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ABSTRACT

We present results from simulations of rotating magnetiagalilent convection in spherical wedge geometry
representing parts of the latitudinal and longitudinaleat$ of a star. Here we consider a set of runs for
which the density stratification is varied, keeping the Regia and Coriolis numbers at similar values. In the
case of weak stratification we find quasi-steady solutionsnfoderate rotation and oscillatory dynamos with
poleward migration of activity belts for more rapid rotatioFor stronger stratification, the growth rate tends
to become smaller. Furthermore, a transition from quasebt to oscillatory dynamos is found as the Coriolis
number is increased, but now there is an equatorward migrdtianch near the equatoithe breakpoint
where this happens corresponds to a rotation rate that igt 84d times the solar value. The phase relation
of the magnetic field is such that the toroidal field lags bettre radial field by about /2, which can be
explained by an oscillatorg? dynamo caused by the sign change of éheffect about the equatonVe test
the domain size dependence of our results for a rapidlyingtatin with equatorward migration by varying the
longitudinal extent of our wedge. The energy of the axisyitnimenean magnetic field decreases as the domain
size increases and we find thatran= 1 mode is excited for a fulkr azimuthal extent, reminiscent of the field
configurations deduced from observations of rapidly rotatate-type stars.
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1. INTRODUCTION et al. 2009). Several other issues have already been address

The large-scale magnetic field of the Sun, manifested by
the 11 year sunspot cycle, is generally believed to be gener
ated within or just below the turbulent convection zone.(e.g
Ossendrijver 2003, and references therein). The latter con
cept is based on the idea that strong shear in the tachoclin
just beneath the convection zone amplifies the toroidal mag
netic field which then becomes buoyantly unstable and erupt
to the surface (e.g. Parker 1955b). This process has bee
adopted in many mean-field models of the solar cycle in the
form of a non-locala-effect (e.g. Kitchatinov & Olemskoy
2012), which is based on early ideas of Babcock (1961) and
Leighton (1969) that the source term for poloidal field can be
explained through the tilt of active regions. Such modeis as
sume a reducedurbulent diffusivity within the convection
zone and a single cell anti-clockwise meridional circalati
which acts as a conveyor belt for the magnetic field. These
so-called flux transport models (e.g. Dikpati & Charbonneau
1999) are now widely used to study the solar cycle and to
predict its future course (Dikpati & Gilman 2006; Choudhuri
et al. 2007).

The flux transport paradigm is, however, facing several the-
oretical challengest0® gauss magnetic fields are expected to
reside in the tachocline (D’'Silva & Choudhuri 1993), butlsuc
fields are difficult to explain with dynamo theory (Guerrero &
Kapyk 2011) and may have become unstable at much lowe
field strengths (Arlt et al. 2005)urthermore, flux transport
dynamos require a rather low value of the turbulent diffusiv
ity within the convection zone (severf#)!'! cm? s~ !; see Bo-
nanno et al. 2002), which is much less than the standard es
timate of several0'? cm?s~! based on mixing length the-
ory, which, in turn, is also verified numerically (e.gapyla
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i}-‘ave led to a revival of the distributed dynamo (e.g. Brarden

within this paradigm, for example the parity of the dynamo

(Bonanno et al. 2002; Chatterjee et al. 2004; Dikpati et al.

2004) and the possibility of a multicellular structure oéth
meridional circulation (Jouve & Brun 2007), which may be

gnore complicated than that required in the flux transport-mod

els (Hathaway 2011; Miesch et al. 2012T.hese difficulties

urg 2005; Pipin 2012) in which magnetic fields are generated
throughout the convection zone due to turbulent effects (e.
Krause & Radler 1980; Kapyk et al. 2006b; Pipin & Seehafer
2009).

Early studies of self-consistent three-dimensional magne
tohydrodynamic (MHD) simulations of convection in spher-
ical coordinates produced oscillatory large-scale dyreamo
(Gilman 1983; Glatzmaier 1985), but the dynamo wave was
found to propagate towards the poles rather than the egaator
as in the Sun. These models are referred to as direct numeri-
cal simulations (DNS), i.e., all operators of viscous arftlii
sive terms are just the original ones, but with vastly insesh
viscosity and diffusivity coefficients. More recent anéias
large-eddy simulations (LES) with rotation rates somewhat
higher than that of the Sun have produced non-oscillatory
(Brown et al. 2010) and oscillatory (Brown et al. 2011; Nelso
et al. 2013) large-scale magnetic fields, depending esdlgnti

,on the rotation rate and the vigor of the turbulence. How-

ever, similar models with the solar rotation rate have eithe
failed to produce an appreciable large-scale componenn(Br
et al. 2004) or, more recently, oscillatory solutions with a
most no latitudinal propagation of the activity belts (Giriz

et al. 2010; Racine et al. 2011). These simulations covered a
full spherical shell and used realistic values for solarihos-

ity and rotation rate, necessitating the use of anelashieso

and spherical harmonics (e.g. Brun et al. 2004) or implicit
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methods (e.g. Ghizaru et al. 2010). Here we exploit an alter-9/0t + w - V is the advective time derivativp,is the density,
native approach by modeling fully compressible convection v is the kinematic viscosity; is the magnetic diffusivity, both
in wedge geometry (see also Robinson & Chan 2001) with aassumed constant,

finite-difference method. We omit the polar regions and cove rad sGs

usually only a part of the longitudinal extent, €9§° instead F™ = -KVT and F”™ = —xsaspT'Vs  (5)
of the full 360°. At the cost of omitting connecting flows
across the poles and introducing artificial boundariesether
the gain is that higher spatial resolution can be achievad. F
thermore, retaining the sound waves can be beneficial whe
considering possible helio- or asteroseismic applicati@ur
model is a hybrid between DNS and LES in that we supple-
ment the thermal energy flux by an additional subgrid scale
(SGS) term to stabilize the scheme and to reduce the radia
tive background flux further. Recent hydrodynamic@fiyla

et al. 2011a,b) and MHD (&pyka et al. 2010b) studies with
this method have shown that this approach produces results 15,V - u, (6)
that are in accordance with fully spherical models. Morepve 3

the first turbulent dynamo solution with solar-like migoati where the semicolons denote covariant differentiationtr@li
properties of the magnetic field was recently obtained usinget al. 2009).

this type of setup (Kipyl et al. 2012). Extended setups that  The gravitational acceleration is given py= —GM# /r?,
include a coronal layer as a more realistic upper radial beun whereG is the gravitational constany/ is the mass of the
ary have been successful in producing dynamo-driven coronastar (without the convection zone), ands the unit vector in
ejections (Warnecke et al. 2012). As we show in a companionthe radial direction. Furthermore, the rotation vedty is
paper (Warnecke et al. 2013), a solar-like differentiahtion given by = (cos, —sin6,0)p.

pattern might be another consequence of including an outer
coronal layer.

Here we concentrate on exploring further the recent dis-
covery of equatorward migration in spherical wedge simula- P
tions (Kapyla et al. 2012). In particular, we examine a set ture gradientis given by
of runs for which the rotational influence on the fluid, mea- aT
sured by the Coriolis number, which is also called the irvers o
Rossby number, is kept approximately constant while the den
sity stratification of the simulations is gradually increds

are radiative and SGS heat fluxes, whéfes the radiative
heat conductivity anglsgs is the turbulent heat conductivity,
which represents the unresolved convective transport af he
"hnd was referred to ag; in Kapyk et al. (2012)s is the
specific entropy{ is the temperature, andis the pressure.
The fluid obeys the ideal gas law with= (v — 1)pe, where

v = cp/ev = 5/3 is the ratio of specific heats at constant
pressure and volume, respectively, and cyT is the specific
internal energy. The rate of strain ten$ois given by

Sij = 5 (wiy + ujii) —

2.1. Initial and boundary conditions
The initial state is isentropic and the hydrostatic tempera

B GM/r?
CV(’V - 1)(nad + 1)’

wheren,q = 1.5 is the polytropic index for an adiabatic strat-
ification. We fix the value 00T /0r on the lower boundary.
2. THE MODEL The density profile follows from hydrostatic equilibriumh&@

