Gravitational waves from hydrodynamic instabilities

April 24, 2021, Revision: 1.21

The compressible Navier-Stokes equation with an isothermal equation of state can be written in the form

$$
\begin{gather*}
\frac{\partial \boldsymbol{u}}{\partial t}=-\boldsymbol{\nabla}\left(h+\frac{1}{2} \boldsymbol{u}^{2}\right)-\boldsymbol{\omega} \times \boldsymbol{u}+\boldsymbol{f}+\boldsymbol{F}_{\mathrm{visc}} \tag{1}\\
\frac{\partial h}{\partial t}=-\boldsymbol{u} \cdot \boldsymbol{\nabla} h-c_{\mathrm{s}}^{2} \boldsymbol{\nabla} \cdot \boldsymbol{u} \tag{2}
\end{gather*}
$$

where

$$
\begin{equation*}
\boldsymbol{F}_{\mathrm{visc}}=\nu\left(\nabla \boldsymbol{u}^{2}+\boldsymbol{\nabla} \boldsymbol{\nabla} \cdot \boldsymbol{u}+2 \mathbf{S} \cdot \boldsymbol{\nabla} \ln \rho\right) \tag{3}
\end{equation*}
$$

is the viscous force.

1 Stationary forcing

We adopt a generalized ABC-flow forcing

$$
\boldsymbol{f}=\frac{f_{0}}{\mathcal{N}}\left(\begin{array}{l}
C \sin k z+\sigma B \cos k y \tag{4}\\
A \sin k x+\sigma C \cos k z \\
B \sin k y+\sigma A \cos k x
\end{array}\right)
$$

where $\mathcal{N}^{2}=\left(A^{2}+B^{2}+C^{2}\right)\left(1+\sigma^{2}\right) / 2$ is a normalization constant and $f_{0}=\left\langle\boldsymbol{f}^{2}\right\rangle^{1 / 2}$ is the rms value of the forcing. We define the Reynolds number as

$$
\begin{equation*}
\operatorname{Re}=u_{\mathrm{rms}} / \nu k_{\mathrm{f}} \tag{5}
\end{equation*}
$$

where $k_{\mathrm{f}}=\sqrt{3} k$ is the effective forcing wavenumber. For $\sigma=1$, we have the standard ABC flow, but we also allow for other values with $-1 \leq \sigma \leq 1$. The flow has positive (negative) helicity for $\sigma>0(<0)$ and is fully helical for $\sigma= \pm 1$. For $\sigma=0$, we have the Archontis flow with zero helicity. In particular, for $A=0$ and $B=C=0$, we have a Beltrami flow when $\sigma= \pm 1$ and the Kolmogorov flow for $\sigma=0$.

In the laminar phase, at small values of Re, the flow is fully helical, i.e., the vorticity $\boldsymbol{\omega}=\boldsymbol{\nabla} \times \boldsymbol{u}$ is parallel to \boldsymbol{u} with $\boldsymbol{\omega}=k \boldsymbol{u}$. Therefore, $\boldsymbol{\omega} \times \boldsymbol{u}=\mathbf{0}$, so the only nonlinearity comes from the dynamical pressure term, $\boldsymbol{u}^{2} / 2$. However, for the ABC flow forcing, $\boldsymbol{u}^{2}=$ const. Therefore, saturation occurs
only when $u_{\mathrm{rms}}=f_{0} / \nu k_{\mathrm{f}}^{2}$. The temporal evolution is given by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} u_{\mathrm{rms}}=f_{0}-\nu k_{\mathrm{f}}^{2} u_{\mathrm{rms}} \quad \text { (laminar). } \tag{6}
\end{equation*}
$$

The solution is given by

$$
\begin{equation*}
u_{\mathrm{rms}}(t)=f_{0}\left(1-e^{-\nu k_{\mathrm{f}}^{2} t}\right) . \tag{7}
\end{equation*}
$$

