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ABSTRACT

Context. The large-scale magnetic fields of stars and galaxies are often described in the framework of mean-field
dynamo theory. At moderate magnetic Reynolds numbers, the transport coefficients defining the mean electromotive
force can be determined from simulations. This applies analogously also to the mean-field theory of passive scalar
transport.
Aims. The mean electromotive force is investigated in the kinematic framework, that is, ignoring the back-reaction of
the magnetic field on the fluid velocity, under the assumption of axisymmetric turbulence determined by the presence
of either rotation, density stratification, or both (providing the corresponding directions are aligned to each other). As
for the mean passive scalar flux, an analogous approach is used. As an alternative to convection, forced turbulence in
an isothermal layer is considered. When using standard ansatzes, the mean magnetic transport is then determined by
nine, and the mean passive scalar transport by four coefficients. We give results for all these transport coefficients.
Methods. The test-field method and the test-scalar method are used, where transport coefficients are determined by
solving sets of equations with properly chosen mean magnetic fields or mean scalars. These methods are adapted to
mean fields which may depend on all three space coordinates.
Results. Anisotropy of turbulent diffusion is found to be moderate in spite of rapid rotation or strong density stratifi-
cation. Contributions to the mean electromotive force determined by the symmetric part of the gradient tensor of the
mean magnetic field, which were ignored in several earlier investigations, turn out to be important. In stratified rotating
turbulence, the α effect is strongly anisotropic, suppressed along the rotation axis on large length scales, but strongly
enhanced at intermediate length scales. Also the Ω× J effect is enhanced at intermediate length scales. The turbulent
passive scalar diffusivity is typically almost twice as large as the magnetic turbulent diffusivity. Both magnetic and
passive scalar diffusion are slightly enhanced along the rotation axis, but decreased if there is gravity.
Conclusions. The test-field and test-scalar methods provide powerful tools for analyzing transport properties of ax-
isymmetric turbulence. Future applications are proposed ranging from anisotropic turbulence due to the presence of a
uniform magnetic field to inhomogeneous turbulence where the specific entropy is nonuniform, for example. Some of
the contributions to the mean electromotive force which have been ignored in several earlier investigations, in particu-
lar those given by the symmetric part of the gradient tensor of the mean magnetic field, turn out to be of significant
magnitude.
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1. Introduction

Stellar mixing length theory is a rudimentary description of
turbulent convective energy transport. The mixing length
theory of turbulent transport goes back to Prandtl (1925)
and, in the stellar context, to Vitense (1953). The simplest
form of turbulent transport is turbulent diffusion, which
quantifies the mean flux of a given quantity, e.g., momen-
tum, concentration of chemicals, specific entropy or mag-
netic fields, down the gradient of its mean value. In all
these cases essentially a Fickian diffusion law is established,
where the turbulent diffusion coefficient is proportional to
the rms velocity of the turbulent eddies and the effective
mean free path of the eddies or their correlation length.

Mean-field theories, which have been elaborated, e.g.,
for the behavior of magnetic fields or of passive scalars in
turbulent media, go beyond this concept. In the case of
magnetic fields, the effects of turbulence occur in a mean
electromotive force, which is related to the mean magnetic
field and its derivatives in a tensorial fashion. Examples for

effects described by the mean magnetic field alone, with-
out spatial derivatives, are the α-effect (Steenbeck et al.,
1966) and the pumping of mean magnetic flux (Rädler,
1966, 1968; Roberts & Soward, 1975); for more informa-
tion on these topics see, e.g., Krause & Rädler (1980) or
Brandenburg & Subramanian (2005). Likewise the mean
passive scalar flux contains a pumping effect (Elperin et
al., 1996). In both the magnetic and the passive scalar cases
turbulent diffusion occurs, which is in general anisotropic.
The coupling between the mean electromotive force and the
magnetic field and its derivatives, or mean passive scalar
flux and the mean scalar and its derivatives, is given by
turbulent transport coefficients.

On the analytic level of the theory the determination of
these transport coefficients is only possible with some ap-
proximations. The most often used one is the second-order
correlation approximation (SOCA), which has delivered so
far many important results. Its applicability is however re-
stricted to certain ranges of parameters like the magnetic
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Reynolds number or the Péclet number. In spite of this re-
striction, SOCA is an invaluable tool, because it allows a
rigorous treatment within the limits of its applicability. It is
in particular important for testing numerical methods that
apply in a wider range.

In recent years it has become possible to compute the
full set of turbulent transport coefficients numerically from
simulations of turbulent flows. The most accurate method
for that is the test-field method (Schrinner et al., 2005,
2007). In addition to the equations describing laminar and
turbulent flows, one solves a set of evolution equations
for the small-scale magnetic or scalar fields which result
from given mean fields, the test fields. By selecting a suffi-
cient number of independent test fields, one obtains a cor-
responding number of mean electromotive forces or mean
scalar fluxes and can then compute in a unique way all the
associated transport coefficients.

Most of the applications of the test-field method are
based on spatial averages that are taken over two coor-
dinates. In the magnetic case this approach has been ap-
plied to a range of different flows including isotropic homo-
geneous turbulence (Sur et al., 2008; Brandenburg et al.,
2008a), homogeneous shear flow turbulence (Brandenburg
et al., 2008b) without and with helicity (Mitra et al., 2009),
and turbulent convection (Käpylä et al., 2009). One of the
main results is that in the isotropic case, for magnetic
Reynolds numbers Rm larger than unity, the turbulent dif-
fusivity is given by 1

3
τu2

rms, where the correlation time τ is,

to a good approximation, given by τ = (urmskf)
−1. Here,

urms is the rms velocity of the turbulent small-scale flow
and kf is the wavenumber of the energy-carrying eddies.
For smaller Rm, the turbulent diffusivity grows linearly
with Rm. Furthermore, if the turbulence is driven isotropi-
cally by polarized waves, the flow becomes helical and there
is an α effect. In the kinematic regime (for weak mag-
netic fields), the α coefficient is proportional to ω · u,
where ω = ∇ × u is the vorticity of the small-scale flow,
u. In the passive scalar case, test scalars are used to de-
termine the transport coefficients. Results have been ob-
tained for anisotropic flows in the presence of rotation or
strong magnetic fields (Brandenburg et al., 2009), linear
shear (Madarassy & Brandenburg, 2010), and for irrota-
tional flows (Rädler et al., 2011).

