Gravitational waves from hydrodynamic instabilities

April 24, 2021, Revision: 1.21

isothermal equation of state can be written in the is given by form

$$\frac{\partial \boldsymbol{u}}{\partial t} = -\boldsymbol{\nabla} \left(h + \frac{1}{2} \boldsymbol{u}^2 \right) - \boldsymbol{\omega} \times \boldsymbol{u} + \boldsymbol{f} + \boldsymbol{F}_{\text{visc}}, \quad (1)$$

$$\frac{\partial h}{\partial t} = -\boldsymbol{u} \cdot \boldsymbol{\nabla} h - c_{\rm s}^2 \boldsymbol{\nabla} \cdot \boldsymbol{u}, \qquad (2)$$

where

$$\boldsymbol{F}_{\text{visc}} = \nu \left(\nabla \boldsymbol{u}^2 + \boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u} + 2 \boldsymbol{\mathsf{S}} \cdot \boldsymbol{\nabla} \ln \rho \right) \qquad (3)$$

is the viscous force.

Stationary forcing 1

We adopt a generalized ABC-flow forcing

$$\boldsymbol{f} = \frac{f_0}{\mathcal{N}} \begin{pmatrix} C\sin kz + \sigma B\cos ky\\ A\sin kx + \sigma C\cos kz\\ B\sin ky + \sigma A\cos kx \end{pmatrix}$$
(4)

where $\mathcal{N}^2 = (A^2 + B^2 + C^2)(1 + \sigma^2)/2$ is a normalization constant and $f_0 = \langle f^2 \rangle^{1/2}$ is the rms value of the forcing. We define the Reynolds number as

$$\operatorname{Re} = u_{\mathrm{rms}} / \nu k_{\mathrm{f}} \tag{5}$$

where $k_{\rm f} = \sqrt{3}k$ is the effective forcing wavenumber. For $\sigma = 1$, we have the standard ABC flow, but we also allow for other values with $-1 < \sigma < 1$. The flow has positive (negative) helicity for $\sigma > 0$ (< 0) and is fully helical for $\sigma = \pm 1$. For $\sigma = 0$, we have the Archontis flow with zero helicity. In particular, for A = 0 and B = C = 0, we have a Beltrami flow when $\sigma = \pm 1$ and the Kolmogorov flow for $\sigma = 0$.

In the laminar phase, at small values of Re, the flow is fully helical, i.e., the vorticity $\boldsymbol{\omega} = \boldsymbol{\nabla} \times \boldsymbol{u}$ is parallel to \boldsymbol{u} with $\boldsymbol{\omega} = k\boldsymbol{u}$. Therefore, $\boldsymbol{\omega} \times \boldsymbol{u} = \boldsymbol{0}$, so the only nonlinearity comes from the dynamical pressure term, $u^2/2$. However, for the ABC flow forcing, $u^2 = \text{const.}$ Therefore, saturation occurs

The compressible Navier-Stokes equation with an only when $u_{\rm rms} = f_0 / \nu k_{\rm f}^2$. The temporal evolution

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{\mathrm{rms}} = f_0 - \nu k_{\mathrm{f}}^2 u_{\mathrm{rms}} \quad \text{(laminar)}. \tag{6}$$

The solution is given by

$$u_{\rm rms}(t) = f_0 \left(1 - e^{-\nu k_{\rm f}^2 t} \right).$$
 (7)

Figure 1: Total kinetic energy (black), kinetic energy in the xy-averaged velocity (red), and kinetic energy in the z-averaged velocity (blue). (paver)

Table 1:

Run	ν	f_0	Re
А	5×10^{-2}	0.1	25
В	10^{-3}	2×10^{-3}	100
В	10^{-3}	$5 imes 10^{-4}$	100
С	$5 imes 10^{-4}$	$5 imes 10^{-4}$	25
С	5×10^{-4}	2×10^{-4}	25
С	2×10^{-4}	2×10^{-4}	25
С	5×10^{-4}	5×10^{-4}	25

Table 2:

