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Abstract.

Condensational growth of cloud droplets due to supersédarfluctuations is investigated by solving the hydrodyimam
and thermodynamic equations using direct numerical sitioug with droplets being modeled as Lagrangian particlés
supersaturation field is calculated directly by simulating temperature and water vapor fields instead of beingetlezg a
passive scalar. Thermodynamic feedbacks to the fields doenidensation are also included for completenéss.find that
the width of droplet size distributions increases with timéich is contrary to the classical theory without supenseton
fluctuations, where condensational growth leads to pregrely narrower size distributions. Nevertheless, in agrent with
earlier Lagrangian stochastic models of the condensdtignoavth, the standard deviation of the surface area of eétspl
increases ag/2. Also, for the first time, we explicitly demonstrate thae time evolution of the size distributias sensitive to
the Reynolds numbebut insensitive tdhe mean energy dissipation rate. This is shown to be duesttati that temperature
fluctuations and water vapor mixing ratio fluctuations ims®s with increasing Reynolds number, therefore the negult
supersaturation fluctuations are enhanced with incre&aygmolds number. Our simulations may explain the broadeain
the size distribution in stratiform clouds qualitativelyhere the mean updraft velocity is almost zero.

1 Introduction

The growth of cloud droplets is dominated by two processesdensation and collection. Condensation of water vapor on
active cloud condensation nuclei is important in the sizgjeafrom the activation size of aerosol particles to aboaidéus of
10 um (Pruppacher and Klett, 2012; Lamb and Verlinde, 2011). &the rate of droplet growth by condensation is inversely
proportional to the droplet radius, large droplets growwslothan smaller ones. This generates narrower size ditoits
(Lamb and Verlinde, 2011). To form rain droplets in warm @susmall droplets must grow to abdiftm in radius within
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15-20 minutes (Pruppacher and Klett, 2012; Devenish e2@l2; Grabowski and Wang, 2013; Seinfeld and Pandis, 2016).
Therefore, collection, a widely accepted microscopicatima@ism, has been proposed to explain the rapid formatioaiof
droplets (Saffman and Turner, 1956; Berry and Reinhardt4,1Shaw, 2003; Grabowski and Wang, 2013). However, collec-
tion can only become active when the size distribution reaehcertain width.

Hudson and Svensson (1995) observed a broadening of théetlsige distribution in Californian marine stratus, which
was contrary to the classical theory of condensational tir@Wau and Rogers, 1996). The increasing width of droplst si
distributions were further observed by Pawlowska et al0@@nd Siebert and Shaw (2017b). The contradiction betwe=n
observed broadening width and the theoretical narrowirghwin the absence of turbulence has stimulated severaéstuiche
classical treatment of diffusion-limited growth assuntest supersaturation depends only on average temperattineaar
mixing ratio. Since fluctuations of temperature and the waiiging ratio are affected by turbulence, the supersatmdtuc-
tuations are inevitably subjected to turbulence. Natyralbndensational growth due to supersaturation fluctonatiecame
the focus (Srivastava, 1989; Korolev, 1995; Sardina eR8lL5; Siewert et al., 2017; Grabowski and Abade, 2017). Tpers
saturation fluctuations are particularly important for ersfanding the condensational growth of cloud dropletdratiform
clouds, where the updraft velocity of the parcel is almosb Zeludson and Svensson, 1995; Korolev, 19%8hen the mean
updraft velocity is not zero, there could be a competitioimieen mean updraft velocity and supersaturation fluctoatidhis
may diminish the role of supersaturation fluctuations (Bearét al., 2018).

