forced turbulence to have
a natural scale of turbulence with changes in its strength inre-
sponse to the magnetic field.

Studies involving radiation and ionization require the so-

lution of an energy equation, which might be important for
obtaining larger field strengths. The simultaneous presence
of NEMPI and dynamo instability has already been studied
in global MFS (Jabbari et al. 2013a) as well as in local DNS
in Cartesian geometry (Losada et al. 2013a). The allowance
for dynamo action is particularly important from a morpho-
logical point of view. It would give us a better idea about
the appearance and disappearance of spots, the possibilityof
bipolar regions (Warnecke et al. 2013), and their inclination
relative to the east-west direction, which is expected due to
the combined presence of poloidal and toroidal fields in a dy-
namo. Again, radiation might be important to allow the field
to develop more realistic inclinations about the vertical and
thereby also the formation of a penumbra.
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