The present paper deals with the magnetic and the pas-
sive scalar case in the above sense. Its goal is to compute
the transport coefficients for axisymmetric turbulence, that
is, turbulence with one preferred direction, given by the
presence of either rotation or density stratification or, if
the relevant directions coincide, of both. (Axisymmetric
turbulence can be defined by requiring that any averaged
quantity depending on the turbulent velocity field is in-
variant under any rotation of this field about the preferred
axis.) Note that a dynamo-generated magnetic field will
in general violate the assumption of axisymmetric turbu-
lence. To avoid this problem while still being able to in-
vestigate the general effects arising from only one preferred
direction, we assume such fields to be weak so as not to af-
fect the assumption of axisymmetry of the turbulence. An
imposed uniform magnetic field in the preferred direction
would still be allowed, but this case will not be investigated
in this paper; see Brandenburg et al. (2009) for numerical
investigations of passive scalar transport with a uniform
field.

Except for a few comparison cases, we always consider
flows in a slab between stress-free boundaries. This is the
simplest example of flows that are nonvanishing on the
boundary and compatible with axisymmetric turbulence.
To facilitate comparison with earlier work on forced turbu-
lence, we consider an isothermal layer even in the density-
stratified case, i.e., there is no convection, and the flow is
driven by a prescribed random forcing, just as we did in the
case of homogeneous turbulence. This is similar to earlier
work on forced homogeneous turbulence, but now we will
be able to address questions regarding vertical pumping as
well as helicity production and α effect in the presence of
rotation. This setup allows us to isolate effects of density
stratification from those originating from the nonuniformi-
ties of turbulence intensity and local correlation length. In
addition to isothermal stratification, we assume an isother-
mal equation of state and thus do not consider an equation
for the specific entropy. Hence, no Brunt-Väisälä oscilla-
tions can occur. This assumption would need to relaxed for
studying turbulent convection, which will be the subject of
a future investigation.

2. Mean-field concept in turbulent transport

2.1. Mean electromotive force

The evolution of the magnetic field B in an electrically
conducting fluid is assumed to obey the induction equation,

∂B

∂t
= ∇ × (U × B − ηJ) , (1)

where U is the velocity and η the microscopic magnetic
diffusivity of the fluid, and J is defined by J = ∇ × B
(so that J/µ0 with µ0 being the magnetic permeability is
the electric current density). We define mean fields as aver-
ages, assume that the averaging satisfies (exactly or approx-
imately) the Reynolds rules, and denote averaged quantities
by overbars.1 The mean magnetic field B is then governed
by

∂B

∂t
= ∇ ×

(

U × B + E − ηJ
)

, (2)

where E = u × b is the mean electromotive force resulting
from the correlation of velocity and magnetic field fluctua-
tions, u = U − U and b = B − B.

We focus attention on the mean electromotive force E

in cases in which the velocity fluctuations u constitute ax-
isymmetric turbulence, that is, turbulence with one pre-
ferred direction, which we describe by the unit vector ê.
Until further notice we accept the traditional assumption
according to which E in a given point in space and time
is a linear homogeneous function of B and its first spatial
derivatives in this point. Then, E can be represented in the
form

E = −α⊥B − (α‖ − α⊥)(ê · B)ê − γê × B

−β⊥J − (β‖ − β⊥)(ê · J)ê − δê × J (3)

−κ⊥K − (κ‖ − κ⊥)(ê · K)ê − µê × K

1 The Reynolds rules imply that F + G = F + G, F = F ,

FG = FG, ∂F/∂x = ∂F/∂x and ∂F/∂t = ∂F/∂t for any fluc-
tuating quantities F and G.
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with nine coefficients α⊥, α‖, . . ., µ.2 Like J = ∇ × B,

also K is determined by the gradient tensor ∇B. While
J is given by its antisymmetric part, K is a vector de-
fined by K = ê · (∇B)S with (∇B)S being the symmetric
part of ∇B. A more detailed explanation of (3) is given
in Appendix A. If ê is understood as polar vector (for ex-
ample ∇̺/|∇̺|, where ̺ is the mean mass density), then
K is axial and γ, β⊥, β‖ and µ are true scalars, but α⊥,
α‖, δ, κ⊥ and κ‖ pseudoscalars. (Scalars are invariant but
pseudoscalars change sign if the turbulent velocity field is
reflected at a point or at a plane containing the preferred
axis.) Sometimes it is useful to interpret ê as an axial vec-
tor (for example Ω/|Ω| with Ω being an angular velocity).
Then, K is a polar vector, β⊥, β‖, δ, κ⊥, κ‖ and µ are true
scalars but α⊥, α‖ and γ pseudoscalars.

We may split E and B into parts E⊥ and B⊥ perpen-
dicular to ê and parts E‖ and B‖ parallel to it. Then (3)
can be written in the form

E⊥ = −α⊥B⊥ − γê × B⊥ − β⊥J⊥ − δê × J⊥

−κ⊥K⊥ − µê × K⊥ (4)

E‖ = −α‖B‖ − β‖J‖ − κ‖K‖ .

Let us return to (3). In the simple case of homogeneous
isotropic turbulence we have α⊥ = α‖ and β⊥ = β‖, and
all remaining coefficients vanish. Then, (3) takes the form
E = αB − ηtJ with properly defined α and ηt. These two
coefficients have been determined by test-field calculations
(Sur et al., 2008; Brandenburg et al., 2008a).

In several previous studies of E, more general kinds of
turbulence (that is, not only axisymmetric turbulence) have
been considered, but with a less general definition of mean
fields, which were just horizontal averages. More precisely,
Cartesian coordinates (x, y, z) were adopted and the aver-
ages were taken over all x and y so that they depend on
z and t only (Brandenburg et al., 2008a,b). This definition
implies remarkable simplifications. Of course, we then have
Jz = 0. Further, there are no non-zero components of ∇B
other than Bx,z and By,z, for ∇ ·B = 0 requires Bz,z = 0,
and these components can be expressed as components of
J , viz. Bx,z = Jy and By,z = −Jx. (Here and in what
follows, commas denote partial derivatives.) This again im-
plies K = − 1

2
ê × J . As a consequence, this definition of

mean fields reduces (3) to

E = −α⊥B − (α‖ − α⊥)(ê · B)ê − γê × B

−β†J − δ† ê × J , (5)

where β† = β⊥ + 1

2
µ and δ† = δ − 1

2
κ⊥. Of course, α⊥,

α‖, γ, β† and δ† are independent of x or y. Clearly, β⊥

and µ as well as δ and κ⊥ have no longer independent
meanings. From (2) we may conclude that ∂Bz/∂t = 0. If
we restrict ourselves to applications in which Bz vanishes
initially, it does so at all times and the term with α‖ − α⊥

in (5) disappears. Then, only the four coefficients α⊥, γ, β†

and δ† are of interest. They can be determined by test-field

2 Note that the signs in front of some individual terms on
the right-hand side of (3), in particular of those with α⊥ and
α‖ (perpendicular and parallel α effect) as well as γ (pumping
in the z direction), may differ from the signs used in other
representations.

calculations using two test fields independent of x and y
(Brandenburg et al., 2008a,b).

