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Small-scale dynamos in simulations of stratified turbulent convection
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Small-scale dynamo action is often held responsible for the generation of quiet-Sun magnetic fields. We aim to determine
the excitation conditions and saturation level of small-scale dynamos in non-rotating turbulent convection at low magnetic
Prandtl numbers. We use high resolution direct numerical simulations of weakly stratified turbulent convection. We find
that the critical magnetic Reynolds number for dynamo excitation increases as the magnetic Prandtl number is decreased,
which might suggest that small-scale dynamo action is not evident in bodies with small magnetic Prandtl numbers as the
Sun. As a function of the magnetic Reynolds number (Rm), the growth rate of the dynamo is consistent with an Rm1/2

scaling. No evidence for a logarithmic increase of growth rate with Reynolds number is found.
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1 Introduction

Magnetic fields are ubiquitous in astrophysical systems.
These fields are in most cases thought to be generated by
a dynamo process, involving either turbulent fluid motions
or MHD-instabilities. In dynamo theory (e.g. Brandenburg
et al. 2012; Brandenburg & Subramanian 2005; Krause &
Rädler 1980; Rüdiger & Hollerbach 2004) a distinction is
made between large-scale (LSD) and small-scale dynamos
(SSD) where the former produce fields whose length scale is
greater than the scale of fluid motions whereas in the latter
the two are comparable. Also an LSD can produce small-
scale magnetic fields through tangling, and the decay of ac-
tive regions will similarly cause magnetic energy to cascade
from larger to smaller scales.

Small-scale dynamos have been found in direct numer-
ical simulations of various types of flows provided that the
magnetic Reynolds number (Rm) exceeds a critical value
(Rmc). However, in many astrophysical conditions molecu-
lar kinematic viscosity and magnetic diffusivity are vastly
different implying that their ratio, which is the magnetic
Prandtl number (Pm), is either very small or very large.
For example, in the Sun Pm = 10−3 . . . 10−6 (e.g. Os-
sendrijver 2003). Numerical simulations of forced turbu-
lence and other idealized flows indicate that Rmc increases
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as Pm is decreased (Iskakov et al. 2007; Ponty et al. 2004;
Schekochihin et al. 2004, 2005, 2007). Theoretical studies
indicate a similar trend with an asymptotic value for Rmc
when Pm → 0 (Rogachevskii & Kleeorin 1997). The work
of Iskakov et al. (2007) suggests that there is a value of Pm
of around 0.1 where the value of Rmc is largest and that
it decreases again somewhat at even smaller values of Pm.
In the nonlinear regime, however, no significant drop in the
magnetic energy is seen as Pm is decreased to and below
0.1 (?). More recently, ? found that the drop in the value of
Rmc may have been exaggerated by having used a forcing
wavenumber that was too close to the minimal wavenumber
of the computational domain.

Simulations of turbulent convection have also been able
to produce SSDs (e.g. Brandenburg et al. 1996; Cattaneo
1999; Favier & Bushby 2012; Hotta et al. 2015; Nordlund
et al. 1992; Pietarila Graham et al. 2010; ?). Such small-
scale magnetic fields may explain the network of magnetic
fields on the Sun which is independent of the solar cycle
(??); see ? and ? for reviews. However, even the exected in-
dependence of the cycle does not go without controversy
(??). In fact, ? found evidence for an anticorrelation of
small-scale fields with the solar cycle. This could poten-
tially be explained by the interaction of the SSD with su-
perequipartition large-scale fields from the global dynamo;
see Karak & Brandenburg (2016). Small-scale magnetic
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fields may also play a role in heating the solar corona; see ?
for recent work in that direction.

Small-scale dynamo-produced magnetic fields have
been invoked to explain the convective conundrum of small
observed turbulent velocities compared to contemporary
simulations (?). Subsequent work of ?, who studied cases
of large thermal Prandtl numbers, conjectured to be due to
magnetic suppression of thermal diffusion, does however
cast some doubt on this proposal.