Figure 1: Total kinetic energy (black), kinetic energy in the $x y$-averaged velocity (red), and kinetic energy in the z-averaged velocity (blue). (paver)

Table 1:

Run	ν	f_{0}	Re
A	5×10^{-2}	0.1	25
B	10^{-3}	2×10^{-3}	100
B	10^{-3}	5×10^{-4}	100
C	5×10^{-4}	5×10^{-4}	25
C	5×10^{-4}	2×10^{-4}	25
C	2×10^{-4}	2×10^{-4}	25
C	5×10^{-4}	5×10^{-4}	25

Table 2:

Run	ν	f_{0}	Re	t_{1}	$\mathcal{E}_{\mathrm{K}}^{\max }$	$\mathcal{E}_{\mathrm{GW}}^{\max }$	$(\boldsymbol{\omega} \times \boldsymbol{u})_{\mathrm{rms}}^{\max }$	$(\boldsymbol{\nabla} \cdot \boldsymbol{u})_{\max }^{2}$
E	2×10^{-4}	2×10^{-4}	-	1121	0.017	9.0×10^{-13}	0.109	6.0×10^{-5}
B	1×10^{-3}	5×10^{-4}	-	894	0.037	2.1×10^{-11}	0.177	7.0×10^{-4}
H	5×10^{-4}	9×10^{-4}	-	553	0.066	1.3×10^{-9}	0.372	7.8×10^{-3}
I	5×10^{-4}	8×10^{-4}	-	581	0.059	5.9×10^{-10}	0.318	3.7×10^{-3}
F	5×10^{-4}	7×10^{-4}	-	638	0.054	6.0×10^{-10}	0.259	1.9×10^{-3}
C	5×10^{-4}	5×10^{-4}	-	783	0.041	9.9×10^{-11}	0.215	7.6×10^{-4}
D	5×10^{-4}	2×10^{-4}	-	1348	0.017	5.0×10^{-13}	0.070	4.4×10^{-5}
K	5×10^{-4}	1.4×10^{-4}	-	1653	0.0112	1.3×10^{-13}	0.047	1.1×10^{-5}
G	5×10^{-4}	1×10^{-4}	-	2098	0.0076	2.1×10^{-14}	0.026	3.2×10^{-6}

Figure 2: Evolution of $\left\langle\boldsymbol{\omega}^{2} \boldsymbol{u}^{2}\right\rangle$ (black) and it contributions $\left\langle(\boldsymbol{\omega} \cdot \boldsymbol{u})^{2}\right\rangle$ (red) and $\left\langle(\boldsymbol{\omega} \times \boldsymbol{u})^{2}\right\rangle$ (blue). (phel_256e)

References

Podvigina, O., \& Pouquet, A. 1994, Phys. D, 75, 471

A Green's function

Monochromatic

$$
\begin{equation*}
\ddot{h}+k^{2} h=T \tag{8}
\end{equation*}
$$

Solution

$$
\begin{equation*}
h(t)=k^{-1} \int_{0}^{t} \sin k\left(t-t^{\prime}\right) T\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{9}
\end{equation*}
$$

The first derivative is

$$
\begin{equation*}
\dot{h}(t)=\int_{0}^{t} \cos k\left(t-t^{\prime}\right) T\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\ddot{h}(t)=T(t)-k \int_{0}^{t} \sin k\left(t-t^{\prime}\right) T\left(t^{\prime}\right) \mathrm{d} t^{\prime} \tag{11}
\end{equation*}
$$

Figure 5: Dependence on noise for the Kolmogorov flow.

Figure 6: Results for the Kolmogov flow.