Our model is the same as that imapyla et al. (2012).  heat conduction profile is chosen so that radiative diffusso
We consider a wedge in spherical polar coordinates, whereresponsible for supplying the energy flux in the system, with
(r,0,¢) denote radius, colatitude, and longitude. The ra- K decreasing more than two orders of magnitude from bot-
dial, latitudinal, and longitudinal extents of the wedge ar tom to top (Kapyl et al. 2011a). We do this by choosing a
ro <r <R,0y <0 <7m—0and0 < ¢ < ¢, respectively,  variable polytropic indexa = 2.5 (r/rg)~*® — 1, which is
whereR is the radius of the star and = 0.7 R denotes the 1.5 at the bottom of the convection zone and approaeties
position of the bottom of the convection zone. Here we take closer to the surface. This means tifat= (n + 1)K, de-

(7)

6o = w/12 and in most of our models we ugg = 7/2, so
we cover a quarter of the azimuthal extent betw&&h° lat-

itude. We solve the compressible hydromagnetic equdtjons

0A

E:UXB_,UOnJa (1)
Dlnp
D V- u, 2
D 1
?1;:g—QQoqu—;(JxB—Vp+V-2VpS),(3)
Ds 1 rad SGS 2 2
TE:;[—V-(F + F5C%) 4 pond?) 4 2087, (4)

where A is the magnetic vector potential, is the velocity,
B = V x A is the magnetic fieldJ = pu;'V x B is
the current densityy is the vacuum permeabilityp /Dt =

creases toward the surface like'® such that most of the flux
is carried by convection (Brandenburg et al. 2005). Héfg,
is a constant to be defined below. A weak random small-scale
seed magnetic field is taken as initial condition (see below)
Our simulations are defined by the energy flux imposed at
the bottom boundangy, = —(K9T'/0r)|,—., as well as the
values ofQ2y, v, n, andysas = xsas(rm = 0.85 R). Further-
more, the radial profile ofscs is piecewise constant above
r > 0.75R with xsgs = Xgqg at0.75 < r < 0.98, and
Xsas = 12.5xqqgq abover = 0.98R. Belowr = 0.75R,
xsas tends smoothly to zero; see Fig. 1 ofipyk et al.
(2011a).
The radial and latitudinal boundaries are assumed to be im-
penetrable and stress free, i.e.,

8u(9 - ug aqu Ugp

Ur = U, W77’ WZT (T:TO,R)v (8)
ou, ou
g = o =0, a—;:u(f)cote (0 = 0o, 7 — 0p). (9)

1 Note that in Equation (4) of Epyk et al. (2012) the Ohmic heating term
uonJ? and a factop in the viscous dissipation terev'S2 were missing, but
they were actually included in the calculations.

For the magnetic field we assume perfect conductors on the
latitudinal and lower radial boundaries, and radial fieldos



outer radial boundary. In terms of the magnetic vector poten
tial these translate to

the non-dimensional viscosity

v

. U= . (20)
é§f=A9=A¢:O (r =70), (10) GMR
A —0 0Ap Ay 0Ay Ay R 1 Instead of, we often quote the initial density contraEf,O) =
=Y T T T Ty T T (r=R), (11) p(ro)/p(R). The density contrast can change during the run.
DAy We list the final values of’, from the thermally saturated
A, = 20 = Ay =0 (0=06y,m—b). (12) stage in Table 1.

We use small-scale low amplitude Gaussian noise as initial
condition for the magnetic field. On the latitudinal boundar

we assume that the density and entropy have vanishing first

derivatives, thus suppressing heat fluxes through the bound
aries.
On the upper boundary we apply a black body condition

oT* = -KV,T - XSGSPTVTS7 (13)

whereo is the Stefan—Boltzmann constant. We use a modified
value foro that takes into account that both surface tempera-
ture and energy flux through the domain are larger than in the
Sun.The value ofs can be chosen so that the flux at the sur-
face carries the total luminosity through the boundary m th
initial non-convecting state. However, in many cases weshav
changed the value aof during runtime to speed up thermal
relaxation.

2.2. Dimensionless parameters

To facilitate comparison with other work using different
normalizations, we present our results in this paper by abrm
izing with physically meaningful quantities. We note, how-

Other useful diagnostic parameters are the fluid and mag-
netic Reynolds numbers

urms

nke’

ul’IIlS

R =
¢ ka’

= (21)
wherek; = 27 /Ar =~ 21 is an estimate of the wavenumber of
the largest eddies, anr = R — rq = 0.3 R is the thickness
of the layer. The Coriolis number is defined as

20

Co = ,
urmskf

(22)

whereu,ms = /(3/2)(u2 + u2) 94+ is the rms velocity and
the subscripts indicate averaging ovel, ¢, and a time in-
terval during which the run is thermally relaxed and which
covers several magnetic diffusion times. The averaging pro
cedures employ the correct volume or surface elements of
spherical polar coordinates. Note that fgf,; we omit the
contribution from the azimuthal velocity, because its eaits
dominated by effects from the differential rotation&{y/ia

et al. 2011b) and compensate for this with 8je factor. The

Taylor number can also be written @s = Co?Re? (ke R)%.

ever, that in the code we used non-dimensional quantities byPue to the fact that the initial stratification is isentropiee

choosing
R=GM =py=cp=po=1, (14)

wherepy is the initial density at = ry. The units of length,
time, velocity, density, entropy, and magnetic field aredhe

fore
[x] =R, [t]=/R3/GM, [u]=+/GM/R,
[p] = po, [s] =cp, [B]l =+/poroGM/R.

The radiative conductivity is proportional tad<,
(L/4Am)ey (v — 1)(naqa + 1)povVGM R, whereL is the non-
dimensional luminosity, given below. The corresponding
nondimensional input parameters are the luminosity param-
eter

(15)

Lo

= 16
L o(CABERIE (16)
the normalized pressure scale height at the surface,
(v — DevTy
=—"t—= 17
¢ GM/R (17)

with T being the temperature at the surface, the Taylor num-
ber

Ta = (2Q0R?/v)?, (18)
the fluid and magnetic Prandtl numbers
Pr= -2, Pregs = — Pm="2,  (19)

)
Xm XsGs

wherex,, = K/cppm andp,, are the thermal diffusivity and
density atr = r,, = 0.85R, respectively. Finally, we have

quote the turbulent Rayleigh numbee; from the thermally
relaxed state of the run,

GM(Ar)t

VXsas?
We also quote the value df, = wyms/Urms, Wherew =
V X u andw,s, is the volume averaged rms valuewof The
magnetic field is expressed in equipartition field strengths
Beq(r) = (uopu®)y:, where all three components afare
included. We define mean quantities as averages ovef-the
coordinate and denote them by overbars. However, as we will
see, there can also be significant power in non-axisymmetric
spherical harmonic modes with low azimuthal degree- 1
and 2, which will be discussed at the end of the paper.

The simulations were performed with th&fciL CODE?,

which uses a high-order finite difference method for solving
the compressible equations of magnetohydrodynamics.

1 d<3>9¢t

cp dr

Rat (23)

2.3. Relation to reality

In simulations, the maximum possible Rayleigh nhumber is
much smaller than in real stars due to the higher diffusivi-
ties. This implies higher energy fluxes and thus larger Mach
numbers (Brandenburg et al. 2005). To have realistic Corio-
lis numbers, the angular velocity in the Coriolis force has t
be increased in proportion to one third power of the increase
of the energy flux, but the centrifugal acceleration is omit-
ted, as it would otherwise be unrealistically large (chgyla
et al. 2011b). In the present models this would mean that the

2 http://code.google.com/p/pencil-code/



TABLE 1
SUMMARY OF THE RUNS.