Condensational growth due to supersaturation fluctuati@ssfirst recognized by Srivastava (1989), who criticizezluke
of a volume-averaged supersaturation and proposed a rdywd@tributed supersaturation field. Using direct numargimu-
lations (DNS), Vaillancourt et al. (2002) found that turite has negligible effect on condensational growth anbuatitd this
to the decorrelation between the supersaturation and tipdedisize. Paoli and Shariff (2009) considered three-dsiamal (3-

D) turbulence as well astochastically forcetemperature and vapor fields with a focus on statistical tirogléor large-eddy
simulations. They found that supersaturation fluctuatamesresponsible for the broadening of the droplet sizeiligton,
which is contrary to the findings by Vaillancourt et al. (2Q0ORanotte et al. (2009) conducted 3-D DNS for condensationa
growth by only solving a passive scalar equation for the mgiaration and concluded that the width of the size distidin
increases with increasing Reynolds number. Sardina 2@l5) extended the DNS of Lanotte et al. (2009) to higher Bleimn
number and found that the variance of the size distributimmeiases in time. In a similar manner as Sardina et al. (2015)
Siewert et al. (2017) modelled the supersaturation field @esaive scalar coupled to the Lagrangian particles andifthat
their results can be reconciled with those of earlier nuca¢studies by noting that the droplet size distributiorgolens with
increasing Reynolds number (Paoli and Shariff, 2009; Ltanettal., 2009; Sardina et al., 2015). Neither Sardina ¢2alL5)
nor Siewert et al. (2017) solved the thermodynamics thardehe the supersaturation field. Both Saito and Gotoh (R@iad
Chen et al. (2018) solved the thermodynamics equationsrgiovethe supersaturation field. However, since collecti@s
also included in their work, one cannot clearly identify thées of turbulence on collection or condensational growtr can
one compare their results with Lagrangian stochastic nso@@rdina et al., 2015; Siewert et al., 2017) related to eosa-
tional growth. Grabowski and Wang (2013) proposed the dupyping mechanism to explain the broadening and investigat
it in Grabowski and Abade (2017).
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Recent laboratory experiments and observations aboud clicrophysics also confirm the notion that supersaturdtiom
tuations may play an important role in broadening the sig&itiution of cloud droplets. The laboratory study by Chaikdr et al.
(2016) suggested that supersaturation fluctuations inotheaerosol number concentration limit are likely of leadingpor-
tance for precipitation formation. The condensationairghodue to supersaturation fluctuations seems to be mordéigens
to the integral scale of turbulence (Gotzfried et al., 20 &igbert and Shaw (2017a) measured the variability of teape
ture, water vapor mixing ratio, and supersaturation in walouds and support the notion that both aerosol particligact
tion and droplet growth take place in the presence of a braéstdhiition of supersaturation (Hudson and Svensson, ;1995
Brenguier et al., 1998; Miles et al., 2000; Pawlowska et24106). The challenge is now how to interpret the observeddro
ening of droplet size distribution in warm clouds. How dagabtilence drive fluctuations of the scalar fields (tempeeatnd
water vapor mixing ratio) and therefore affect the broadgmif droplet size distributions (Siebert and Shaw, 2017a)?

In an attempt to answer this question, we conduct 3-D DNSréxpats of condensational growth of cloud droplets, where
turbulence, thermodynamics, feedback from droplets tdi¢hds via the condensation rate and buoyancy force areclided.
The main aim is to investigate how supersaturation fluatnataffect the droplet size distribution. We particuladgids on
the time evolution of the size distributigf{r, ) and its dependency on small and large scales of turbulene¢h&d compare
our simulation results with Lagrangian stochastic mod8iardina et al., 2015; Siewert et al., 2017). For the first tithe

stochastic model and simulation results from the completefsequations governing the supersaturation fe&tompared.