In this paper we go in several respect beyond the as-
sumptions mentioned so far. Firstly, we relax the assump-
tion that E in a given point in space is a homogeneous
function of B and its first spatial derivatives in this point.
Instead, we admit a non-local connection between E and
B. For simplicity, however, we further on assume that E

at a given time depends only on B at the same time, that
is, we remain with an instantaneous connection between E

and B. This approximation requires that the mean field
varies slowly on a time scale much longer than the turnover
time of the turbulence; see Hubbard & Brandenburg (2009)
for a more general treatment of rapidly changing fields.
Secondly, we consider mean fields no longer as averages
over all x and y. We define B at a point (x, y) in a plane
z = const by averaging over some surroundings of this point
in this plane so that it still depends on x and y. In that sense
we generalize (3) so that

E(x) = −
∫

(

α⊥(x, ξ)B(x − ξ)

+
(

α‖(x, ξ) − α⊥(x, ξ)
)(

ê · B(x − ξ)
)

ê

+γ(x, ξ) ê × B(x − ξ)

+β⊥(x, ξ)J(x − ξ)

+
(

β‖(x, ξ) − β⊥(x, ξ)
)(

ê · J(x − ξ)
)

ê

+δ(x, ξ) ê × J(x − ξ) (6)

+κ⊥(x, ξ)K(x − ξ)

+
(

κ‖(x, ξ) − κ⊥(x, ξ)
)(

ê · K(x − ξ)
)

ê

+µ(x, ξ) ê × K(x − ξ)
)

d3ξ .

As a consequence of the axisymmetry of the turbulence,
the coefficients α⊥, α‖, . . ., µ depend only via ξ2

x + ξ2
y on

ξx and ξy. We consider them also as symmetric in ξz. The

integration is over all ξ space. Of course, E, B, J , and K
may depend on t. For simplicity, however, the argument t
has been dropped.

Let us subject (6) to a Fourier transformation with re-
spect to ξ. We define it by

F (ξ) = (2π)−3

∫

F̃ (k) exp(ik · ξ) d3k . (7)

Remembering the convolution theorem we obtain

E(x) = −(2π)−3

∫

(

α̃⊥(x,k)B̃(k)

+
(

α̃‖(x,k) − α̃⊥(x,k)
)(

ê · B̃(k)
)

ê

+γ̃(x,k) ê × B̃(k)

+β̃⊥(x,k) J̃(k) +
(

β̃‖(x,k) − β̃⊥(x,k)
)(

ê · J̃(k)
)

ê

+δ̃(x,k) ê × J̃(k) (8)

+κ̃⊥(x,k)K̃(k) +
(

κ̃‖(x,k) − κ̃⊥(x,k)
)(

ê · K̃(k)
)

ê

+µ̃(x,k) ê × K̃(k)
)

exp(ik · x) d3k ;

see Chatterjee et al. (2011) for a corresponding relation
in the case of horizontally averaged magnetic fields that
depend only on z. Like α⊥, α‖, . . ., µ, the α̃⊥, α̃‖, . . ., µ̃

are real quantities. They depend only via k⊥ = (k2
x +k2

y)1/2
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on kx and ky and are symmetric in kz, i.e., depend only via
k‖ = |kz| on kz. Due to the reality of the α⊥, α‖, . . ., µ and
their symmetry in ξx, ξy and ξz we have

α̃⊥(x,k) =

∫

α⊥(x, ξ) cos kxξx cos kyξy cos kzξz d3ξ (9)

and analogous relations for α̃‖, . . ., µ̃. We note that α̃⊥, . . .,
µ̃, taken at k = 0, agree with α⊥, . . ., µ in Equation (3).

2.2. Mean passive scalar flux

There are interesting analogies between turbulent transport
of magnetic flux and that of a passive scalar (cf. Rädler et
al., 2011). Assume that the evolution of a passive scalar C,
e.g., the concentration of an admixture in a fluid, is given
by

∂C

∂t
= −∇ · (UC − D∇C), (10)

where D is the microscopic (molecular) diffusivity. Then
the mean scalar C has to satisfy

∂C

∂t
= −∇ · (U C + F − D∇C), (11)

where F = uc is the mean passive scalar flux, u stands
again for the fluctuations of the velocity and c = C − C
for the fluctuations of C. Consider again axisymmetric tur-
bulence with a preferred direction given by the unit vector
ê. Assume that F in a given point in space and time is
determined by C and its gradient G = ∇C in this point.
Then we have

F = −γCCê − βC
⊥G − (βC

‖ − βC
⊥)(ê · G)ê − δC ê × G, (12)

with coefficients γC , βC
⊥ , βC

‖ and δC . If ê is a polar vector,

γC is a scalar but δC a pseudoscalar, and if ê is an axial
vector, γC is a pseudoscalar but δC a scalar, while βC

⊥ and

βC
‖ are always scalars. We note that ∇ · (δC ê × G) is only

unequal zero if δC is not constant but varies in the direction
of ê × G.

We may split F and G into parts F⊥ and G⊥ perpen-
dicular to ê, and parts F‖ and G‖ parallel to it, and give
(12) the form

F⊥ = −βC
⊥G⊥ − δC ê × G⊥

F‖ = −γC êC − βC
‖ G‖. (13)

Let us now relax the assumption that F in a given point
in space and time is determined by C and G in this point.
Analogously to the magnetic case we consider a non-local
but instantaneous connection between F and C. Then we
have

F(x) = −
∫

(

γC(x, ξ) ê C(x − ξ)

+βC
⊥(x, ξ)G(x − ξ)

+
(

βC
‖ (x, ξ) − βC

⊥(x, ξ)
) (

ê · G(x − ξ)
)

ê (14)

+δC(x, ξ) ê × G(x − ξ)
)

d3ξ .