Run grid Pr Prsgs Pm Ta10] ¢ 1 T, 51075 £[107°] &  Rag[10] Re Rm Co
Al 128x256x128 71 15 10 10 029 20 21 L7 3.8 0.075  0.83 26 26 86
A2 128x256x128 71 15 10 18 029 20 21 17 3.8 0.075 011 24 24 128
Bl 128x256x128 82 25 1.0 064 009 50 53 29 3.8 0.89 T1T 22 22 81
B2 128x256x128 8 25 1.0 14 009 50 52 29 3.8 0.89 L1 20 20 137
CI 128x256x128 56 25 10 14 002 30 22 29 3.3 114 21 35 35 738
C2 128x256x128 56 25 1.0 40 002 30 21 29 3.8 114 27 31 31 148
DI 128 x 256 x 128 503 7.5 3.0 _ 0.16 0008 100 85 47 063 32.10° 12 11 34 80
D2 256x512x256 269 40 2.0 1.0 0008 100 74 25 0.63  32.10% 24 25 50 9.1
El  128x256x64 56 25 1.0 14 002 30 22 29 3.3 114 21 34 34 79
E2 128x256x128 56 25 10 14 002 30 22 29 3.8 114 21 35 35 78
E3 128x256x25 56 25 1.0 14 002 30 22 29 3.8 114 24 35 35 7.9
E4 128x256x512 67 30 1.0 10 002 30 23 35 3.8 114 22 28 28 81

NoTE. — The second to seventh and ninth to eleventh columns show quantitiels are input parameters to the models whereas the quantities in the eight éast ther columns
are results of the simulations computed from the saturated state. Here wg usew /2 in Sets A-D. In Set E we us¢y = = /4 (Run E1),¢90 = 7 /2 (E2), ¢ = = (E3), and
¢o = 27 (E4). Runs C1 and E2 are the same model, which is also the same as Run B&pyif & al. (2012). Her& , is the density stratification in the final saturated state and
= oRQTé/LO, whereT), is the temperature at the base of the convection zone.

TABLE 2
SUMMARY OF DIAGNOSTIC VARIABLES.

Run X @rms FEmer/Fxin  FErot/Fixin  Fmag/Fxin  Fpol/Fmag  FEtor/Fmag Ag) Ag” ke

Al 0.084 0.010 0.000 0.580 0.418 0.045 0.396 0.013 0.089 62
A2 0.095 0.009 0.000 0.490 0.553 0.068 0.338 0.009 0.050 62
BI 0.028 0.013 0.000 0.705 0.345 0.038 0.487 0.034 0.142 68
B2 0.098 0.012 0.000 0.757 0.222 0.056 0.427 0.023 0.072 72
Cl 0.006 0.021 0.001 0.440 0.346 0.138 0.203 0.047 0.068 93
C2 0.105 0.019 0.001 0.326 0.706 0.198 0.238 0.016 0.030 94
DI 0.003 0.011 0.002 0.222 0.472 0.166 0.135 0.0IT -0.000 89
D2 0.003 0.013 0.000 0.617 0.222 0.133 0.190 0.045 0.058 116
E1 0.007 0.021 0.001 0.478 0.393 0.133 0.328 0.048 0.069 92
E2 0.006 0.021 0.001 0.440 0.346 0.138 0.203 0.047 0.068 93
E3 0.005 0.021 0.001 0.375 0.380 0.120 0.172 0.037 0.055 92
E4 0.024 0.020 0.001 0.410 0.477 0.016 0.080 0.028 0.054 89

NOTE. — HereA = \/(urmsks) is thenormalized growth rate of the magnetic field aiidn = wrms/+/GM/R is the non-dimensional
rms velocity. Eyi, = %(pu2> is the volume averaged kinetic energ¥y,cr = %(p(ﬂf + Uﬁ)) andE,ot = %(pﬂg) denote the volume
averaged energies of the azimuthally averaged meridional circulation and differemttadmofAnalogouslyF ,, . = % (B?) is the total volume

averaged magnetic energy whitg,,; = %((Ez + EZ)} andEior = %(Ei} are the energies in the axisymmetric part of the poloidal and
toroidal magnetic fields.

centrifugal acceleration is of the same order of magnitigle a where Hpg is the pressure scale height af, uEfﬁ? =
gravity, thus significantly altering the hydrostatic balan Fy/po)'/? is a convective reference velocity based on the
We note that we intend to use low values®o that the  |yminosity of the modellL = 4712 Fy, andF, is the total flux
Mach number is sufficiently below unity near the surface. atry.
This is particularly important when the stratification isosig. A visual comparison of these different time scales for the
In our current formulation the unresolved turbulent heat-co  syn and Run C1 is given in Figure 1. In order to allow for
ductivity, xsas, acts on the total entropy and thus contributes sjow thermal and resistive relaxation processes, we requir
to the radial heat flux. In the current models withscs that their respective time scales are shorter than the m ti
greater than unity, the SGS-flux accounts for a few per centr of the simulation. As stated in Section 2.2, the acoustietim

of the total flux within the convection zone. Using smaller scale of our model is equal to that of the Sun. This implies tha
values ofPrscs at the same Reynolds number would lead to g| the other time scales must be significantly reduceg.,
a greater contribution due to the SGS-flux. To minimize the py 3 factor 70-1007;, and 7.5 by a factor107, and 7yisc

effects of the SGS-flux within the convection zone, we use by a factor10'4. This is accomplished by taking values ©f

the smallest possible value gkgs that is still compatible  that are not as small as in the Sun (Whérex 5 x 10~11),

with numerical stability. _ but typically 3.8 x 10~° for Run C1. This just corresponds
The span of time scales in our model is strongly compressedq taking values of the Rayleigh number that are on the order

so as to comprise the full range all the way to the viscous, of 106 rather than solar values (in excesslof4). Likewise,

thermal, and resistive time scales. In the following we de- shorter thermal, resistive, and viscous time scales aggruit

fine aCOUSUC, ConVect|Ve, thermal, reS|St|Ve, a.nd vis¢one by Choosing Va'ues Of the magnetic and f|u|d Reyno'ds num-

scales as follows: ber that are not as large as in the Sun and by choosing mag-

Toe = /7R3/GM, Teony = Hpo/ugﬁi), (24) gitri:: and fluid Prandtl numbers that are not as small as in the

Tin = ngo/Xo, Tres = ngo/ﬂa Tvise = ngo/’/, (25) For the purpose of comparing dynamo time scales of the
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FiG. 1.—Visual comparison of acoustic, convective, thermal, regstind 00 ]
viscous time scales both in the Sun (upper part, in red) andhodel (lower - .
part). In our model, resistive, and viscous time scales aralegnd the 0.2k \ ) , \ \ -
thermal time scale is 1.5-7.5 times longer. The simulation tina¢escare
confined between the length of the time st&p,and the maximum run time, 00 LBL) L2 ?_/B; e i) el
T.
model with the Sun, itis useful to rescale them suchihat, FIG. 2.— Luminosity of the energy fluxes from Run E4: radiative -con

coincides with that of the Sun. We can then compare the ro-duein (1n sold ine) enthlpy (dashec), Knetc el dashed), and
?tlonl&?—tesdoggur mzodelds:;r][_ Table :Il- Wléh]_thaé %fzthe %un:dcontributions. The two dashed red lines indicate the zedousity line.
uns an are 2an Imes solar, an are 3 an

4.4 times solar, C1 (including all of Set E) and C2 are 4.4 and

7 times solar. and D1 and D2 are 4.3 and 6 times solar. 1989; Brandenburg et al. 1992; Kitchatinov & Mazur 2000).
' Instead of using the physical value for the Stefan—Boltaman
3. RESULTS constant, we estimate the value ®fso that the flux at the

We perform runs for four values @f corresponding to ini-  UPPer boundary is approximately that needed to transpert th
. P . ) (0) ur values gf P g total luminosity of the star through the surface, see Table 1
tial density contrasi’,” = 2,5,30, and100. These runs

However, the final thermally relaxed state of the simulation
are referred to as series A-D. In series E we Dgé =30 can significantly deviate from the initial state. In combina
and vary¢, with all other parameters being kept the same as tion with the nonlinearity of Equation (13), the final stfati

in Run C1. For each series we consider different values of cation is usually somewhat different from the initial onegs
Ta and as a consequence also of Co and Re. The hydrodyFigure 3 for an illustrative example from Run C1. The final
namic progenitors of the Runs B1, C1, and D1 corresponddensity stratification in this case is around 22, down from 30

to Runs A4, B4, and C4, respectively, fromapyla et al. in the initial state.
(2011a). The rest of the simulations were run from the ini- The main advantage of the black body condition is that it al-
tial conditions described in Section 2.1. lows the temperature at the surface more freedom than in our

Earlier studies applying fully spherical simulations have previous models where a constant temperature was imposed
shown that organized large-scale magnetic fields appear pro(Kapyk et al. 2010b, 2011b). In particular, as the temperature
vided the rotation of the star is rapid enough (Brown et al. is allowed to vary at the surface, this can be used as a diag-
2010) and that at even higher rotation rates, cyclic salstio nostic for possible irradiance variations. These are dised
with poleward migration of the activity belts are obtained further in Section 3.8.