2 Numerical model

We now discuss the basic equations where we combine thei&uléescription of the density), turbulent velocity ),
temperature®), and water vapor mixing ratiaz{) with the Lagrangian description of the ensemble of clounptits. The
water vapor mixing ratia, is defined as the ratio between the mass density of water eaqbdry air. Droplets are treated
as superparticles. A superparticle represents an ensahtieplets, whose mass, radius, and velocity are the sartiwsas

of each individual droplet within it (Shima et al., 2009; doken et al., 2012; Lietal., 2017). For condensational trow
the superparticle approach (Li et al., 2017) is the sameeas&dlrangian point-particle approach (Kumar et al., 201d)es
there is no interactions among droplets. Nevertheless,tieise the superparticle approach so that we can includeemo
processes like collection (Li et al., 2017, 2018) in futubother reason to adopt superparticle approach is thatitbea
easily adapted to conduct Large-eddy simulations with @mmte sub-grid scale models (Grabowski and Abade, 20L7).
investigate the condensational growth of cloud dropleds &xperience fluctuating supersaturation, we track eatikidtual
superparticle in a Lagrangian manner. The motion of eacbkrgaypticle is governed by the momentum equation for inertia
particles. The supersaturation field in the simulation dansdetermined by’ (x,t) andg, (x,t) transported by turbulence.
Lagrangian droplets are exposed in different supersauréields. Therefore, droplets either grow by condensatioshrink

by evaporation depending on the local supersaturation fi¢lg phase transition generates a buoyancy force, whitirin
affects the turbulent kinetic enerd¥(«,t), andq, («,t). PENCIL CODE is used to conduct all the simulations.
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2.1 Equations of motion for Eulerian fields

The background air flow is almost incompressible and thugothe Boussinesq approximation. Its dengity, ¢) is governed
by the continuity equation and velocity(x, t) by Navier-Stokes equation. The temperatlife;, ¢) of the background air flow
is determined by the energy equation with a source term dtrettatent heat release. The water vapor mixing ratie:, ¢) is
transported by the background air flow. The Eulerian eqoatée given by

ap

Du —1 -1

o7 =F P VDt pT IV (2008) + Be. + 8., @
DT 9 L

Dy,

S = DV, —Ca, @

whereD/Dt = 0/0t+w -V is the material derivativef is a random forcing function (Haugen et al., 2004js the kinematic
viscosity of air,S;; = %(ajul' +0iu;) — ééij(akuk) is the traceless rate-of-strain tenspiis the gas pressure, is the gas
density,c;, is the specific heat at constant pressiires the latent heat; is the thermal diffusivity of air(’; is the condensation
rate, B is the buoyancye. is the unit vector in the direction (vertical direction), and is the diffusivity of water vapor.
To avoid global transpose operations associated with lediliog Fourier transforms for solving the nonlocal equatior the
pressure in strictly incompressible calculations, we edlere instead the compressible Navier-Stokes equatiomg higjh-
order finite differences. The sound spegdobeysc? = vp/p, wherey = ¢, /c, = 7/5 is the ratio between specific heats,
¢, ande,, at constant pressure and constant volume, respectivelysefthe sound speed @sis~! to simulate the nearly
incompressible atmospheric air flow, resulting in a Mach benof 0.06 when u.,s = 0.27ms ™!, whereu,, is the rms
velocity. Such a configuration, with so small Mach numbealisost equivalent to an incompressible flow. It is worth ngti
that the temperature determining the compressibility efftw is constant and independent of the temperature fieltleof t
gas flow governed by Equation (3). Also, since the gas flowrisoat incompressible and its mass density is much smaller
than the one of the droplet, there is no mass exchange betiweeaas flow and the droplet, i.e., the density of the gas flow
p(x,t) is not affected by’ (x, ). Thus, the source ternt§, and.S,, in Equations (1) and (2) are neglected (Kriiger et al., 2017).
The buoyancyB(x,t) depends on the temperatuféx, t), water vapor mixing ratig, (x,¢), and the liquid mixing ratiay
(Kumar et al., 2014),

B(w,t) = g(T"/T + aq, — q), (®)

wherea = M, /M, — 1 = 0.608 whenM,, andM,, are the molar masses of air and water vapor, respectivetyaiplitude of
the gravitational acceleration is given byThe liquid water mixing ratio is the ratio between the masssity of liquid water
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wherep; andp, are the liquid water density and the reference mass derfsityyair. N is the total number of droplets in
a cubic grid cell with voluméAx)3, whereAz is the one-dimensional size of the grid box. The temperdtuctuations are
given by