As α⊥, α‖, . . ., µ in the magnetic case, γC , βC
⊥ , βC

‖ and δC

depend only via ξ2
x +ξ2

y on ξx and ξy, and we consider them

also as symmetric in ξz. The integration is again over all ξ
space. Note that F , C, and G may, even if it is not explicitly
indicated, depend on t. Applying the Fourier transforma-
tion defined by (7) on (14), we arrive at

F(x) = −(2π)−3

∫

(

γ̃C(x,k) ê C̃(k)

+β̃C
⊥(x,k)G̃(k)

+
(

β̃C
‖ (x,k) − β̃C

⊥(x,k)
) (

ê · G̃(k)
)

ê (15)

+δ̃C(x,k) ê × G̃(k)
)

exp(ik · x) d3k ,

where γ̃C
⊥ , β̃C

⊥ , β̃C
‖ and δ̃C are real quantities. They depend

only via k2
x + k2

y on kx and ky, and only via k‖ on kz, and

they satisfy relations analogous to (9). We note that γ̃C ,

β̃C
⊥ , β̃C

‖ , and δ̃C at k = 0 agree with γC , βC
⊥ , βC

‖ , and δC

in (12).

3. Simulating the turbulence

We assume that the fluid is compressible and its flow is
governed by the equations

DU

Dt
= f + g − ∇h − 2Ω × U + ρ−1

∇ · (2νρS)

Dh

Dt
= −c2

s∇ · U . (16)

Here, f means a random force which primarily drives
isotropic turbulence (e.g., Haugen et al., 2004), g the grav-
itational force, and h the specific enthalpy. An isothermal
equation of state, p = ρc2

s , has been adopted with a con-
stant isothermal sound speed cs. In general a fluid flow in
a rotating system is considered, Ω is the angular velocity
which defines the Coriolis force. As usual ρ means the mass
density, ν the kinematic viscosity and S the trace-free rate
of strain tensor, Sij = 1

2
(∂Ui,j + ∂Uj,i) − 1

3
δij∇ · U . The

influence of the magnetic field on the fluid motion, that is
the Lorentz force, is ignored throughout the paper.

The numerical simulation is carried out in a cubic do-
main of size L3, so the smallest wavenumber is k1 = 2π/L.
In most of the cases a density stratification is included with
g = (0, 0,−g), so the density scale height is Hρ = c2

s/g. The
number of scale heights across the domain is equal to ∆ ln ρ,
where ∆ denotes the difference of values at the two edges
of the domain. Since L/Hρ = 2π we have a density con-
trast of exp 2π ≈ 535. The forcing is assumed to work with
an average wavenumber kf . The scale separation ratio is
then given by kf/k1, for which we usually adopt the value
5. This means that we have about 5 eddies in each of the
three coordinate directions.

The flow inside the considered domain depends on the
boundary conditions. Unless indicated otherwise we take
the top and bottom surfaces z = z1 and z = z2 with
z2 = −z1 = L/2 as stress-free and adopt periodic boundary
conditions for the other surfaces.

4. Computing the transport coefficients

4.1. Test-field method

In the magnetic case the coefficients α⊥, α‖, . . ., µ are de-
termined by the test-field method (Schrinner et al., 2005,
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2007; Brandenburg et al., 2008a). This method works with
a set of test fields B, called BT, and the corresponding
mean electromotive forces E, called ET. For the latter we

have ET = u × bT, where the bT obey

bT = ∇ × aT

∂aT

∂t
= U × bT + u × BT + (u × bT )′ + η∇2aT , (17)

with U and u taken from the solutions of (16). For the
boundaries z = const we choose conditions which corre-
spond to an adjacent perfect conductor, for the x and y
directions periodic boundary conditions.

We define four test fields by

B1s = (B0 sx sy sz, 0, 0) , B1c = (B0 sx sy cz, 0, 0)

B2s = (0, 0, B0 sx sy sz) , B2c = (0, 0, B0 sx sy cz) (18)

with a constant B0. Here and in what follows we use the
abbreviations

sx = sin kxx , cx = cos kxx

sy = sin kyy , cy = cos kyy (19)

sz = sin kzz , cz = cos kzz .

We recall that test-fields need not to be solenoidal (see
Schrinner et al., 2005, 2007).

We denote the mean electromotive forces which corre-
spond to the test fields (18) by E1s, E1c, E2s, and E2c. With
the presentation (6) and relations like (9) we find

E1s

x = −B0

(

α̃⊥ sx sy sz − (δ̃ − 1

2
κ̃⊥)kz sx sy cz

)

E1s

y = −B0

(

γ̃ sx sy sz + (β̃⊥ +
1

2
µ̃)kz sx sy cz

)

E1s

z = B0 β̃‖ky sx cy sz (20)

E2s

x = −B0

(

(β̃⊥ − 1

2
µ̃)ky sx cy sz + (δ̃ +

1

2
κ̃⊥)kx cx sy sz

)

E2s

y = B0

(

(β̃⊥ − 1

2
µ̃)kx cx sy sz − (δ̃ +

1

2
κ̃⊥)ky sx cy sz

)

E2s

z = −B0

(

α̃‖ sx sy sz + κ̃‖kz sx sy cz
)

and corresponding relations for E1c
x , . . . , E2c

z , whose right-
hand sides can be derived from those in (20) simply by
replacing sz and cz by cz and − sz, respectively.

In view of the assumed axisymmetry of the turbulence,
we consider α⊥, α‖, . . ., µ in what follows as independent
of x and y but admit a dependence on z. When multiplying
both sides of the equations (20) and of the corresponding
ones for E1c

x , . . . , E2c
z with sx sy, sx cy or cy sy and averag-

ing over all x and y, we obtain a system of equations, which
can be solved for α̃⊥, α̃‖, . . ., µ̃. The result reads

α̃⊥ = −〈bss( szE1s

x + czE1c

x )〉
α̃‖ = −〈bss( szE2s

z + czE2c

z )〉
γ̃ = −〈bss( szE1s

y + czE1c

y )〉
β̃⊥ = − 1

2
〈Bss( czE1s

y − szE1c

y ) + Bsc( szE2s

x + czE2c

x )〉
= − 1

2
〈Bss( czE1s

y − szE1c

y ) − Bcs( szE2s

y + czE2c

y )〉
β̃‖ = 〈Bsc( szE1s

z + czE1c

z )〉 (21)

δ̃ = 1

2
〈Bss( czE1s

x − szE1c

x ) − Bcs( szE2s

x + czE2c

x )〉

= 1

2
〈Bss( czE1s

x − szE1c

x ) − Bsc( szE2s

y + czE2c

y )〉
κ̃⊥ = −〈Bss( czE1s

x − szE1c

x ) + Bcs( szE2s

x + czE2c

x )〉
= −〈Bss( czE1s

x − szE1c

x ) + Bsc( szE2s

y + czE2c

y )〉
κ̃‖ = −〈Bss( czE2s

z − szE2c

z )〉
µ̃ = −〈Bss( czE1s

y − szE1c

y ) − Bsc( szE2s

x + czE2c

x )〉
= −〈Bss( czE1s

y − szE1c

y ) + Bcs( szE2s

y + czE2c

y )〉 ,

where

bss = 4 sx sy/B0 , Bss = hss/kz

Bcs = 4 cx sy/kxB0 , Bsc = 4 sx cy/kyB0. (22)

The angle brackets indicate averaging over x and y.
Although the relations (21) and (22) contain kx, ky and
kz as independent variables, the α̃⊥, α̃‖, . . ., µ̃ should vary

only via k⊥ = (k2
x + k2

y)1/2 with kx and ky, and only via k‖
with kz.