(Brown et al. 2011). A similar transition has been observedi  Considering the energy balance, we show the averaged ra-
spherical wedge models ofdgyla et al. (2010b) and &pyk dial energy fluxes for Run E4 in Figure 2. We find that the
et al. (2012). However, in the former case the oscillatory simulation is thermally relaxed and that the total lumitpis
mode showed poleward migration whereas in the latter anclose to the input luminosity, i.€.co; — Lo ~ 0. The fluxes
equatorward branch appears near the equator. Furthermorere defined as:

in these runs the dynamo mode changes from one showing a

high frequency cycle with poleward migration near the equa- Fraa=—K(V,T), (26)
tor to another mode with lower frequency and equatorward Feonv =cp{(pu,)'T"), 27)
migration when the magnetic field becomes dynamically im- Frn = % <pu u2> (28)
portant. " T

There are several differences between the modelspf/& Fuise = —2v (pu; Sir) , (29)
et al. (2010b) and Kpyk et al. (2012): the amount of density Fourb = —Xscs{(pTV,s), (30)
stratification (a density contrast of 3 in comparison to 30), Froyn = (EgBy — EyBg) /10, (31)

efficiency of convective energy transport (20 per cent \v&rsu

close to 100 per cent in the majority of the domain achieved whereE = nuoJ — u x B, the primes denote fluctuations,
by the use ofyscs; see also Figure 2), and the top boundary and angle brackets abbrevigtg ... The radiative flux car-
condition for entropy (constant temperature versus black/b  ries energy into the convection zone and drops steeply as a
radiation). Here we concentrate on studying the influence offunction of radius so that it contributes only a few per cent i
the density stratification on models similar to those pre=tn  the middle of the convection zone. The resolved convection

in Kapyla et al. (2012). is responsible for transporting the energy through the ritgjo
of the layer, whereas the unresolved turbulent transpaiiesa
3.1. Thermal boundary effects and energy balance energy through the outer surfacghe viscous and Poynting

In Kapy# et al. (2011a) we started to apply the black body fluxes are much smaller, and are thus omitted in this figure.
boundary condition, Equation (13), that has previouslynbee The flux of kinetic energy is also very small in the rapid rota-
used in mean-field models with thermodynamicsiqiger tion regime considered here (see also Augustson et al. 2012)
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3.2. Dynamo excitation and large-scale magnetic fields

The azimuthally averaged toroidal magnetic fields from sets
A-D listed in Tables 1 and 2 are shown in Figures 4—7. The
full time evolution from the introduction of the seed magoet | .
field to the final saturated state is shown for each run. Note _ 0 260 400 600 800
that the magnitude of the seed field in terms of the equipar- 28 ¢ e K1
tition strength is different in each set so direct COmMparss0 g 4 — B, near the surface of the starat= 0.98 R as a function of
between different sets are not possible. We measure the avefatitude & 90° — 6) for Runs Al (top) and A2 (bottom). The white dotted
age growth rates over the kinematic stage, line denotes the equateo® — 6 = 0.

A = {(dIn Byps/dt), (32) (T = 3) and Reynolds# 20) number, but a somewhat lower
: ; P, Coriolis numbet (= 4.7). The transition to oscillatory solu-
and find that\ is greater for smaller stratification; se.e the tions thus occurs at a loweto in the models of Kpy# et al.
second column of Table 2 for = A/(u.msks). Comparing — (2010b). A possible explanation is that in the present model

Runs Al, B1, C1, and D2 with roughly comparable Reynolds g |ack a lower overshoot layer which could affect the domi-
and Coriolis numbers shows that the normalized growth rateant dynamo mode.

decreases monotonically from 0.084 in Run Al to just 0.003
in Run D2. Another striking feature is thatincreases by a

factor of nearly 20 from Run C1 to C2 whose only difference
is that the latter has a roughly two times higher Coriolis Aum
ber. It turns out that in all of the cases (Runs Al, A2, B1, B2,
C2, and E4) with the highest growth rates, a dynamo mod

In Set B Withl“f,o) = 5 the situation is similar: in Run B1
with Co = 8.1 there is a poleward mode near the equator with
a short cycle period which is visible from early times, seg Fi
ure 5. However, after aroun,,,.k; = 1200 there is a dom-
inating non-oscillatory mode which is especially clearighh
€latitudes. There are still hints of the poleward mode near th

equator. In Run B2 witlCo =~ 13.7, however, the poleward
that can be quasi-stationary (Runs Al and B1) or oscillator ;mode pre\/alls also at _Ia;te times. As in Run A2, the cycles

) q ¢ ary (Ru ) Matory ghow significant variability and hemispheric asymmetrye Th
with equatorward migration and a much longer cycle period runs in Sets A and B also show signs of non-axisymmetric

(Runs C2 and E4). ‘nests’. of convection (cf. Busse 2002; Brown et al. 2008) in
Table 2 shows that, even though the growth rates decreas?ne hydrodynamical and kinematic stages. Once the magnetic

dramatically with increasing stratification, many propEst ey hecomes dynamically important these modes either van-
of the saturated stages are similar. In particular the m@ftio ish or they are significantly damped

magnetic to kinetic energy does not seem to depend system-

‘ o F ; At (0) _
atically on stratification, but rather on the Coriolis numbe  Increasing the stratification further 19,” = 30 (Set C)
which varies only little between different runs. the dynamo solutions at lower rotation rat€'s, < 5, are still

In Figure 4 we show the azimuthally averaged toroidal mag- quasi-steady; see Figure 2 oagyk et al. (2012). However, a
netic field B4 near the surface of the computational domain watershed regarding the oscillatory modes at higheseems
(r = 0.98R) for two runs (Al and A2; see Table 1) with to have been reached so that the irregular poleward migratio

) . . ] seen in Sets A and B is replaced by more regular equator-
1Y = 2. We find that in Run A1 wittCo ~ 8.7 the mean b y g q

. JUE LT L ) ) ward patterns. In Run C1 witlo =~ 8.7 the poleward mi-
magnetic field is initially oscillatory with poleward proga  gration near the equator is visible also in the kinematigesta

tion of the activity belts. Atu,nsk ~ 400 the dynamo mode  \yhere the equatorward mode is not yet excited; see Figure 6.
changes to a quasi-steady configuration. In Run A2 a pole-The noleward mode near the equator is more prominent in the
ward mode persists throughout the simulation, although theearly stages of Run C2 witho ~ 14.7, but subdominant at
oscillation period is irregular and significant hemispbati '

asymmetry exists.This behavior is similar to Run A4 pre- 3 Note that the values dke andCo have been recalculated with the same
sented in Kpyk et al. (2010b) with comparable stratification definition ofu,ms as in the current paper.
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the difference in cycle frequency between early times wherfriquency is
similar to that of Run B2 (Figure 5) and late times.

late timgﬁ.
ForI',” = 100 (Set D) the general picture is similar to that

in Set C. Quasi-steady configurations at lower rotationsrate
change into equatorward migrating solutions at sufficientl
high values ofCo. We find this transition to occur between
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FIG. 7.— Same as Figure 4, but for Runs D1 (top) and D2 (bottom).