Returning to the problem of magnetic Prandtl numbers,
Thaler & Spruit (2015) studied the case Pm ≥ 1 from local
solar surface convection simulations and found that the SSD
ceases to exist already for Pm = 1. However, this is mainly a
shortcoming of low resolution. Global and semi-global sim-
ulations of solar and stellar magnetism have also recently
reached parameter regimes where SSDs are obtained (Hotta
et al. 2016; Käpylä et al. 2017). These models suggest that
the vigorous small-scale magnetism has profound repercus-
sions for the LSD and differential rotation. However, due to
resolution requirements the global simulations are limited to
magnetic Prandtl numbers on the order of unity or greater.

In the present paper, we therefore study high-resolution
simulations of convection-driven SSDs in the case of small
values of Pm by means of local models capturing more tur-
bulent regimes. This regime was already addressed in an
early paper by ?, but no details regarding the dependence of
the growth rates and saturation values of the magnetic field
are available.

2 The model

The numerical model is the same as in Käpylä et al. (2010)
but without imposed shear or rotation. We use a Cartesian
domain with dimensions Lx = Ly = 5d and Lz = d with
0 < z < d, where d is the depth of the layer.

2.1 Basic equations and boundary conditions

We solve the set of equations of magnetohydrodynamics

∂A
∂t

= U × B − ηµ0 J, (1)

D ln ρ
Dt

= −∇ · U, (2)

DU
Dt

= g −
1
ρ

[
∇p + J × B + ∇ · (2νρS)

]
, (3)

T
Ds
Dt

=
1
ρ

(
µ0ηJ2 − ∇ · Frad

)
+ 2νS2, (4)

where D/Dt = ∂/∂t+U·∇ is the advective time derivative, A
is the magnetic vector potential, B = ∇ × A is the magnetic
field, and J = µ−1

0 ∇ × B is the current density, µ0 is the
vacuum permeability, η and ν are the magnetic diffusivity
and kinematic viscosity, respectively, Frad = −K∇T is the
radiative flux, K is the (constant) heat conductivity, ρ is the
density, U is the velocity, p is the pressure and s the specific
entropy with Ds = cVD ln p − cPD ln ρ, and g = −g ẑ is the

gravitational acceleration. The fluid obeys an ideal gas law
p = ρe(γ − 1), where p and e are the pressure and internal
energy, respectively, and γ = cP/cV = 5/3 is the ratio of
specific heats at constant pressure and volume, respectively.
The specific internal energy per unit mass is related to the
temperature via e = cVT . The rate of strain tensor S is given
by

Si j = 1
2 (Ui, j + U j,i) − 1

3δi j∇ · U. (5)

In order to exclude complications due to overshooting
and compressibility we employ a weak stratification: the
density difference between the top and the bottom of the
domain is twenty per cent and the average Mach number is
always less than 0.1. The stratification in the associated hy-
drostatic initial state can be described by a polytrope with
index m = 1. The stratification is controlled by the normal-
ized pressure scale height at the surface

ξ0 =
(cP − cV)T1

gd
, (6)

where T1 is the temperature at the surface (z = d). In our
current simulations we use ξ0 = 2.15.

The horizontal boundary conditions are periodic. We
keep the temperature fixed at the top and bottom boundaries.
For the velocity we apply impenetrable, stress-free condi-
tions according to

∂zUx = ∂zUy = Uz = 0. (7)

For the magnetic field we use vertical field conditions

Bx = By = 0. (8)

2.2 Units, nondimensional quantities, and parameters

The units of length, time, velocity, density, specific entropy,
and magnetic field are then

[x] = d , [t] =
√

d/g , [U] =
√

dg ,

[ρ] = ρ0 , [s] = cP , [B] =
√

dgρ0µ0 , (9)

where ρ0 is the density of the initial state at zm = 1
2 d. The

simulations are controlled by the following dimensionless
parameters: thermal and magnetic diffusion in comparison
to viscosity are measured by the Prandtl numbers