T (x,t) =T (x,t) — Teny, (7)
and the water vapor mixing ratio fluctuations by
q; (l‘,t) =Qqu ($7t) — Gu,env- (8)

We adopt the same method as in Kumar et al. (2014), where tha exwironmental temperatufg,, and water vapor mixing
ratio g, .nv do Not change in time. This assumption is plausible in theuonstance that we do not consider the entrainment,
i.e., there is only mass and energy transfer between ligatévand water vapor. The condensation 3té€Vaillancourt et al.,
2001) is given by

drpG A _ 4mpG 2
Cu(,t) 7”” Z ”:l S s (@) fla,t)r (1) br, 9)
=1 @ =1

whereG is the condensation parameter (in unitsiofs—!), which depends weakly on temperature and pressure andes he
assumed to be constant (Lamb and Verlinde, 2011). The saatpesitions is defined as the ratio between the vapor pressure
and the saturation vapor pressdge

s= 1. (10)

€s
Using the ideal gas law, Equation (10) can be expressed as,

_ p’URUT 1= Po
Pus BT Pus

-1 (11)
In terms of the water vapor mixing ratig = p, /p, and saturation water vapor mixing ratigs = p,s/p., EqQuation (11) can

be written as:

qu (x,t)
Qus (T)

Herep, is the mass density of water vapor angd the mass density of saturated water vapoil ¢, (T') is the saturation

s(@,t) =

—1. (12)

water vapor mixing ratio at temperatufeand can be determined by the ideal gas law,

Quvs (T) = (13)
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The saturation vapor presswgover liquid water is the partial pressure due to the wateporvaghen an equilibrium state of
evaporation and condensation is reached for a given temoperdt can be determined by the Clausius-Clapeyron egpuati
which determines the changeafwith temperaturd’. Assuming constant latent hefate, is approximated as (Yau and Rogers,
1996; Gotzfried et al., 2017)

es(T) = crexp(—c2/T), (14)

wherec; andc, are constants adopted from page 14 of Yau and Rogers (19@@eféf to Table 1 for all the thermodynamics

constants. In the present study, the updraft cooling istethifTherefore, the assumption of constant latent haafplausible.
2.2 Lagrangian model for cloud droplets

In addition to the Eulerian fields described in Section 2.1neat cloud droplets as Lagrangian patrticles. In tae®L CODE,

they are invoked as non-interacting superparticles.
2.2.1 Kinetics of cloud droplets

Each superparticle is treated as a Lagrangian point-pgriidiere one solves for the particle positiep

dmi
dt

-V (15)

and its velocityV; via

dV; 1
dt = ;(U_Vi)+962a (16)

in the usual way; see (Li et al., 2017) for details. Heigs the fluid velocity at the position of the superparticteis the
particle inertial response or stopping time of a droplahd is given by

7 = 2072 /[9pv D(Re;)). 17)
The correction factor (Schiller and Naumann, 1933; Marickioal., 2008),
D(Re;) = 1+0.15Re>/?, (18)

models the effect of non-zero particle Reynolds nunber= 2r;|u — V;|/v. This is a widely used approximation, although

it does not correctly reproduce the smBH- correction to Stokes formula (Veysey and Goldenfeld, 2007)
2.2.2 Condensational growth of cloud droplets

The condensational growth of the particle radiug governed by (Pruppacher and Klett, 2012; Lamb and Vez|iag@11)

d’l"i o Gs (.’Bi,t)
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3 Experimental setup
3.1 Initial configurations

The initial valuesof the water vapor mixing ratiay, (x,t = 0) = 0.0157kg - kg~ and temperatur@(z,t = 0) = 292K are
matched to the ones obtained in the CARRIBA experimentsziidakel et al., 2014), which are the same as those in Gotz&ial.
(2017). With this configuration, we obtaifz,t = 0) = 2%, which means that the water vapor is initialypersaturated he
time step of the simulations presented here is governedédgrtallest time scale in the present configuration, whidhes
particle stopping time defined in Equation (1The thermodynamic time scale is much larger than the tarttune. Table 1
shows the list of thermodynamic parameters used in the pretgdy.