Co = 5 ands, similarly as inSet C, see Fig. 2 of (&pyk&

et al. 2012). For Set D the equatorward mode is visible for
both of its runs; se€igure 7. In Run D1 no poleward migra-
tion at low latitudes is seen in the kinematic stage. Also the
poleward migrating branch at high latitudes is missing & th
non-linear stage. Both of these features are presentin Run D
The apparently slower growth of the magnetic field in Run D1
is due to a two orders of magnitude lower seed magnetic field
than in Run D2.

3.3. Diagnostic stellar activity diagrams

To identify the possibility of different types of dynamos, i
is useful to classify them in diagrams relating their charac
teristic properties. In the geodynamo literature it hasobse
customary to consider the Elsasser number as a measure of
the magnetic energy. It correlates well wRhn (Christensen
& Aubert 2006), but this is partially explained by the fact
thatRm itself enters in the definition of the Elsasser number.
Geodynamo models are mostly dominated by a strong dipolar
component. Gastine et al. (2012) have shown that such solu-
tions fall on a branch that is distinct from the cyclic sobunts
studied here, and that the latter solutions become favoreel o
density stratification is large, and rotation sufficienthpid
so that large-scale non-axisymmetric fields become dorhinan
(see also Nelson et al. 2013). However, this type of analysis
not well suited for the present work, whelRen andCo vary
only little. Furthermore, these tools do not characteriee t
nature of magnetic cycles, which is the focus this section.

To connect our results with observations of magnetically
active stars we compute the ratio of cycle to rotation fre-
quencyweye/, Wherewey,. = 2m/Tey. is the cycle fre-
guency of magnetic energy afd,. its period. Plotting this
ratio as a function of the Coriolis number for stars exhibit-
ing chromospheric activity has shown that stars tend togrou
along inactive and active branches (Brandenburg et al.)1998
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and for higher Coriolis numbers along a super-active branch
(Saar & Brandenburg 1999). Six of our simulations (Runs A2,
B2, C1, C2, D1, and D2), excluding the runs in Set E (which
are very similar to each other and to Run C1), show cycles
and can thus be used in this analysis. We compute the cycle
frequency from the highest peak of a temporal Fourier trans-
formation of the time series faB, averaged over a latitude
strip £10° ... 30° near the surface. The results are shown in
Figure 8(a).

Three of the models, Runs C1, D1, and D2, fall on a branch
labelled ‘A?’ for active stars, while Run C2 might be sugges-
tive of the superactive stars of Saar & Brandenburg (1999),
labelled here §??". Runs A2 and B2 show irregular cycles
and group along the branch labellef?* for inactive stars.
The question marks on these labels in Figure 8(a) indicate
that the association with real branches is quite uncertaih a
somewhat premature, because there are too few modleéds.

cannot be sure that there are no models connecting the group

of Runs C1, D1, D2 with that of A2 and B2 through a single
line with a larger slope. Nevertheless, this plot allowsas t
see that, while the separation in the ratig. /€ is slightly

less for the two groups of runs compared with active and inac-
tive stars, their relative ordering in the value(@ is actually

the other way around. One would therefore not have referred
to Runs A2 and B2 as inactive just because thejt. /) ra-

tio agrees with that of inactive stars. In fact, thBif,.g / Exin

(a measure of stellar activity) ratios in Table 2 are typical
larger than for Runs C1, D1, D2.

As is visible from Figure 8(c), there is no clear relation be-
tweenCo and E\,../ Exin, Which is different from stars for
which there is a clear relation betwe€o (referred to as in-
verse Rossby number in that context) and stellar activig; s
Brandenburg et al. (1998) for details and references. Eurth
more, there are also no indications of branches in the griph o
Weye/Qo VErsusEy,s /Fiin; See Figure 8(b). Instead, there
might just be one group in it, possibly with a positive corre-
lation, i.e.,weyc /2o Might increase wittE,, . / Exin. Such a
possibility does indeed arise when considering the frequen
ratio versus the dimensional rotation rate d®let al. 2000).
However, as discussed by Brandenburg et al. (1998), a pos-
itive slope is not easily explained in the framework of stan-
dard mean-field dynamo theory, where the frequency ratio is
usually a decreasing function of normalized rotation rate a
activity parameter (Tobias 1998; Saar & Brandenburg 1999).

In conclusion, we reiterate that the quantity,./ is an
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important and robust property of cyclic dynamo models and FiG. 8.— Diagnostic diagrams from six runs which show cyclicviti (a)
its dependence on other properties of the model Should—thereRat'o of cycle and rotation frequencies versusCo. The dotted and dashed

fore be a useful characteristics that can be compared withy

made a first attempt in classifying model results in this way.

lines are given by; Co?i, where ther; correspond to those in Brandenburg

1 - t al. (1998) for active (labelled4?’) and inactive (Z?") stars, while the
other models and ultimately with actual stars. Here we havec; are used as fit parameters. The lat@P?’ indicates the possibility of

the superactive branch in Saar & Brandenburg (1999). (bpRétycle and

rotation frequencies versus magnetic to kinetic enéfgy,s / iy (C) Time
averagedmag / Exin Versuslog Co.

3.4. Differential rotation and meridional circulation

rotation by

Non-uniform rotation of the convection zone of the Sun is
an important ingredient in maintaining the large-scale mag
netic field. Furthermore, the sign of the radial gradient of
the mean angular velocity plays a crucial role in deciding
whether the dynamo wave propagates towards the pole or the
equator im—w mean-field models (e.g. Parker 1955a, 1987b).
In the following we use the local angular velocity defined as

Ag) _ ﬁeq: ﬁ‘bot
Qeq
A(G) _ Qeq: onle
Q Qeq )

(33)

(34)

Q = Qg + 1 /rsin 0. Azimuthally averaged rotation profiles whereQ., = Q(R,7/2) and Qyor = Q(ro, 7/2) are the
from the runs in Sets A to D are shown in Figure 9. The ro- angular velocities at the top and bottom at the equator, re-
tation profiles of Runs E1, E3, and E4 are very similar to that spectively, and2,q. = [Q(R, ) + Q(R, ™ — 6y)]/2. It has

of Run C1. We quantify the radial and latitudinal differexhti

long been recognized that dynamo-generated magnetic fields
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FIG. 10.— Meridional circulation in the northern hemisphere e ton-
vection zone of Run C1 (left panel) and Run D1 (right) shownexgors of
the mass flup(u., ug, 0), which is also averaged over a time span of around
250 turnover times in the saturated state. The black soleslindicate the
surface £ = R) and the bottom of the convection zone £ 0.7 R), and
the red solid line indicates the position of the inner tangstinder. Note,
that for Run D1 (right), the mass flux have been multiplied bycadiaof 5 to
emphasize the structure.

1983; Glatzmaier 1985, 1987). Indeed, magnetic fields affec
the turbulence that gives rise to Reynolds stress and turbu-
lent convective heat flue.g. Kitchatinov et al. 1994; &pyla

et al. 2004). Furthermore, the large-scale flows are directl
influenced by the Lorentz force when the magnetic field is
strong enough (e.g. Malkus & Proctor 1975). A magnetically

caused decrease mﬁ? has also been observed in LES mod-
els (e.g. Brun et al. 2004). Comparing the latitudinal diffe
ential rotation in Run B1 with that of the otherwise identi-
cal hydrodynamic Run A4 of Epyka et al. (2011a), we find

thatAgf) decreases only slightly from 0.15 to 0.14. IZQg)

the change is more dramatic from 0.079 to 0.034. The frac-
tion of kinetic energy contained in the differential rotetj
E,ot/ FExin, drops from 0.91 to 0.71. A similar decrease is
observed in Run C1 in comparison to its hydrodynamical par-

ent Run B4 of Kapyl et al. (2011a) Witmg) changing from

0.08 to 0,07 A7) from 0.066 to 0.047, and, / Eyiy drop-
ping from 0.58 to 0.44Similar changes have also been seenin
dynamos from forced turbulence in Cartesian domains (Bran-
denburg 2001), in addition to those from convective turbu-
lence in spherical shells (Brun et al. 2004).