Run	ν	f_0	Re	t_1	$\mathcal{E}_{\mathrm{K}}^{\mathrm{max}}$	$\mathcal{E}_{\mathrm{GW}}^{\mathrm{max}}$	$(oldsymbol{\omega} imes oldsymbol{u})_{ m rms}^{ m max}$	$(oldsymbol{ abla}\cdotoldsymbol{u})^2_{ ext{max}}$
Е	2×10^{-4}	2×10^{-4}	—	1121	0.017	9.0×10^{-13}	0.109	6.0×10^{-5}
В	1×10^{-3}	5×10^{-4}	_	894	0.037	2.1×10^{-11}	0.177	7.0×10^{-4}
Η	$5 imes 10^{-4}$	9×10^{-4}	_	553	0.066	$1.3 imes 10^{-9}$	0.372	$7.8 imes 10^{-3}$
Ι	$5 imes 10^{-4}$	8×10^{-4}	_	581	0.059	$5.9 imes 10^{-10}$	0.318	$3.7 imes 10^{-3}$
F	$5 imes 10^{-4}$	$7 imes 10^{-4}$	_	638	0.054	$6.0 imes 10^{-10}$	0.259	$1.9 imes 10^{-3}$
С	5×10^{-4}	5×10^{-4}	_	783	0.041	$9.9 imes 10^{-11}$	0.215	$7.6 imes 10^{-4}$
D	5×10^{-4}	2×10^{-4}	_	1348	0.017	5.0×10^{-13}	0.070	4.4×10^{-5}
Κ	5×10^{-4}	1.4×10^{-4}	_	1653	0.0112	1.3×10^{-13}	0.047	1.1×10^{-5}
G	5×10^{-4}	1×10^{-4}	_	2098	0.0076	2.1×10^{-14}	0.026	3.2×10^{-6}

Figure 2: Evolution of $\langle \omega^2 u^2 \rangle$ (black) and it contributions $\langle (\omega \cdot u)^2 \rangle$ (red) and $\langle (\omega \times u)^2 \rangle$ (blue). (phel_256e)

References

Podvigina, O., & Pouquet, A. 1994, Phys. D, 75, 471

A Green's function

Monochromatic

$$\ddot{h} + k^2 h = T \tag{8}$$

Solution

$$h(t) = k^{-1} \int_0^t \sin k(t - t') T(t') \, \mathrm{d}t' \qquad (9)$$

The first derivative is

$$\dot{h}(t) = \int_0^t \cos k(t - t') T(t') \,\mathrm{d}t' \tag{10}$$

Figure 3: Results

where the derivative on the integral boundary gives zero, because the resulting term is proportional to Second derivative

$$\ddot{h}(t) = T(t) - k \int_0^t \sin k(t - t') T(t') \, \mathrm{d}t' \qquad (11)$$

Figure 5: Dependence on noise for the Kolmogorov flow.

Figure 6: Results for the Kolmogov flow.

Let us now assume that T(t) is given by u^2 using Eq. (7), so that

$$h(t) = \frac{f_0^2}{k} \int_0^t \sin k(t - t') \left(1 - e^{-2\nu k_{\rm f}^2 t'}\right) \,\mathrm{d}t' \quad (12)$$

Figure 7: Time dependence of instability on Gaussian noise (kinetic drive)

Figure 8: Error dependence on time step (kinetic drive)

$$\dot{h}(t) = f_0^2 \int_0^t \cos k(t - t') \left(1 - e^{-2\nu k_{\rm f}^2 t'}\right) \,\mathrm{d}t' \quad (13)$$

Using Ptolemy's identities,

$$\sin k(t - t') = \sin kt \cos kt' - \cos kt \sin kt', \quad (14)$$

$$\cos k(t - t') = \cos kt \cos kt' - \sin kt \sin kt', \quad (15)$$

and the integrals

$$\int_{0}^{t} \cos kt' e^{-2\nu k_{\rm f}^2 t'} \,\mathrm{d}t' = \frac{e^{-2\nu k_{\rm f}^2 t}}{\sqrt{\omega^2 + 4\nu^2 k_{\rm f}^4}} \cos(\omega t - \phi) \tag{16}$$

$$\int_{0}^{t} \sin kt' e^{-2\nu k_{\rm f}^2 t'} \,\mathrm{d}t' = \frac{e^{-2\nu k_{\rm f}^2 t}}{\sqrt{\omega^2 + 4\nu^2 k_{\rm f}^4}} \sin(\omega t - \phi) \tag{17}$$

where $\phi = -1/(1 + \omega^2/4\nu^2 k_{\rm f}^4)^{1/2}$. Using again Ptolemy's identities, we find

$$h(t) = \frac{f_0^2}{k} \left(1 - \frac{e^{-2\nu k_{\rm f}^2 t}}{\sqrt{\omega^2 + 4\nu^2 k_{\rm f}^4}} \sin \phi) \right), \qquad (18)$$

$$\dot{h}(t) = -\frac{f_0^2}{k} \frac{e^{-2\nu k_{\rm f}^2 t}}{\sqrt{\omega^2 + 4\nu^2 k_{\rm f}^4}} \cos\phi.$$
(19)