Initially, 10 um-sized droplets with zero velocity are randomly distrézlin the simulation domain. The mean number
density of droplets, which is constant in time since droptdkections are not considered ig = 2.5 x 108 m—3. This gives an
initial liquid water contentjoOo f(r,t = 0)r3dr, which is0.001 kgm . The simulation domain is a cube of sizg = L, =
L, the values of which are given in Table 2. The number of suptigles N, satisfiesN/Ngyiq ~ 0.1, where N4 is the
number of lattices depending on the spatial resolution @fsimulations. SettingVs /Ng.iqa =~ 0.1, on one hand, is still within
the convergence rang¥;/Ng.iqa ~ 0.05 (Li et al., 2018). On the other hand, it can mimic the dilusef the atmospheric
cloud system, where there are about 0.1 droplets per cubindgorov scale. This configuration resultsiqy 125 = 244140
whenN,iq = 1283,

3.2 DNS

We conduct high resolution simulations for different Tayhoicro-scale Reynolds numb®&e, and mean energy dissipation
ratee (see Table 2 for details of the simulations). The Taylor ovscale Reynolds number is definedias, = u2,,,/5/(3ve).
For simulations with different values efat fixedRe,, we vary both the domain size, (L, = L. = L,) and the amplitude
of the forcing fy. As for fixede, Re, is varied by solely changing the domain size, which in turargfesu,,s. In all simu-
lations, we use for the Prandtl numier = v/ =1 and for the Schmidt numbe§c = v/D = 0.6. For our simulations with
Ngrid = 5123 meshpoints, the code computes 55,000 time steps in 24 hallrslack time using 4096 cores. Foigiq = 1283

meshpoints, the code computes 4.5 million time steps in 24sheall-clock time using 512 cores.

4 Results

Figure 1(a) shows time-averaged turbulent kinetic-enspggtra for different values efat fixedRe) ~ 130. Since the abscissa
in the figures is normalized by, = 27 /n, the different spectra shown in Figure 1(a) collapse ontmgle curve. Herey is
the Kolmogorov length scale. Figure 1(b) shows the timeayed turbulent kinetic-energy spectra for different ealofRe,

at fixede ~ 0.039m?s~3. For larger Reynolds numbers the spectra extend to smadieemumbers. A flat profile corresponds
to Kolmogorov scaling (Pope, 2000) when the energy specisuoompensated by 2/3k%/3. For the largesRe, in our
simulations (Rg = 130), the inertial range extends for about a decade-épace.



Table 1. List of constants for the thermodynamics: see text for explanationgmabals.

Quantity Value
v (m%s™h) 1.5%x 1075

k (mZs™1) 1.5%x 1075

D (m%s™1) 2.55x 1075

G (m?*s™1) 1.17 x 10710

c1 (Pa) 2.53 x 101

c2 (K) 5420
LT -kg™h) 2.5 x 10°

cp (J-kg7'K™Y) 1005.0
R, (J-kg7'K™1) 461.5
M, (g-mol™h) 28.97
M, (g-mol™1) 18.02
pa (kg-m~?) 1
pi (kg -m™?) 1000
a 0.608
Pr=v/k 1
Sce=v/D 0.6
qu(z,t =0) (kg-kg™") 0.0157
Quenv (kg -kg™h) 0.01
T(x,t =0) (K) 292
Tenv (K) 293

Table 2. Summary of the simulations; see text for explanation of symbols.