Pr =
ν

χ0
, Pm =

ν

η
, (10)

where χ0 = K/(cPρ0) is the reference value of the thermal
diffusion coefficient, measured in the middle of the layer,
zm, in the non-convecting initial state. The efficiency of con-
vection is measured by the Rayleigh number

Ra =
gd4

νχ0

(
−

1
cP

ds
dz

)
zm

, (11)

again determined from the initial non-convecting state at zm.
The entropy gradient can be presented as(
−

1
cP

ds
dz

)
zm

=
∇ − ∇ad

HP
, (12)

Copyright line will be provided by the publisher



asna header will be provided by the publisher 3

Fig. 1 Upper row: specific entropy s/cP near the surface z/d = 0.98 for Re = Pe = 23, 54, 101, and 193. Lower row: Re = Pe = 354,
666, and 1057.

where ∇ = (∂ ln T/∂ ln p)zm and ∇ad = 1−1/γ are the actual
and adiabatic double-logarithmic temperature gradients and
HP is the pressure scale height at z = zm.

The effects of viscosity and magnetic diffusion are quan-
tified respectively by the fluid and magnetic Reynolds num-
bers

Re =
urms

νkf
, Rm =

urms

ηkf
= Pm Re, (13)

where urms is the root mean square (rms) value of the veloc-
ity, and kf = 2π/d is the wavenumber corresponding to the
depth of the layer. Furthermore, we define the Péclet num-
ber as

Pe =
urms

χ0kf
= Pr Re. (14)

In most of our simulations we keep Pr = 1 and thus Pe = Re.
Error estimates are obtained by dividing the time series

into three equally long parts. The largest deviation of the
average for each of the three parts from that over the full
time series is taken to represent the error.

The simulations were performed using the Pencil
Code1, which uses sixth-order explicit finite differences in
space and a third-order accurate time stepping method. We
use resolutions ranging from 643 to 10243.

3 Results

3.1 Description of the runs

We perform four sets of runs where we keep the magnetic
Prandtl number fixed and vary Re and Rm; see Table 1.

1 https://pencil-code.github.com/

Table 1 Summary of weak field runs, here Ma = urms/
√

dg and
Pr = 1.

Run Pm Ra[106] Ma Re Rm λ̃[10−4] δλ̃[10−4] grid
A1 1 0.17 0.073 23 23 −52 47 643

A2 1 1.0 0.068 54 54 62 18 1283

A3 1 4.2 0.064 101 101 162 20 1283

A4 1 17 0.061 193 193 273 7 2563

A5 1 67 0.056 354 354 453 2 5123

B1 0.5 1.0 0.069 54 27 −128 24 1283

B2 0.5 4.2 0.064 102 51 −27 12 1283

B3 0.5 17 0.060 191 95 44 11 2563

B4 0.5 67 0.056 360 180 155 18 5123

B5 0.5 267 0.052 666 333 357 17 10243

C1 0.25 17 0.060 190 47 −144 22 2563

C2 0.25 67 0.056 358 90 −35 28 5123

D1 0.1 67 0.057 360 36 −237 56 5123

D2 0.1 267 0.052 664 65 −139 77 10243

D3 0.1 740 0.050 1057 106 −10 94 10243

The lower resolution (643, 1283, and 2563) runs were started
from a non-convecting state described in the previous sec-
tion, whereas runs at 5123 and 10243 were remeshed from
saturated snapshots at lower resolutions; see Figure 1 for
visualizations of specific entropy near the surface of the do-
main. After the convection has reached a statistically satu-
rated state we introduce a weak random magnetic field of
the order of 10−6Beq, where Beq is the equipartition field
strength with B2

eq = 〈µ0ρu2〉. We refer to these runs as the
weak field models and perform the data analysis in regimes
where the magnetic fields remains dynamically unimpor-
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Fig. 2 Growth rate λ of the rms magnetic field normalized by
the inverse convective turnover time τ−1 = urmskf as a function
of the magnetic Reynolds number Rm. The different symbols de-
note runs with Pm = 1 (triangles), Pm = 0.5 (stars), Pm = 0.25
(squares), and Pm = 0.1 (diamonds). The horizontal dotted line
denotes marginal stability. The red, blue, orange, and green dot-
ted lines are curves proportional to Rm1/2; see Equation (16) for
different values of A and B = 3.5 · 10−3 is fixed. The inset shows
the normalized growth rates for the same data as functions of Re.
The dashed lines are proportional to Re1/2 according to a relation
analogous to Equation (16) with B = 2.5 · 10−3 and values of A
indicated in the legend.