In all cases in Figure 9, we see a rapidly spinning equa-
tor with a positive radial gradient d¢d. The latitudinal vari-
ation of angular velocity is however not always monotonic
and there can be local minima at mid-latitudes, as is seen for
example in Run C1. Similar features have been seen before
(see, e.g., Miesch et al. 2000agyk et al. 2011b) and might
be related to the lack of small-scale turbulence. Espgcall
larger stratification one would expect smaller-scale tlgntu
structures to emerge, but this means large Reynolds numbers
and thus requires sufficient resolution, which is not cutfyen
possible.

The amount of latitudinal differential rotation (here 089,

see Table 2) is clearly less than in the Sun Wh&[ﬁ? ~ 0.2
between the equator and latitugié® (e.g. Schou et al. 1998).

Furthermore,AS)) generally decreases within each set of

runs asCo increases, except for Runs D1 and D2 where the
value increases; see Table 2. However, in Run D1 the lower
Reynolds number possibly contributes to the weak differen-

can have an important effect on the angular velocity (Gilman tial rotation in comparison to Run D2 with comparaltle.
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The rotation profiles appear to be dominated by the Taylor-
Proudman balance except at very low latitudes where the
baroclinic term is significant, see Figure 9 of (Warneckd.et a

2013). In this companion paper, we show that an outer coro-

nal layer seems to favor a solar-like rotation, which shows 31.
even radially orientated contours of constant rotationchSu
‘spoke-like’ rotation profiles have so far been obtained/aml
mean-field models involving anisotropic heat transpom.(e. 0.
Brandenburg et al. 1992; Kitchatinov &Uliger 1995) or a
subadiabatic tachocline (Rempel 2005), and in purely hydro
dynamic LES models where a latitudinal entropy gradient is
enforced at the lower boundary (Miesch et al. 2006), or where
a stably stratified layer is included below the convectionezo
(Brun et al. 2011).

The meridional circulation is weak in all cases and typicall
shows multiple cells in radial direction. In Figure 10, wetpl
the mean mass flugg(a,,uy, 0), of the meridional circula-
tion for Runs C1 and D1. In Run C1 the circulation pattern is
mostly concentrated in the equatorial region outside therin
tangent cylinder, where we found a solar-like anti-clocdevi 60.
cell at low latitudes € 30°) in the upper third of the convec-
tion zone. There are additional cells deeper down and also at
higher latitudes. Only the cell near the surface seems te hav 0.
the same curvature as the surface, the other ones, in particu
lar the strong one above the inner tangent cylinder, seem to
be parallel to the rotation axis. This is similar to earlier r
sults by Kapyla et al. (2012) where the meridional circulation
pattern was shown in terms of the velocity. The circulation
pattern in Run D1 is qualitatively quite similar, but the ve-
locity is smaller by roughly a factor of five. Similar pattern
of multi-cellular meridional circulation have also beerese
in anelastic simulations using spherical harmonics (seg, e
Nelson et al. 2013) and in models with an outer coronal layer
(Warnecke et al. 2013). In addition, as we will show in the
next Section, the importance of meridional circulatiorarel 60.
tive to the turbulent magnetic diffusivity is rather low, igh
is another reason why it cannot play an important role in our

—29.

—58.

models. 0.
3.5. Estimates of local dynamo parameters _58.
To estimate the dynamo parameters related-&ffect, ra-
dial differential rotation, and meridional circulationgveon-
sider local ¢- andf-dependent) versions of dynamo numbers,
referred to as local dynamo parameters that are defined by
A Q A 3 rms A
Caq = “ ’ra o = 0 /ar( T) , Cu = Hmer T, (35)
o o o
wheredQ/dr is ther- andf-dependent radial gradient o,
Ar = R —ry is the thickness of the layer, ands a proxy of 66.
the a-effect (Pouquet et al. 1976)
a=-ir@a—7j b/p), (36) 0.
with 7 = anprHp/ums(r, 0) being the local convective ea

turnover time andvy;; T the mixing length parameter. We use
ampr = 5/3 in this work. We estimate the turbulent diffusiv-
ity by nyo = Tu2,.(r,0)/3. Furthermoreu™™s = \/u2 + uz
is the rms value of the meridional circulation.

The results for the local dynamo parameters are shown in
Figures 11-13. Generally, the valuesf are fairly large, Fic. 11.— Local dynamo parametes, from Sets A, B, C, and D.
and those ok, surprisingly small, suggesting that the dy-
namos might mainly be af? type. In the following, however,
we focus on relative changes between different runs. Isturn out that there is a weak tendency fQrto increase as a func-
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FIG. 12.— Local dynamo parametey, from Sets A, B, C, and D. We omit
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FIG. 13.— Local dynamo parametey; from Sets A, B, C, and D.
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2). In Set B, howeveg,, decreases by a third from Run B1 to
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B2. The spatial distribution af, becomes more concentrated
near the boundaries &5 increases.

We find that differential rotation is strongest near the equa
tor in all cases. Sets A and B have extended regions outside
the inner tangent cylinder and at low latitudes whegeis
large, but in all cases, is clearly smaller tham,. This is
surprising given the fact that the energy of the mean totoida
field is greater than that of the mean poloidal field by a sig-
nificant factor (seé”,,, andE;,, in Table 2) which would be
expected if differential rotation dominates over theffect
in maintaining the field. In Runs C1, C2, and Di, andcq
have comparable magnitudes whereas in RuntfiZ2maxi-
mum of cq is roughly twice that ok,. However, in these
cases the toroidal and poloidal field energies are roughty-co
parable (see Table 2For Set C (and especially for Run C2)
there are broad regions whetg is negative. In this con-
nection we recall that in the diagnostic diagrams (Figure 8)
C2 appears as an outlier and far away from titandZ?
branches. Furthermore, in the more strongly stratified mod-
els, c,, shows enhanced values at low latitudes. However, for
the most strongly stratified models this is only true of Run D2
which is slightly faster rotating than Run D1. This is int&re
ing in view of the fact that many mean-field dynamos produce
too strong fields at high latitudes, which is then ‘artifityial - _ _
reduced by an ad-hoc factor proportionalsta® § (Riidiger Teye7sin6Bye Y0/ Beq By/Beq
& Brandenburg 1995) or other such variants (Dikpati et al. r
2004; Pipin & Kosovichev 2011) far. We note that in local
convection simulations, the-effect has been found to peak
at mid-latitudes for rapid rotation @pyk et al. 2006a).

We find thatcy; is always small in comparison to both
andcq,. Note however that the range@f does increase as we
go from Set A to Set D. Figure 13 also shows the concentra-
tion of coherent meridional circulation cells in the equiato
regions with a multi-cell structure.

In flux transport dynamos;;; has values of several hun-
dreds (Kiker et al. 2001). This is a consequence of choos-
ing a small value of the turbulent magnetic diffusivity. laro
simulations, on the other hangl; is much smaller. This is a
consequence of faster turbulent motions, making the tartul
diffusivity large and therefore;; small. Whether or not this
also applies to more realistic models needs to be seen. 0o

T,.rsinB,, VQ/B,, B,/Beg

pol

100.0

—100.0

30.0

0.0

3.6. Phase relation and nature of the dynamo

The relative magnitudes of the estimated values,0énd
cq, and also the comparable amplitudesifand B 4, shown »*
already in Figure 4(a) of (Kpylk et al. 2012), strongly sug-
gest that the dynamos of this study are notéf) type, as Fic. 14.— Q effect, as quantified byleycrsin 0B, - V2, where
is Usua”y eXpeCtEd for the Sun. This can be motivated fur- Epol = (ET’§¢) (left panels), and the mean toroidal magnetic f@g
ther through direct inspection of thfe term in the equation  (right panels), normalized bige, from the saturated states of Runs C1 (up-
for the mean toroidal field. Following Schrinner et al. (2§12  Per panels) and D1 (lower panel). The data is averaged oeepttgitude

L= — . and approximately 60 convective turnover times in both cases.

we compare thé effect, rsin 0B - V2, with the mean
toroidal field. The results for Runs C1 and D1 are shown in o o
Figure 14, where we have scaled th¢erm by the magnetic  relation betweerB, andB; see Figure 15.
cycle period,T.y.. A fraction of this would be responsible Fora2Q dynamos, the phase relation betw@gnandB,, is
for the production of mean toroidal field for the next cycle. commonly used to determine the sign of the radial diffesgnti
For Run C1, the magnitude of this term is actually large com- rotation (Stix 1976; Yoshimura 1976). By contrast, the sign
pared withB,, and the two are clearly correlated at latitudes of « is determined by the sense of migration of the dynamo
below £35°, which is also where equatorward migration is wave. For negative radial shedt, andB,; are approximately
seen. For Run D1, however, no clear correlation is seen even, antiphase witfB, precedingB, by ~ 37 /4. For positive

at low latitudes. The possibility af?Q) type dynamo action . _ — . i —
remains therefore unclear, and especially for Run D1 it may 'adial shear3, and B, are approximately in phase with,

not be the dominant mechanism. To explore the possibility 1agging B, by ~ 7/4. In our simulations, radial shear is in-
that our dynamo is ofv? type, we consider now the phase deed positive, buB lags B, by a certain amount; see Fig-
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behavior for am2Q2 dynamo is shown in Figures 15(d) and

(e), whereB,; either precedes, by 7/4 or lagsB, by 3r/4.