Run fo Lz(m) Ngida N Urms (ms™) Rey é(m?s™3) 1-107* (m) 7,(s) 7. (s) 7 (s) Da

A 0.02 0125 128% Ny 0.16 45  0.039 5.4 0.020 0.25 0.014 0.053
B 002 025 256° 23N 108 0.22 78  0.039 5.4 0.020 0.37 0.014 0.081
C 002 05 512% 25N, 08 0.28 130  0.039 5.4 0.020 0.58 0.014 0.125
D 0014 06 512° 26N, 128 0.24 135  0.019 6.5 0.028 0.81 0.014 0.174
E 0007 08 512° 26N, 18 0.17 138 0.005 8.9 0.053 1.47 0.014 0.312

Next we inspect the response of thermodynamics to turbalénd=igure 2, we show time series of fluctuations of tem-
peratureT;,s, water vapor mixing ratiay, .ms, buoyancy forceB,,s, and the supersaturation,,s. All quantities reach a
statistically steady state within a few seconds. The stastatg values of},,s, ¢y rms, aNds,y,s iINCrease with increasinBe

approximately linearly, and vary hardly at all withOn the other hand3,,,s; changes only by a few percentBs, or ¢ vary.
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Figure 1. Time-averaged kinetic energy spectra of the turbulence gas flow)fdifferente = 0.005m?s~* (blue dash-dotted line), 0.019
(magenta dash-dotted line) and 0.039 (black solid line) at fixed=R&30 (see Runs C, D, and E in Table 2 for details) and for (b) different
Re, = 45 (black solid line), 78 (red dashed line), and 130 (cyan dasheddirfidedé = 0.039m?s~* (see Runs A, B, and C in Table 2 for
details).

Note, however, that the buoyancy force is only about 0.3%efiuid acceleration. This is becauBg,s is small (aboud.1 K
in the present study). Therefore, the effect of the buoydoiwe should indeed be small.

When changing while keepingRe, fixed, the Kolmogorov scales of turbulence varies. Theeeftire various fluctuations
guoted above are insensitive to the small scales of turbalddowever, when varyinBe, while keepinge fixed, their rms
values change, which is due to large scales of turbulenckelh temperature fluctuations are driven by the large scale
of turbulence, which affects the supersaturated vaporspreg, via the Clausius-Clapeyron equation; see Equation (13).
Therefore, supersaturation fluctuations result from batfpterature fluctuations and water vapor fluctuations viako (12).
Both ¢, rms andT ;s increase with increasinBey, resulting in larger fluctuations &f Supersaturation fluctuations, in turn,
affectT” andgq, via the condensation rate;.

Our goal is to investigate the condensational growth ofaldoplets due to supersaturation fluctuations. Figure @/shioe
time evolution of droplet size distributions for differesiinfigurations. The conventional understanding is thatleosational
growth leads to a narrow size distribution (Pruppacher alett K2012; Lamb and Verlinde, 2011). However, supersétura
fluctuations broaden the distribution. More importanthe width of the size distribution increases with increadiag, but
decreases slightly with increasing: over the range studied here. This is consistent with thdteeshown in Figure 2 in that
supersaturation fluctuatiomse sensitive t®e, butare insensitive t@. In atmospheric cloudRe, ~ 10*, which may result
in an even broader size distribution.

We further quantify the variance of the size distributionifyestigating the time evolution of the standard deviatbthe
droplet surface areay for different configurations. In terms of the droplet suefaread; (A; o< r?), Equation (19) can be
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Figure 2. Time series of the field quantities: ()ms, (b) g»,rms, (C) Brms, and (d)s.ms. Same simulations as in Figure 1.

written as
dA;
L =2Gs. 2
pr Gs (20)

It can be seen from Equation (20) that tieolution of the surface area is analogousBt@wnian motion, indicating that
its standard deviatiom 4 < v/t. A more detailed stochastic model for, is developed by Sardina et al. (2015). Based on
Equation (19)¢ 4 is given by
dod _ i< 2y —

dt  dt dt
Sardina et al. (2015) adopted a Langevin equation to moaektipersaturation field and the vertical velocity of draplet