tant. After an initial transient the growth rate of the total
rms magnetic field is measured from

λ = 〈d ln Brms/dt〉t, (15)

where 〈· · ·〉t denotes time averaging. In the runs where the
dynamo is clearly above or below critical, a short time series
(few tens of turnover times) is sufficient to measure a statis-
tically significant values of λ. The runs near the excitation
threshold need to be run significantly longer (hundreds of
turnover times). For the highest resolution runs at low Pm
this is not feasible due to the computational cost and thus
the error bars for these runs are typically significantly larger
than in the low resolution or Pm = 1 runs.

3.2 Growth rate in the kinematic regime

Figure 2 shows the growth rate of the magnetic field as a
function of Rm for the four magnetic Prandtl numbers ex-
plored in the current study. For reference we plot curves of
the form

γ/τ−1 ≡ γ̃ = A + B Rm1/2, (16)

where τ = (urmskf)−1 is the convective turnover time, and
where the value of the constant A changes as the magnetic
Prandtl number is changed. Furthermore, B = 3.5 · 10−3

for all values of Pm. The parameter A is negative, so the
solutions will always decay for small values of Rm, but they
increase with increasing values of Pm; see Figure 2.

Fig. 3 Growth rate λ of the rms magnetic field normalized by the
inverse convective turnover time τ−1 = urmskf as a function of the
horizontal box size for Pm = 1.

We find that the normalized growth rate for a given Rm
decreases as Pm is decreased. Surprisingly, λ̃ appears to fol-
low a Rm1/2 trend for each value of Pm even in the cases
when an SSD is not excited. Such a dependence is pre-
dicted by theory for high Rm, i.e. far away from excitation
(Kleeorin & Rogachevskii 2012). However, given the rela-
tively large error bars, the Rm1/2 scaling near the excitation
threshold can at this point be only suggestive and far from
definite. Indeed, analytic theory yields a different scaling in
this regime (Kleeorin & Rogachevskii 2012).

In the low-Pm regime the growth rate of the magnetic
field due to the SSD is expected to scale with the 1/2 power
of the fluid Reynolds number. We find that the our simula-
tion data is consistent with this for values of Pm of 0.5 and
smaller; see the inset to Figure 2.

3.3 Dependence on the box size

The dependence of the growth rate of the convection-driven
SSD on the horizontal size of the domain and the presence
of mesogranulation has been raised in a recent paper by
Bushby et al. (2012). Figure 3 shows the growth rate of the
magnetic field as a function of the horizontal box size for
magnetic Prandtl number unity. Deviations from the con-
stant trend are found for LH/d = 1.25, and for LH/d = 0.5
no dynamo action is found. Our standard box size LH/d = 5
is thus adequate and does not seem to suffer from the issues
raised by Bushby et al. (2012). This is despite the fact that
the flow is dominated by a single convection cell filling the
whole domain which is detectable even by visual inspection
of Figure 1.

3.4 Energy spectra

In Figure 4 we show the kinetic and magnetic energy spec-
tra, EK and EM, respectively, for Run B5 during the kine-
matic phase of the dynamo for Pm = 0.25 and Rm = 654.
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Fig. 4 Power spectra of velocity and magnetic field as functions
of k̃ = k/k1 near the top of the domain from Run B5. EM has
been multiplied by 1014 for visualization purposes. The dotted line
show a k−5/3 scaling for reference. The inset shows the velocity
power spectrum compensated by k5/3.

Table 2 Summary of strong field runs.