4.2. Test-scalar method

In the passive-scalar case the coefficients γC , βC
⊥ , βC

‖ , and

δC are determined by the test-scalar method with test

scalars C
T

and the corresponding fluxes FT . For the latter,

we have FT = ucT , where cT obeys

∂cT

∂t
= −∇ ·

(

UcT + uC
T

+ (ucT )′ − D∇cT
)

. (23)

Again U and u are taken from the solutions of (16).

We define two test-scalars C
Ts

and C
Tc

by

C
s

= C0 sx sy sz , C
c

= C0 sx sy cz , (24)

where C0 is a constant and the abbreviations (19) are used.
From (14) we then have

F s

x = −C0(β̃
C
⊥kx cx sy sz − δ̃Cky sx cy sz)

F s

y = −C0(β̃
C
⊥ky sx cy sz + δ̃Ckx cx sy sz) (25)

F s

z = −C0(γ̃
C
⊥ sx sy sz + β̃C

‖ kz sx sy cz)

and analogous relations for Fc

x, . . . ,Fc

z with sz and cz re-
placed by cz and −sz, respectively.

Analogous to the magnetic case, we assume that γC , βC
⊥ ,

βC
‖ , and δC are independent of x and y but may depend on

z. Analogous to (21) we find here

γ̃C = −〈css( szF s

z + czFc

z)〉
β̃C
⊥ = −〈Ccs( szF s

x + czFc

x)〉 = −〈Csc( szF s

y + czFc

y)〉
β̃C
‖ = −〈Css( czF s

z − szFc

z)〉 (26)

δ̃C = 〈Csc( szF s

x + czFc

x)〉 = −〈Ccs( szF s

y + czFc

y)〉 ,

where css, Css, Csc, and Ccs are defined like bss, Bss, Bsc,
and Bcs, with C0 at the place of B0. The angle brackets
indicate again averaging over x and y. Note that γ̃C , β̃C

⊥ ,

β̃C
‖ , and δ̃C should depend only via k⊥ = (k2

x + k2
y)1/2 on

kx and ky, and only via k‖ on kz.
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4.3. Validation using the Roberts flow

For a validation of our test-field procedure for the deter-
mination of the coefficients occurring in (3) we rely on the
Roberts flow. We define it here by

u = u0(− cos k0x sin k0y , sin k0x cos k0y ,

2f cos k0x cos k0y ) , (27)

with some wavenumber k0 and a factor f which charac-
terizes the ratio of the magnitude of uz to that of ux and
uy. We further define mean fields as averages over x and
y with an averaging scale which is much larger than the
period length 2π/k0 of the flow pattern. When calculating
the mean electromotive force E for this flow, we assume
that it is a linear homogeneous function of B and its first
spatial derivatives and adopt the second-order correlation
approximation. Although the Roberts flow is far from being
axisymmetric, the result for E can be written in the form
(3), and we have

α⊥ =
u2

0f

2ηk0

, α‖ = γ = 0

β⊥ =
u2

0(1 + 4f2)

16ηk2
0

, β‖ =
u2

0

8ηk2
0

, δ = 0 (28)

κ⊥ = κ‖ = 0 , µ = −u2
0(1 − 4f2)

8ηk2
0

= 2(β⊥ − β‖) .

It agrees with and can be deduced from results reported in
Rädler et al. (2002a,b). As for the passive scalar case, an
analogous analytical calculation of the mean scalar flow F
leads to (12) with

γC = 0 , βC
⊥ =

u2
0

8Dk2
0

, βC
‖ =

u2
0f

2

2Dk2
0

, δC = 0 . (29)

We may proceed from the local connection of E with B
and its derivatives considered in (3) to the non-local ones
given by (6) or (8). As a consequence of the deviation of
the flow from axisymmetry, we can then no longer justify
that coefficients like α⊥(ξ) depend only via ξ2

x + ξ2
y on ξx

and ξy, and coefficients like α̃⊥(k) only via k⊥ on kx and

ky. This applies analogously to the connection of F with C

and its derivatives and to coefficients like β⊥(ξ) and β̃⊥(k).
A test-field calculation of the coefficients α̃⊥, α̃‖, . . .,

µ̃, as well as γ̃C , . . ., δ̃C , has been carried out under the
conditions of the second-order correlation approximation
with u given by (27) and f = 1/

√
2. Figure 1 shows the

results obtained for α̃⊥, β̃⊥, β̃‖ and µ̃, as well as β̃C
⊥ and

β̃C
‖ , as functions of k⊥/kf , with kf =

√
2k0, for two fixed

ratios k‖/k⊥. In the limit k⊥/kf ≪ 1 these coefficients take

just the values of α⊥, β⊥, β‖, µ, βC
⊥ and βC

‖ given in (28)

and (29). For larger values of k⊥/kf , as to be expected, the

α̃⊥, β̃⊥, β̃‖, µ̃, β̃C
⊥ and β̃C

‖ depend also on the ratio of kx

and ky.