<A2 <A>2> — 4G (s'A"). (21)

resulting in the scaling law:

oa~C(rp,7s,Rex)t/2, (22)
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Figure 3. Comparison of the time evolution of droplet size distributions for diffefahé at Rex = 130 (Runs C, D, and E in Table 2) and
(b) Rey até = 0.039m?*s ™ (Runs A, B, and C in Table 2). Same simulations as in Figure 1.

whereC'(71,,7s re, ) IS @ constant for givemy,, 7, andRe,. Under the assumptions that< T, and a negligible influence

on the macroscopic observables from small-scale turbuletibns, Sardina et al. (2015) obtained an analytical esgioa for
o/ as.:

oA~ 7'sRe,\151/27 (23)

wherer, is the phase transition time scale given by
N t) = 47rG/7’fdr, (24)
0

andr, is the turbulence integral time scale. The model proposatdbndensational growth of cloud droplets depends only
onRe, and is independent @f In terms of the size distributiofi(r,t), c 4 can be given as:

CTA:\/CL47(I,%, (25)
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wherea, is the moment of the size distribution, which is defined as:

ac = 7 frédr / 7 fdr. (26)
0 0

Here,( is a positive integer. As shown in Figure 4, the time evolutio 4, agrees with the predictions o ¢'/2. Sardina et al.
(2015) and Siewert et al. (2017) solved the passive scaletiem ofs without considering fluctuations @f andg,. Feedbacks

to flow fields from cloud droplets were also neglected. Themtbgood agreement between the DNS and the stochastic model.

Comparing with Sardina et al. (2015) and Siewert et al. (204ur study solve the complete sets of the thermodynamics of
supersaturation. It is remarkable that a good agreementkatthe stochastic model and our DNS is observed. Thisatetic
that the stochastic model is robust. On the other hand, rmagdslipersaturation fluctuations using the passive scqlat®n
seems to be sufficierfbr the Reynolds numbers considered in this study. We reatlr, in Equation (23) is constant. In
the present study;, is determined by Equation (24). Thereforg,varies with time as shown in the inset of Figure 4(a).
Nevertheless, since the variationmgfis small, we still observe 4 ~ t!/2 except for the initial phase of the evolution, where
s(t=0) =2%.

Comparing panels (a) and (b) of Figure 4, it is clear that giranRe) has a much larger effect any than changing.
In fact, ase is increased by a factor of about 84 decreases only by a factor of about 1.6, so the ratio of tbgarithms
is about 1/5, i.e.g4 x € /5. By contrasty 4 changes by a factor of about 5 Bs, is increased by a factor of nearly 3, so
o4 X Rei/2. This quantifies the high sensitivity efs to changes oRe, compared ta.

Two comments are here in order. First, we emphasize that werob herer 4 Rei’/2 instead ofo 4 o Rey. Therefore,
there could be a criticake,, beyond whichr 4 o< Re) and below whichr 4 Rei/2. However, the highedke, in our DNS
is 130. To verify this proposal, a large parameter rangR«f is required. Second, we note that oc ¢ ~1/5. This is because
the Damkohler number increases with decreasgifgee Table 2), which is defined as the ratio of the fluid timdesttathe
characteristic thermodynamic time scale associated Wwatetaporation proced$3a = 71, /7. Vaillancourt et al. (2002) also
found thato 4, decreases with, even though the mean updraft cooling is included in theidgt

5 Discussion and conclusion

Condensational growth of cloud droplets due to supers@gdaréuctuations is investigated using DNS. Cloud dropkats
tracked in a Lagrangian framework, where the momentum exufdr inertial particles are solved. The thermodynamiaaeq
tions governing the supersaturation field are solved sameltusly. Feedback from cloud droplets oatd@", andg, is included
through the condensation rate and buoyancy force. We resloévsmallest scale of turbulence in all simulations. Gowgtto
the classical condensation theory, which leads to a narrsiritmition when supersaturation fluctuations are ignovesifind
that droplet size distributions broaden due to supersidarfluctuations.For the first time, we explicitly demonstrate that
the size distribution becomes wider with increaskug,, which is, however, insensitive & Supersaturation fluctuations are

subjected to both temperature fluctuations and water vapongratio fluctuations.
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Figure 4. Time evolution ofo 4 for different (a)e atRex = 130 and (b)Re, até = 0.039m?s 3. Same simulations as in Figure 1.