In this case, we have used a Cartesian model with constant
3 constant shea§ = du,/dx = const, and periodic bound-

ariesin a domaif < z < L, where the critical dynamo num-

berisaSL3/nZ ~ 8r2. In this model, the Cartesian coordi-
\ nates(z, y, z) correspond tg—r, ¢, #), So positive (negative)

= values ofS correspond to negative (positive) radial angular

velocity gradients. Neither of the phase relations of these

= LB bl

dndlig

e o . o o8 e ' ‘ models agrees with those of the DNS.
Another hint pointing towards an? dynamo in Run C1
is, that the magnetic field is particular strong in the middle
of the convection zoneOB R < r < 0.9 R), from where
dynamo waves seem to propagate toward the surface and the
bottom of the convection zone; see Figure 3(a) apida et al.
=SSN ) = —~ =3 (2012). Even though there exists no tachocline at the bottom
05E "3 or a near-surface shear layer at the top of our convectiog,zon
722: 3 the Q-effect appears to be larger near the towards the bottom
-10F - - 4 E and top of the convection zone, see Figure 12. Therefore, an
° 5 Y 15 20 Q-effect would produce the magnetic field mainly at the bot-
10E _ S _ . tom and the top of the convection zone, which is not the case
05F (e, E in our simulation. In Run D1 the case is more clear because
0o a the Q-effect is weak except near the boundaries (Figure 12)
o N N and the toroidal field shows no correlation with it; see Fig-
0 5 10 15 20 ure 14. We therefore suggest that oscillatafydynamos of

¢ ki

- B the type found by Mitra et al. (2010) might explain the ori-
_Fic. 15.— Phase relations d§, (thick red lines) and3, (black dashed — gin of equatorward migrating dynamo waves in the spherical
L ) i, compared i resule of - wedge simulations of Koy et al. (2012). It also poss-
ative shear, respectively. The amplitu&es have béen relstmlenity. Note E!ehﬂ?att.tthés mgc?znltsr? Sxplams t.he pOIqu[rd ml.%ratlon at
that only thea® dynamo has approximately the phase relation seen in the 19 a_' u 'es, ut detaile comparlson_s mus await a grope
simulations. determination ofv effect and turbulent diffusivity tensors. A

first step towards this has recently been attempted by Racine

ures 15(a,b). This cannot be explained by dynamo €t al. (2011) who estimated the tensor components by
where (for positive radial sheaB; precedes3, by /4 correlating the electromotive force with the mean magnetic
Another possibility are oscilla’foryQ dynam:)s of thé type field using singular value decomposition. These resultewer

A - . . applied in mean-field models of Simard et al. (2013), in an
found recently by Mitra et al. (2010) using direct numeri- effort to explain the dynamos seen by Ghizaru et al. (2010).

cal simulations of forced turbulence in a spherical wedge. However, this analysis is flawed in the sense that there is no

Those models have also been used been used to study the gfz,y 14 separate the diffusive part of the electromotive dorc
fects of an outer coronal layer to shed magnetic helicityrtWa from the one related to the effect. This has been shown to

necke et al. 2011). Oscillatory’> dynamos were first studied lead to erroneous estimates @K apyE

. X - pyl et al. 2010a). The
blygg?ryshnlkolva %hShukurov (1?]87% anob%e:_l&”BrEueL only reliable way to compute the turbulent diffusion tenisor
( ); see also the monograph ofidger olierbac currently possible with the test-field method (Schrinnealet

(2004). Such solutions have also been studied in connectio : .
with the geodynamo, where the effect might change sign %225, 2007). We postpone such analysis to a future publica

in the middle of the outer liquid iron core (Stefani & Gerbeth o
2003). By contrast, in the simulations of Mitra et al. (2010) 3.7. Effect of domain size

and Warnecke et al. (2011},changes sign about the equator.  \ye recently reported equatorward migration of activity
They used a perfect conductor boundary condition at high lat pejts in a spherical wedge simulationZpyk et al. 2012).
tudes and found equatorward migrating dynamo waves. WithThere we gave results from simulations withpeextent of
a vacuum condition, on the other hand, mean-field simula- - /5 However, at large values of the Coriolis number, the
tions have predicted poleward migration (Brandenburg et al effect becomes sufficiently anisotropic and differentitiar
2009). Those simulations were done in Cartesian geometrysion weak so that non-axisymmetric solutions become possi-
where(z,y, z) can be identified withr, ¢, —¢). Looking at  ple: see Moss & Brandenburg (1995) for corresponding mean-
their Figure 2, it is clear thaB, lags B, by 7/2. field models with dominant: = 1 modes in the limit of rapid
We have verified the phase relations of the Cartesian modekotation. To allow for such modes, we now choosg-extent
of (Brandenburg et al. 2009) with a one-dimensional spher-of up to 27 for the same model as in &oy& et al. 2012).
ical modef, wherea = aqcosf has been assumed, which In the present case, we find that {0 ~ 7.8 it is possible
changes sign about the equatorfat= 7/2. The dynamo  that non-axisymmetric dynamo modes of low azimuthal or-
number for the marginally excited casedgR/nwo ~ 23.63 der (n = 1 or 2) can be dominant. This was not possible
and, as expected3, lags B,. by 7/2; see Figure 15(c). The in the simulations of kipyk et al. (2012). The same applies
amplitudes have been rescaled to unity. The corresponding0 non-axisymmetric modes excited in hydrodynamic convec-
tion (e.g. Busse 2002; Brown et al. 200& /& et al. 2011b;
4 http://www.nordita.orgt brandenb/teach/PencilCode/MeanFieldSpherical Atrgiustson et al. 2012).
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FiG. 16.— Radial velocityu, (top row) and azimuthal magnetic field,, (bottom) near the surface of the star= 0.98 R in Mollweide projection from
Runs E1 (left), E2, E3, and E4 (right). See http://youtwBbBsAtN2Fgs for an animation of the magnetic field in Run E4.

0-50 ! W ) T ] oo s metric part still exhibits an oscillatory mode with equatard
60 . ‘ ‘ ‘ . S . . -
oy ! ‘ migration in all runs in Set EThe most prominent exception
40 i & . is visible in Figure 17, where we show the butterfly diagram
20 'ww, % Wl of the m = 0 contribution for Run E4. Clearly, equator-
| ward migratory events are now rare and superimposed on a

i background of small-scale, high-frequency poleward migra
“MW w\{u\h 1}.‘“\‘\“5 (I ‘ tory field.