4.4. Dimensionless parameters and related issues

Within the framework of this paper, the coefficients α⊥,
α‖, . . ., µ as well as α̃⊥, α̃‖, . . ., µ̃, and likewise γC , βC

⊥ , . . .,

δC and γ̃C , β̃C
⊥ , . . ., δ̃C , have to be considered as functions

Fig. 1. The coefficients α̃⊥, β̃⊥, β̃‖, and µ̃, as well as β̃C
⊥ and β̃C

‖

for the Roberts flow, calculated in the second-order correlation
approximation, as functions of k⊥/kf , where kf =

√
2k0 is the

effective wavenumber of the flow. Results obtained with kx = ky

and k‖/k⊥ = 1/
√

2 ≈ 0.7 or k‖/k⊥ = 1/16
√

2 ≈ 0.004 are rep-
resented by open squares and dotted lines or by open diamonds
and dashed lines, respectively. Results with kx/ky = 0.75 [k⊥ =
(3, 4, 0)k1] or kx/ky = 5 [k⊥ = (5, 1, 0)k1] and k‖/k⊥ = 0.2 are
indicated by open or filled circles, respectively. Orange and grey
symbols correspond to the first and second expressions for β̃⊥

and µ̃ in (21) or for β̃C
‖ in (26).

of several dimensionless parameters. In the magnetic case
these are the magnetic Reynolds number Rm = urms/ηkf

6
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and the magnetic Prandtl number Pm = ν/η, in the pas-
sive scalar case the Péclet number Pe = urms/Dkf and
the Schmidt number Sc = ν/D, further the Mach num-
ber Ma = urms/cs, the gravity parameter Gr = g/c2

skf , the
Coriolis number Co = 2Ω/urmskf , as well as the scale sep-
aration ratio kf/k1.

Throughout the rest of the paper we give the coefficients
α⊥, α‖, γ, and γC as well as α̃⊥, α̃‖, γ̃, and γ̃C in units of

urms/3, the remaining coefficients β⊥, . . ., δC and β̃⊥, . . .,

δ̃C in units of urms/3kf . The numerical calculations deliver
these coefficients as functions of z and t. To avoid boundary
effects, we average these results over −2 ≤ k1z ≤ 1 (see
Figure 3 below). The resulting time series are averaged over
a range where the results are statistically stationary, i.e.,
there is no trend in the time series. Error bars are defined
by comparing the maximum departure of an average over
any one third of the time series with the full time average.

In the case of isotropic turbulence it has been observed
that many of the transport coefficients enter an asymptotic
regime as soon as Rm exceeds unity (Sur et al., 2008). While
this should be checked in every new case again (see below),
it is important to realize that, according to several earlier
results (see also Brandenburg et al., 2009), only values of
Rm below unity are characteristic of the diffusively domi-
nated regime, while for Rm exceeding unity the transport
coefficients turn out to be nearly independent of the value
of Rm.

We are often interested in the limit k⊥, k‖ → 0, in which

the α̃⊥, α̃‖, . . . δ̃C turn into the α⊥, α‖ . . . δC . In this limit,
however, the test fields and test scalars defined by (18) and
(24) vanish. Unless specified otherwise, we approach this
limit by choosing the smallest possible non-zero |kx|, |ky|
and |kz|, that is, by putting kx = ky = kz = k1.

In the figures of the next section results for α̃⊥, α̃‖, . . .

δ̃C are represented. In all cases in which they are considered
as results for the limit k⊥, k‖ → 0 they are simply denoted

as α⊥, α‖ . . . δC in the text.

5. Results

5.1. Homogeneous rotating turbulence

Let us first consider homogeneous turbulence in a rotating
system, that is, under the influence of the Coriolis force.
The angular velocity Ω responsible for this force defines
the preferred direction of the turbulence, ê = Ω/|Ω|. In
this case we expect only contributions to the mean elec-
tromotive force E from a spatially varying mean magnetic
field B, and contributions to the passive scalar flux F from
a spatially varying mean passive scalar C. That is, in (3)
we have only the terms with β⊥, β‖, δ, κ⊥, κ‖, and µ, and

in (12) only those with βC
⊥ , βC

‖ , and δC . The terms with

β⊥ and β‖, as well as those with βC
⊥ and βC

‖ , characterize

anisotropic mean-field diffusivities, and that with δ corre-
sponds to the “Ω×J effect” (Rädler, 1969a,b, 1976; Krause
& Rädler, 1971, 1980), while the δC term vanishes under-
neath the divergence and is therefore without interest.

Figure 2 shows the dependence of the aforementioned
coefficients on Co for Rm ≈ Pe ≈ 9 and kf/k1 = 5. The
values of β⊥, β‖, βC

⊥ and βC
‖ , which remain finite for Co →

0, are always close together. The other four coefficients vary
linearly with Co as long as Co is small. Specifically, we find

Fig. 2. Co dependence of transport coefficients in a model with
rotation but zero density stratification, Rm ≈ 9, Pm = Sc = 1,
Gr = 0, kf/k1 = 5.

δ̃ ≈ −0.1Co, δ̃C ≈ −Co, as well as κ̃⊥ ≈ −0.3Co and
κ̃‖ ≈ −Co. These coefficients reach maxima at Co ≈ 1. For
rapid rotation, |Co| ≫ 1, all coefficients approach zero like
1/Co. In particular, we have β⊥ ≈ 1.2/Co and the same
for β‖, βC

⊥ , and βC
‖ , further κ̃⊥ ≈ −0.5/Co, κ̃‖ ≈ −1.2/Co,

δ̃ ≈ −0.3/Co, and δ̃C ≈ −0.6/Co. Furthermore, we find
that, within error bars, α⊥, α‖, γ, and γC are indeed zero.

5.2. Stratified turbulence

Owing to the presence of boundary conditions at the top
and bottom of our domain and the lack of scale separa-
tion for our default choice of kf/k1 = 5, the turbulence is
in all cases anisotropic, even if gravity is negligible. The
ratio of the vertical and horizontal velocity components,

2u2

‖/u2

⊥, is no longer, as in the isotropic case, equal to unity.

For moderate stratification (g/c2
sk1 ≈ 1), not too large |z|,

and kf/k1 = 5, it takes a value of about 0.9. It decreases
when the ratio kf/k1 is decreased; see Table 1. Figure 3

shows the z dependence of 2u2

‖/u2

⊥. For strong stratifica-

tion and a high degree of scale separation, e.g. kf/k1 = 30,
the mentioned ratio comes close to unity. Note, however,

that smaller values of 2u2

‖/u2

⊥ can be can be achieved in the

non-isothermal case when the effects of buoyancy become
important.

7
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Fig. 3. Anisotropy 2u2
‖/u2

⊥ of nonrotating turbulence for dif-

ferent stratifications, g/c2
sk1, and different degrees of scale sep-

aration, kf/k1.

5.2.1. Stratified nonrotating turbulence

For axisymmetric turbulence in a nonrotating system show-
ing any kind of stratification in the representation (3) of E

only the four coefficients γ, β⊥, β‖, and µ can be non-zero.