Let us now assume that $T(t)$ is given by \boldsymbol{u}^{2} using Eq. (7), so that

$$
\begin{equation*}
h(t)=\frac{f_{0}^{2}}{k} \int_{0}^{t} \sin k\left(t-t^{\prime}\right)\left(1-e^{-2 \nu k_{\mathrm{f}}^{2} t^{\prime}}\right) \mathrm{d} t^{\prime} \tag{12}
\end{equation*}
$$

Figure 7: Time dependence of instability on Gaussian noise (kinetic drive)

Figure 8: Error dependence on time step (kinetic drive)

$$
\begin{equation*}
\dot{h}(t)=f_{0}^{2} \int_{0}^{t} \cos k\left(t-t^{\prime}\right)\left(1-e^{-2 \nu k_{\mathrm{f}}^{2} t^{\prime}}\right) \mathrm{d} t^{\prime} \tag{13}
\end{equation*}
$$

Using Ptolemy's identities,

$$
\begin{align*}
& \sin k\left(t-t^{\prime}\right)=\sin k t \cos k t^{\prime}-\cos k t \sin k t^{\prime} \tag{14}\\
& \cos k\left(t-t^{\prime}\right)=\cos k t \cos k t^{\prime}-\sin k t \sin k t^{\prime} \tag{15}
\end{align*}
$$

and the integrals

$$
\begin{align*}
& \int_{0}^{t} \cos k t^{\prime} e^{-2 \nu k_{\mathrm{f}}^{2} t^{\prime}} \mathrm{d} t^{\prime}=\frac{e^{-2 \nu k_{\mathrm{f}}^{2} t}}{\sqrt{\omega^{2}+4 \nu^{2} k_{\mathrm{f}}^{4}}} \cos (\omega t-\phi) \tag{16}\\
& \int_{0}^{t} \sin k t^{\prime} e^{-2 \nu k_{\mathrm{f}}^{2} t^{\prime}} \mathrm{d} t^{\prime}=\frac{e^{-2 \nu k_{\mathrm{f}}^{2} t}}{\sqrt{\omega^{2}+4 \nu^{2} k_{\mathrm{f}}^{4}}} \sin (\omega t-\phi) \tag{17}
\end{align*}
$$

where $\phi=-1 /\left(1+\omega^{2} / 4 \nu^{2} k_{\mathrm{f}}^{4}\right)^{1 / 2}$. Using again Ptolemy's identities, we find

$$
\begin{gather*}
\left.h(t)=\frac{f_{0}^{2}}{k}\left(1-\frac{e^{-2 \nu k_{\mathrm{f}}^{2} t}}{\sqrt{\omega^{2}+4 \nu^{2} k_{\mathrm{f}}^{4}}} \sin \phi\right)\right), \tag{18}\\
\dot{h}(t)=-\frac{f_{0}^{2}}{k} \frac{e^{-2 \nu k_{\mathrm{f}}^{2} t}}{\sqrt{\omega^{2}+4 \nu^{2} k_{\mathrm{f}}^{4}}} \cos \phi \tag{19}
\end{gather*}
$$

Figure 9: Evolution of h (solid black and dashed blue) and \dot{h} (solid yellow and dashed red) for $\gamma=$ $0.1, T_{0}=0.1$, and $k=1$. The solid lines indicate the numerical solution and the dashed lines indicate the analytic solution.

B Exponential growth

Let us now assume that $T(t)$ is given by $T_{0}(k) e^{\gamma t}$, so that

$$
\begin{equation*}
h(t)=\frac{T_{0}(k)}{k} \int_{0}^{t} \sin k\left(t-t^{\prime}\right) e^{\gamma t^{\prime}} \mathrm{d} t^{\prime} \tag{20}
\end{equation*}
$$

Using $\sin \phi=\left(e^{\mathrm{i} \phi}-e^{-\mathrm{i} \phi}\right) / 2 \mathrm{i}$, we have

$$
\begin{equation*}
h(t)=\frac{T_{0}(k)}{2 \mathrm{i} k} \int_{0}^{t}\left[e^{(\gamma-\mathrm{i} k) t^{\prime}+\mathrm{i} k t}-e^{(\gamma+\mathrm{i} k) t^{\prime}-\mathrm{i} k t}\right] \mathrm{d} t^{\prime} \tag{21}
\end{equation*}
$$