Run Pm Pr Ra[106] Re Rm Ma B̃rms grid
S1 1 1 17 169 169 0.053 0.0130 2563

S2 0.5 0.5 33 361 180 0.057 0.0126 2563

S3 0.25 0.25 67 760 190 0.060 0.0110 2563

S4 0.1 0.1 167 2118 212 0.067 − 5123

The kinetic energy spectrum shows a clear k−5/3 spectrum
along with a slightly shallower slope near the dissipative
cutoff. This is the bottleneck effect (?), which has been held
responsible for causing the increase of Rmc near Pm = 0.1,
because then the peak of the magnetic energy lies fully
within the inertial range of the kinetic energy spectrum (?).
The magnetic energy spectrum, on the other hand, is signif-
icantly shallower than the k3/2 spectrum expected from the
work of ? and that has been confirmed in many in several
numerical simulations of forced turbulence (Schekochihin
et al. 2004; ?). The spectra shown in Figure 4 were taken
from a run where the magnetic field has grown only by a
factor of a few and it is possible that the 3/2 scaling has
not had enough time to develop yet. However, the flow ex-
hibits a long-lived large-scale component, manifested by the
peak at k̃ = 1, which is not present in simpler forced turbu-
lence simulations. Such flows may contribute to the rela-
tively high magnetic power at large scales. In that case, the
lack of a k3/2 spectrum in the kinematic regime would have a
physical origin. These aspects will be explored further else-
where.

3.5 Saturation level

the magnetic fields produced by the SSD; see Table 2. We
refer to these runs as strong field models. These runs were

Fig. 5 Saturation field strength for Runs S1 to S3 with Pm =

1 . . . 0.25 (Rm = 169 . . . 190) as a function of the fluid Reynolds
number.

either run to full saturation from the initial conditions de-
scribed in Sect. 2 (Run S1) or continued from a saturated
snapshot of earlier runs (S2, S3, and S4). At each step the
kinematic viscosity is lowered to decrease Pm with the aim
of avoiding the long kinematic stage of the dynamo. An-
other possible advantage is that the SSD has been shown to
operate in the nonlinear regime at an Rm value that would
be subcritical in the kinematic case (?). While this proce-
dure works for Runs S2 and S3, in Run S4 with Pm = 0.1
where Rm = 212 and Re = 2118 the magnetic field is not
sustained.

Figure 5 shows the saturation field strength for Runs S1
to S3 with Pm = 0.25 . . . 1 and where the magnetic
Reynolds number varies from 169 to 190 due to increasing
urms when Pm decreases. Contrary to the results for forced
turbulence, where the rms magnetic field was found to de-
crease by no more than a factor of two as Pm was decreased
from unity to 0.01 (?), we seem to find here a somewhat
stronger dependence of the saturation field strength on the
value of Pm and thus on Re. The current results suggest a
scaling with Re with a power that is close to −1/3. How-
ever, one has to realize that the run for the largest value of
Re and Pm = 0.25 we used a resolution of 2563 which may
be too low to resolve a flow with Re = 760.

4 Conclusions

Our work has confirmed that in turbulent convection at low
values of Pm, the value of Rmc increases with decreasing
Pm. This effect may well be connected with the bottle-
neck effect seen in the kinetic energy spectrum. The satu-
rated field strength, however, is found to show a somewhat
stronger dependence on Pm than in the case of forced tur-
bulence.

Both for small values of Pm and for Pm of unity, we
find that the kinematic growth rate increases proportional to
Rm1/2. In particular, there is no evidence for a logarithmic
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dependence. A similar dependence on Rm has previously
been seen in forced turbulence; see ?, for example.

Interestingly, however, in the kinematic regime, the
magnetic energy spectrum is significantly shallower than
the k3/2 spectrum expected for an SSD (?). This is also
quite different from the case of forced turbulence, where a
clear k3/2 spectrum is found during the kinematic growth
phase. In other words, the kinematic convection-driven dy-
namo shows a tendency of producing larger-scale magnetic
fields than in forced turbulence.
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