Likewise, in the representation (12) of F only the three co-
efficients γC , βC

⊥ , and βC
‖ can be non-zero. Figure 4 shows

their dependence on Gr. It appears that γ is always close
to zero, while γC shows a linear increase for not too strong
gravity. At the same time, β⊥, β‖, βC

⊥ , and βC
‖ remain ap-

proximately constant. We find that µ is negative and its
modulus is mildly increasing with increasing stratification,
but the error bars are large.

5.2.2. Stratified rotating turbulence

For turbulence under the influence of gravity and rotation,
all nine coefficients α⊥, . . ., µ are in general non-zero, as
well as all four coefficients γC , . . ., δC . If both gravity and

Table 1. Dependence of the density contrast ρbot/ρtop and the

degree of anisotropy 2u2
‖/u2

⊥, for three different values of kf/k1,

on the density stratification g/c2
sk1 for nonrotating turbulence.

The values of 2u2
‖/u2

⊥ have been obtained as averages over the

range −2 ≤ k1z ≤ 1.

g/c2
sk1 ρbot/ρtop 2u2

‖/u2
⊥

kf = 1.5k1 kf = 5k1 kf = 30k1

0 0 0.84 0.99 1.00
0.5 23 0.84 0.97 1.00
1 540 0.66 0.90 0.99

Fig. 4. Gr dependence of the transport coefficients in a model
with density stratification but zero rotation, Pm = Sc = 1,
Rm ≈ 22, Co = 0, kf/k1 = 5.

rotation are so small that E is linear in g and Ω, more
precisely E contains gmΩn, where n and m mean integers,
only with n + m ≤ 1, α⊥ and α‖ vanish but γ, β⊥, δ and
κ⊥ may well be unequal to zero. If n + m ≤ 2, all nine
coefficients may indeed be non-zero.

Results for stratified rotating turbulence are shown in
Figure 5. The error bars are now bigger than either with
just rotation or just stratification. For Co → 0, the coef-
ficients β⊥, β‖, µ, βC

⊥ , βC
‖ and δC remain finite. As Co is

increased, their moduli show some decline. On the other
hand the moduli of α⊥, α‖, γ, δ, κ⊥, κ‖ and γC increase
with Co as long as it is smaller than some value below unity
but decrease again for larger Co. Both α⊥ and α‖ are neg-
ative, which is expected for g and Ω being antiparallel to
each other. Interestingly, µ is finite for small values of Co,
in agreement with the result when there is only stratifica-
tion (Figure 4), but with a modest amount of rotation, µ
is suppressed and grows only when Co has reached values
around unity.

5.3. Wavenumber dependence

So far we have considered the coefficients α̃⊥, α̃⊥, . . ., δ̃C

in the limit k = |k| → 0, that is, k⊥, k‖ → 0. However,
their behavior for larger k, in particular for k up to several
kf , is of interest, too. Most of them decrease like k−2 as k
grows and can be fitted to a Lorentzian profile, as has been
found in earlier calculation using the test-field method; see
Brandenburg et al. (2008a), where in fact the dependence
on k‖ was considered. Even earlier work that was not based
on the test-field method showed a declining trend (Miesch
et al., 2000; Brandenburg & Sokoloff, 2002). Nevertheless,
as is shown in Figure 6, there are also some coefficients that
first increase with k‖, have a maximum near k‖ = kf and
only then decrease with growing k‖. Examples for such a

8
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Fig. 5. Co dependence of transport coefficients in a model with
rotation and density stratification, Pm = Sc = 1, Rm ≈ 10,
Gr ≈ 0.16, kf/k1 = 5.

behavior are α̃‖, δ̃, and κ̃⊥, while κ̃‖ peaks slightly below
k‖ = 0.5kf .

The dependence of the coefficients under discussion on
k⊥ is shown in Figure 7. Note that our test fields vanish
for k⊥ = 0, so no values are shown for this case. Note also
that −α̃‖, −δ̃, −κ̃‖, and −β̃⊥, which all have maxima for
k‖/kf ≈ 1, show a clear monotonic decline with k⊥. Only
−κ̃⊥ has a maximum for intermediate values of both k‖/kf

and k⊥/kf .

Most of the results presented in Figure 7 have been cal-
culated with kx = ky, a few single ones for α̃⊥, β̃⊥, κ̃⊥ and

β̃C
⊥ also with kx/ky = 0.75 and kx/ky = 0.2. While the re-

sults for β̃⊥ and β̃C
⊥ agree well for all these values of kx/ky,

there are significant discrepancies with α̃⊥ and κ̃⊥.

5.4. Dependencies on Rm and Pe

Let us finally consider the dependence of all transport coef-
ficients on Rm or Pe for a case where they are all expected
to be finite. Therefore we choose again the case with Co = 1
and Gr = 0.16, which was also considered in Figures 5–7,
and keep Pm = Sc = 1.

Fig. 6. k‖ dependence of transport coefficients in a model with

rotation and density stratification, k⊥ =
√

2k1, Pm = Sc = 1,
Rm = 12, Co = 1.0, Gr = 0.16, kf/k1 = 5.

The results are shown in Figure 8. As expected, all quan-
tities increase approximately linearly with Rm if Rm < 1, or
with Pm if Pm < 1, and seem to level off to constant values
for larger values of Rm, or Pm, although the uncertainty
tends to increase significantly.

6. Conclusions

In this paper we have dealt with the mean electromotive
force and the mean passive scalar flux in axisymmetric tur-
bulence and have calculated the transport coefficients that
define these quantities. Unlike most of the earlier work, we
have no longer assumed that mean fields are defined as pla-
nar averages but admit a dependence on all three space
coordinates. The number of test fields and test scalars is
the same (4 and 2, respectively) as in earlier work using
planar averages, so the computational cost is unchanged.

We may conclude from general symmetry considerations
that the mean electromotive force E has altogether nine
contributions: three defined by the mean magnetic field B,
three by the mean current density J , and three by the vec-
tor K, which is the projection of the symmetric part of the
gradient tensor ∇B of the magnetic field on the preferred
direction. In many representations of E the last three contri-
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Fig. 7. Same as Figure 6, but k⊥ dependence, k‖ = k1. The

filled and open circles denote results for α⊥, β⊥, κ⊥, and βC
⊥

obtained with kx/ky = 0.75 [k⊥ = (3, 4, 0)k1] and kx/ky = 0.2
[k⊥ = (1, 5, 0)k1], respectively.

butions have been ignored. Our results underline that this
simplification is in general not justified. The corresponding
coefficients κ⊥, κ‖ and µ are in general not small compared
to β⊥, β‖ and δ.