Figure 9: Evolution of h (solid black and dashed blue) and \dot{h} (solid yellow and dashed red) for $\gamma = 0.1$, $T_0 = 0.1$, and k = 1. The solid lines indicate the numerical solution and the dashed lines indicate the analytic solution.

B Exponential growth

Let us now assume that T(t) is given by $T_0(k) e^{\gamma t}$, so that

$$h(t) = \frac{T_0(k)}{k} \int_0^t \sin k(t - t') e^{\gamma t'} dt'$$
 (20)

Using $\sin \phi = (e^{i\phi} - e^{-i\phi})/2i$, we have

$$h(t) = \frac{T_0(k)}{2\mathrm{i}k} \int_0^t \left[e^{(\gamma - \mathrm{i}k)t' + \mathrm{i}kt} - e^{(\gamma + \mathrm{i}k)t' - \mathrm{i}kt} \right] \mathrm{d}t'$$
(21)

Integrating between the two boundaries yields

$$h(t) = \frac{T_0(k)}{2ik} \left[\frac{e^{\gamma t} - e^{ikt}}{\gamma - ik} - \frac{e^{\gamma t} - e^{-ikt}}{\gamma + ik} \right]$$
(22)

Expanding this yields

$$h(t) = \frac{T_0(k)}{2ik(\gamma^2 + k^2)} \Big[(\gamma + ik)(e^{\gamma t} - e^{ikt}) - (\gamma - ik)(e^{\gamma t} - e^{-ikt}) \Big]$$
(23)

or

$$h(t) = \frac{T_0(k)}{2ik(\gamma^2 + k^2)} \Big[\gamma(e^{\gamma t} - e^{ikt}) + ik(e^{\gamma t} - e^{ikt}) - \gamma(e^{\gamma t} - e^{-ikt}) + ik(e^{\gamma t} - e^{-ikt}) \Big]$$
(24)

or

$$h(t) = \frac{T_0(k)}{2ik(\gamma^2 + k^2)} \Big[-\gamma(e^{ikt} - e^{-ikt}) + 2ike^{\gamma t} \Big]$$

$$-\mathrm{i}k(e^{\mathrm{i}kt} + e^{-\mathrm{i}kt})\Big] (25)$$

or

$$h(t) = \frac{T_0(k)}{k(\gamma^2 + k^2)} \left(-\gamma \sin kt + ke^{\gamma t} - k\cos kt\right)$$
(26)

and therefore

$$h(t) = \frac{T_0(k)}{\gamma^2 + k^2} \left(e^{\gamma t} - \cos kt - \frac{\gamma}{k} \sin kt \right)$$
(27)

with the derivative being

$$\dot{h}(t) = \frac{T_0(k)}{\gamma^2 + k^2} \left[\gamma \left(e^{\gamma t} - \cos kt \right) + k \sin kt \right] \quad (28)$$

Delta correlated $T(k) \sim \delta(k)$ leads to $\operatorname{Sp}(T) \sim k^2$, and $\delta(k)/k$ leads to $\operatorname{Sp}(T) \sim k^{-2}$. In simulations with chiral magnetic effect, we have $\gamma = \eta \mu_0^2$, so the critical k is $k \sim \eta \mu_0^2/c$.

Figure 10: Solid line: last time, dotted lines: last 20 times, dashed lines: early times during growth phase, dashed-dotted lines: early decay phase.

C Numerical solution

Figure 10 shows a numerical solution for an initial spectrum of the source $\propto k^4/[1 + (k/k_{\rm f})^6]$, where $k_{\rm f} = 20$ was chosen. The time evolution of the source was T = t for 0 < t < 1 and $1/[1 + (t-1)/\tau]^2$ for t > 1.

\$Header: /var/cvs/brandenb/tex/yutong/sound/notes.tex,v 1.21 2021/04/24 14:03:22 brandenb Exp \$

Figure 4: Results