=}
=
S
90°-0
(@]

-20
We compute power spectra of the azimuthal component of

the magnetic field from the Run E4 over thre@ latitude
strips from each hemisphere, centered around latittss,

‘ L +45° and £65°. The results for the three lowest degrees
3000 4000 5000 m = 0,1,2 are shown in Figure 18. We find that at low

—40 iy
A
o W “ a!f‘ :M “"ﬂ»ﬁw"‘

0 1000 2000

—0.50

By/Buy £ thema (+£25°) and high (65°) latitudes the axisymmetrie:i{ = 0)
FiG. 17.— Same as Figure 4 but for Run E4. mode begins to dominate after arouh@D0 turnover times

and shows a cyclic pattern consistent with that seen in the

We test the robustness of the equatorward migration bytime-latitude diagram of the azimuthally averaged fieldteAf
performing runs withgy = /4,7 /2, x, and2r with oth- ?furmskf ~ 1600, how_ever, then = 1_m_0de t_)ecomes stronger
erwise identical parameters. We find that the same dynamd" the southern hemisphere, coinciding with the growth ef th
mode producing equatorward migration is ultimately extite ™ = 1 mode at mid-latitudes45°) where it dominates al-
in all of these runs. The only qualitatively different run is ready earlier in both hemispheres. This is in rough agree-
that with ¢, = 27 where the poleward mode near the equa- Ment with some observational results of rapid rotatorscivhi
tor grows much faster than in the other cases. However, afte/SNOW the most prominent non-axisymmetric temperature (e.g
turmske ~ 1500 the equatorward mode takes over similarly Hackman et al. 2001; Korhonen et al. 2007; Lindborg et al.
as in the runs with a smallef. 2011) and magnetic structures (Kochukhov et al. 2013) at the

The velocity field shows no marked evidence of low-degree atitudinal range around 6680°, while the equatorial and
non-axisymmetric constituents, but there are indicatiohs ~POlar regions are more axisymmetric; some temperature in-
m = 1 structures in the instantaneous magnetic field: see Fig-Versions even show almost completely axisymmetric distrib
ure 16, see also http://lyoutu.be/u55sAtN2Fgs for a movie of ions in the polar regions and rings of azimuthal field at low
the toroidal magnetic field. This is also reflected by the-frac latitudes (e.g. Donati et al. 2003). The strength of theyamis
tion of the axisymmetric part of the total magnetic enereg s metric versus the non-axisymmetric part in such objects has
the 5th and 6th columns of Table 2. We find that the energy also been reported to vary over time with a time scale of a few
of the mean toroidal field decreases monotonically wiagn  Years (Kochukhov et al. 2013).
is increased so that there is a factor of thre€Eip, / Emag

between the extreme cases of Runs E1 and E4. The axisym- 3.8. Iradiance variations
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FIG. 18.— Energies of then = 0 (black lines), 1 (red), and 2 (blue) modes of the azimuthal miégfield as functions of time near the surface of the star
(r = 0.98 R) in Run E4. The data is averaged ouér latitude strips centered at latitude8° — 0 = +25° (left panels),£45° (middle), andt65° (right)
and normalized by the total energy within each stflipe top and bottom columns refer to negative and positiveitigs, respectively.

In contrast to the earlier used constant temperature condi-see the last two panels of Figure 19. This is relatively large
tion, the black body boundary condition (13) allows the tem- compared with earlier work using mean-field models (Bran-
perature to varyat the surface of the star and thus enables denburg et al. 1992), which showed remarkably little retti
the study of irradianceariations due to the magnetic cycle variation of the order ofl0=2 in the bulk of the convection
(Spruit 2000). Such variations might even be responsible fo zone and even less at the surface. This difference in the mod-
driving torsional oscillations in the Sun (Spruit 2003; Rem ulation amplitude is probably related to the importanceatf |
pel 2006). In Figure 19 we compare time—latitude surface itudinal variations that were also present in the mean-field
representationsr(= R) of azimuthally averaged tempera- model of Brandenburg et al. (1992) and referred to as ther-
ture variations relative to its temporal averagel'(6,t) = mal shadows (Parker 1987a).

T(0,t) — (T)+(0), with those of the azimuthally averaged ra-

dial magnetic field3,.(6, ), for Run C1 in the saturated state 4. CONCLUSIONS

of the dynamo. We also show scatter plotsdf /T versus We have stqdied the effect_s of d(_ansity stratifi.cation on the
B,/ Beq at£70° and-£30° latitude to demonstrate that there dynamo solutions found in simulations of rotating turbtilen
are many instances where enhanced surface magneticyactivitcOnvection in spherical wedge geometry for four values of

leads to a local decrease in surface temperature. We see tha hich is the ratio of the densities at the bottom and at the sur
ace of the convection zone. In addition, we vary the rotatio

AT/T ~ fQTEz / ng (37) rate for each value df ,. For all stratifications we find quasi-
steady large-scale dynamos for lower rotation and osgiljat

with ‘quenching’ coefficient€)r of ~ 0.14 at high latitudes  solutions when rotation is rapid enough. The transitiomfro
and~ 0.33 at low latitudes. However, there is also consid- quasi-steady to oscillatory modes seems to occur at a lower
erable scatter, even though our data is already longitligina  Co for higher stratification. Furthermore, for low valuesof
averaged. Without such averaging, the correlation betweerthe oscillatory solutions show only poleward propagatién o
individual structures on the surface would be rather pébe the activity belts whereas at highEy an equatorward branch
temperature modulation is best seen near the poles; see Figappears at low latitudes.
ure 19. This could be a consequence of a strong radial mag- The equatorward branch was first noticed bgpi et al.
netic field that builds up some 50-100 turnover times earlier (2012) using a wedge with, = 90° longitude extent. Here
and thus precedes the temperature signal. A weaker modulawe test the robustness of this result by varyifigfrom 45°
tion is also seen near the equator. The peak valuésiofiT to full 360°. We find a very similar pattern of the axisym-
at high latitudes are 15—-20 per cent of the surface temgeratu metric part of the field in all cases. However, the energy
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FiG. 19.— Top panel: azimuthally averaged temperature fluctosioor-
malized with their temporal average\7 /T, at the surface as function
of time. Second panel: azimuthally averaged radial field atstiméace,

Br/Beq, as function of time. Lower panels: scatter plots/oT'/T ver-

susB, /Beq at470° and+30° latitude. Here, solid (dashed) red lines and

filled (open) symbols refer to northern (southern) latitud€ke slopes are
Q1 ~ 0.14 and 0.33 at-70 and+30 latitude. All plots show quantities at
the saturated stage of Run C1.

The ratio between cycle to rotation frequeney,. /<o, is
argued to be an important non-dimensional output parameter
of a cyclic dynamo. For the Sun and other relatively inac-
tive stars, this ratio is around 0.01, while for the more ac-
tive stars it is around 0.002. For our models we find values
in the range 0.002-0.01, but for most of the runs it is around
0.004. Although itis premature to make detailed compagson
with other stars and even the Sun, it is important to empbasiz
that kinematic mean-field dynamos produce the correct cycle
frequency only for values of the turbulent magnetic diffusi
ity that are at least 10 times smaller than what is suggested
by standard estimates (Choudhuri 1990). In our case, these
longer cycle periods (or smaller cycle frequencies) might b
a result of nonlinearity as they are only obtained in the-satu
rated regime of the dynamo. The detailed reason for this is
unclear, but it has been speculated that it is connectedawith
slow magnetic helicity evolution (Brandenburg 2006 the
other hand, magnetic helicity effects are expected to becom
important only at values dRm between 100 and 1000 (Del
Sordo et al. 2013), which is much larger than what has been
reached in the present work Equally unclear is the reason
for equatorward migration, which, as we have seen, might be
a consequence of nonlinearity, too. It will therefore beamp
tant to provide an accurate determination of all the relevan
turbulent transport coefficientsThe explanation favored in
the present paper is that the dynamo wave is that expected for
an oscillatorya? dynamo caused by the change of sigroof
about the equator. This is evidenced by our finding gt

lags B, by aboutr /2, which cannot be explained by aifQ
dynamo.
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tion (see Figure 16). Such field configurations have been ob-Council grant 621-2007-4064, and the European Research
served in rapidly rotating late-type stars (see e.g. Kobbuk  Council under the AstroDyn Research Project 227952 are
et al. 2013) and our simulation is perhaps the first one thatacknowledged as well as the HPC-Europa?2 project, funded
reproduces such features. We are currently investigatiag t by the European Commission - DG Research in the Seventh
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