It has been known since long that a stratification of
the turbulence intensity, that is, a gradient of u2, causes
a pumping of magnetic flux (Rädler, 1969a). It remained
however uncertain whether the same effect occurs if a pre-
ferred direction is given by a gradient of the mean mass den-
sity ̺ while the turbulence intensity is spatially constant.
In our calculations, which correspond to this assumption,
the value of γ is not clearly different from zero. This sug-
gests that a gradient of the mass density alone is not suffi-
cient for pumping, what is also in agreement with results of
Brandenburg et al. (2011). This is even more remarkable as
the corresponding coefficient γC which describes the trans-
port of a mean passive scalar is noticeably different from
zero. Pumping down the density gradient is indeed expected
(Elperin et al., 1995). An explanation of these results would
be very desirable.

In homogeneous rotating turbulence, apart from an
anisotropy of the mean-field conductivity, the Ω× J effect
occurs (Rädler, 1969b). In the passive scalar case again an

Fig. 8. Dependencies of the transport coefficients on Rm or Pe in
a model with rotation and density stratification, Pm = Sc = 1,
Co = 1.0, Gr = 0.16, kf/k1 = 5.

anisotropy of the mean diffusivity is possible. Even if the
flux proportional to Ω×∇C is non-zero, it cannot influence
C.

Let us turn to the induction effects described by K. If
the preferred direction is given by a polar vector, the corre-
sponding contribution to the mean electromotive force can
only be proportional to ê×K. We found such a contribution
in the case of the Roberts flow and also, for turbulence sub-
ject the Coriolis force, in the results presented in Figure 2
and Figures 4–7.

Contributions to the mean electromotive force as de-
scribed here by K occur also in earlier calculations, e.g.
Kitchatinov et al. (1994) or Rüdiger & Brandenburg (1995).
As a consequence of other notations, however, this is not al-
ways obvious. For example, Rüdiger & Brandenburg (1995)
consider a mean electromotive force of the form

E = −η‖J + (η‖ − ηT)(ẑJz − ẑ × ∇Bz) (30)

with two coefficients η‖ and ηT (equation (18) of their pa-

per with µ0J , in the sense of the definition introduced here,
replaced by J ; ẑ is our ê). It is equivalent to our represen-
tations (3) or (4) of E if we put there β⊥ = 1

2
(η‖ + ηT),

β‖ = ηT, µ = η‖ − ηT and all other coefficients equal to
zero. This implies β⊥ − β‖ = µ/2, which is in agreement
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with the relation for µ in equation (28) for the Roberts
flow. The latter equality is also approximately obeyed for
turbulence in the presence of rotation, stratification, and
both; see Figures 2 and 4 and 5, respectively.

If both rotation and density stratification are present,
there is also an α effect, which is necessarily anisotropic.
For strong rotation |α‖| is only half as big as |α⊥|. For
Co ≈ 1, we have β⊥ > β‖, which means that the magnetic
diffusivity along the rotation axis is enhanced. The same is
true for the passive scalar diffusivity, where enhanced dif-
fusivity along the rotation axis means βC

‖ > βC
⊥ . Moreover,

stratification has the effect of decreasing the magnetic and
passive scalar diffusivity in the vertical direction. In the
presence of rotation and density stratification all three con-
tributions to the mean electromotive fore described by K
are in general non-zero. Here, |κ⊥| is smaller than |κ‖|.

The present work is applicable to investigations of stel-
lar convection either with or without rotation, and it would
provide a more comprehensive description of turbulent
transport properties than what has been available so far
(Käpylä et al., 2009). The methods utilized in this paper
can be extended to a large class of phenomena in which
turbulence with just one preferred direction plays an im-
portant role. Examples for that include turbulence under
the influence of a strong magnetic field and/or an exter-
nally applied electric field leading to a current permeating
the system. Turbulence generated by the Bell (2004) insta-
bility is an example. Other examples include all types of in-
homogeneous turbulence with only one preferred direction.
In addition to density stratification, there can be a system-
atic variation of the turbulence intensity in one direction.
A further example is entropy inhomogeneity combined with
gravity giving rise to Brunt-Väisälä oscillations. Pumping
effects also exist in homogeneous flows if the turbulence is
helical (Mitra et al., 2009). By contrast, shear problems or
other types of problems with two or more preferred direc-
tions that are inclined to each other (e.g., turbulence in a
local domain of a rotating stratified shell at latitudes differ-
ent from the two poles) are not amenable to such a study.
Of course, although we refer here to axisymmetric turbu-
lence, problems in axisymmetric cylindrical geometry are
also not amenable to this method, because the turbulence
must be homogeneous in one plane.
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Appendix A: Derivation of relation (3)

We start from the aforementioned assumption according to
which E is linear and homogeneous in B and its first spatial
derivatives,

E i = aijBj + bijk(∇B)jk . (A.1)

Here aij and bijk are tensors determined by the fluid flow.

The gradient tensor (∇B)jk can be split into a antisym-

metric part, which can be expressed by J , and a symmetric
part (∇B)Sjk. Therefore we may also write

E i = aijBj − bijJj − cijk(∇B)Sjk (A.2)

with new tensors bij and cijk, the latter being symmet-
ric in j and k. From the further assumption that the flow
constitutes an axisymmetric turbulence we may conclude
that aij , bij and cijjk are axisymmetric tensors. Defining
the preferred direction by the unit vector ê we then have

aij = a1δij + a2ǫijlêl + a3êiêj ,

bij = b1δij + b2ǫijlêl + b3êiêj ,

cijk = c1δjkêi + c2(δij êk + δikêj) (A.3)

+c3(ǫijlêlêk + ǫiklêlêj) + c4êiêj êk ,

with coefficients a1, a2, . . ., c4 determined by the fluid flow.
Taking (A.2) and (A.3) together and considering that

(δij êk + δikêj)(∇B)Sjk = 2Ki ,

(ǫijlêlêk + ǫiklêlêj)(∇B)Sjk = −2(ê × K)i , (A.4)

êiêj êk(∇B)Sjk = (ê · K)êi ,

we find

E = a1B − a2ê × B − a3(ê · B)ê

+b1J − b2ê × J − b3(ê · J)ê (A.5)

+2c2K − 2c3ê × K + c4(ê · K)ê .

Since (∇B)ii = 0 there is no contribution with c1. With a
proper renaming of the coefficients (A.5) turns into (3).
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Astron. Nachr., 315, 157
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