We observe that 4 o< v/t when the complete sets of the thermodynamics equationsmjogehe supersaturation are solved,
which are consistent with the findings by Sardina et al. (2@H&l Siewert et al. (2017). Even though fluctuations of tenape
ture and water vapor mixing ratio, buoyancy force, and drtgpieedbacks to the field quantities are neglected in thedies.
This indicates that the stochastic model of condensatigraiith developed by Sardina et al. (2015) is robust. For tisé fi
time, to our knowledge, the stochastic model (Sardina eR@ll5) and simulation results from the complete set of tleerm
dynamics equations governing the supersaturation fil¢ompared. The broadening size distribution with increa$iny
demonstrates that condensational growth due to supeaiatufluctuations is an important mechanism for dropletgho
The maximumRe, in the present study is 130, which is about two orders of ntagrismaller than the one in atmospheric
clouds Re, = 10%). Since the width of the size distribution increases draraliy with increasingRe,, the supersaturation
fluctuation facilitated condensation may easily overcoheehiottleneck barrier (Grabowski and Wang, 2013).

The stochastic model developed by Sardina et al. (2015&ssthat the width of droplet size distributions is indeprid
of €. Our result shows that the width decreases slightly witlidasinge. However, the largest in warm clouds is about
1073 m?s~3 (Grabowski and Wang, 2013). Therefore, neglecting the lestadcales in the stochastic model is indeed accept-
able. Vaillancourt et al. (2002) also found that the widtldadplet size distribution decreases with increasinghich ranges
from 1.9 x 10~4m?2s73 to 1.61 x 10~2m?2s 3. However, theirRe, varies at the same time aschanges from 12 to 34. It
is unclear if their shrinking of the size distribution withcreasing is related toe or Rey. Nevertheless, their changes by
three orders of magnitude while their larg®st, is 34. Therefore, the contradiction between Vaillancotie &2002) and the
works of others (Paoli and Shariff, 2009; Lanotte et al.,2(Rardina et al., 2015) could be related to poor scale sépaia
the simulations of Vaillancourt et al. (2002), who were uedb capture the effect of larger scales on condensaticoaity.
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It could also be due to the mean updraft cooling included éntlodel of Vaillancourt et al. (2002), which was excludecdhie t
present study and in the work of othefe present study may help resolve this contradiction.

In the present study, the simulation box is stationary, Whieeans that the volume is not exposed to cooling, as no mean
updraft is considered. Therefore, the condensational tyrasvsolely driven by supersaturation fluctuations. Thisimilar
to the condensational growth of cloud droplets in stratifaiouds, where the updraft velocity of the parcel is closeem
(Hudson and Svensson, 1995; Korolev, 1995). The obsenadtitata shows that the width of the size distribution is wide
than the one expected from condensational growth with a reg@rsaturation (Hudson and Svensson, 1995; Brenguikr et a
1998; Miles et al., 2000; Pawlowska et al., 2006; SiebertSimalv, 2017a). Qualitatively consistent with observations
show that the width of droplet size distributions broadems @ supersaturation fluctuations.

Entrainment of dry air is not considered here. It may leadafuid changes of the supersaturation fluctuations and result
in an even faster broadening of the size distribution (Kuetal., 2014). Activation of aerosols in a turbulent envirant
is omitted. This may provide a more physical and realistiahdistribution of cloud droplets. Incorporating allgtcloud
microphysical processes is computationally demanding e have be explored in future studies.
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