Integrating between the two boundaries yields

$$
\begin{equation*}
h(t)=\frac{T_{0}(k)}{2 \mathrm{i} k}\left[\frac{e^{\gamma t}-e^{\mathrm{i} k t}}{\gamma-\mathrm{i} k}-\frac{e^{\gamma t}-e^{-\mathrm{i} k t}}{\gamma+\mathrm{i} k}\right] \tag{22}
\end{equation*}
$$

Expanding this yields

$$
\begin{array}{r}
h(t)=\frac{T_{0}(k)}{2 \mathrm{i} k\left(\gamma^{2}+k^{2}\right)}\left[(\gamma+\mathrm{i} k)\left(e^{\gamma t}-e^{\mathrm{i} k t}\right)\right. \\
\left.-(\gamma-\mathrm{i} k)\left(e^{\gamma t}-e^{-\mathrm{i} k t}\right)\right] \tag{23}
\end{array}
$$

or

$$
\begin{array}{r}
h(t)=\frac{T_{0}(k)}{2 \mathrm{i} k\left(\gamma^{2}+k^{2}\right)}\left[\gamma\left(e^{\gamma t}-e^{\mathrm{i} k t}\right)+\mathrm{i} k\left(e^{\gamma t}-e^{\mathrm{i} k t}\right)\right. \\
\left.-\gamma\left(e^{\gamma t}-e^{-\mathrm{i} k t}\right)+\mathrm{i} k\left(e^{\gamma t}-e^{-\mathrm{i} k t}\right)\right] \tag{24}
\end{array}
$$

or
$h(t)=\frac{T_{0}(k)}{2 \mathrm{i} k\left(\gamma^{2}+k^{2}\right)}\left[-\gamma\left(e^{\mathrm{i} k t}-e^{-\mathrm{i} k t}\right)+2 \mathrm{i} k e^{\gamma t}\right.$

$$
\begin{equation*}
\left.-\mathrm{i} k\left(e^{\mathrm{i} k t}+e^{-\mathrm{i} k t}\right)\right] \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
h(t)=\frac{T_{0}(k)}{k\left(\gamma^{2}+k^{2}\right)}\left(-\gamma \sin k t+k e^{\gamma t}-k \cos k t\right) \tag{26}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
h(t)=\frac{T_{0}(k)}{\gamma^{2}+k^{2}}\left(e^{\gamma t}-\cos k t-\frac{\gamma}{k} \sin k t\right) \tag{27}
\end{equation*}
$$

with the derivative being

$$
\begin{equation*}
\dot{h}(t)=\frac{T_{0}(k)}{\gamma^{2}+k^{2}}\left[\gamma\left(e^{\gamma t}-\cos k t\right)+k \sin k t\right] \tag{28}
\end{equation*}
$$

Delta correlated $T(k) \sim \delta(k)$ leads to $\operatorname{Sp}(T) \sim$ k^{2}, and $\delta(k) / k$ leads to $\operatorname{Sp}(T) \sim k^{-2}$. In simulations with chiral magnetic effect, we have $\gamma=\eta \mu_{0}^{2}$, so the critical k is $k \sim \eta \mu_{0}^{2} / c$.

Figure 10: Solid line: last time, dotted lines: last 20 times, dashed lines: early times during growth phase, dashed-dotted lines: early decay phase.

C Numerical solution

Figure 10 shows a numerical solution for an initial spectrum of the source $\propto k^{4} /\left[1+\left(k / k_{\mathrm{f}}\right)^{6}\right]$, where $k_{\mathrm{f}}=20$ was chosen. The time evolution of the source was $T=t$ for $0<t<1$ and $1 /[1+(t-1) / \tau]^{2}$ for $t>1$.

Figure 4: Results

