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1 Introduction

Convection is a standard form of energy transport
in regions of a star where the specific entropy de-
creases with height, i.e., the stratification is supera-
diabatic. Overshoot tends to occur on the bound-
aries between convective and radiative zones, and
thus cannot occur in on its own. Overshoot is char-
acterized by an oppositely oriented transport of en-
ergy, because overshooting plumes are heavier and
cooler than their surroundings, so the product of
velocity and temperature fluctuations is negative.
We report here the results of a numerical study

of a stably stratified layer of gas whose opacity in-
creases with decreasing pressure and therefore with
height. Adiabatically upward moving blobs of fluid
therefore become more opaque and can be elevated
by radiation pressure. The elevated fluid becomes
even more opaque and will be elevated even fur-
ther. Likewise, downward moving fluid will become
more transparent and will sink further, and can fill
the place left by the upward moving fluid. This can
lead to instability and the development of overturn-
ing motions, or even continuous mass loss. Similar
effects also occur when the temperature dependence
of the opacity has a local maximum, which can lead
to turbulence in those layers where the temperature
dependence of the opacity has a local maximum.
Our goal is to study basic properties of such flows

in an idealized system. We perform a sequence of
numerical experiments using a simple power law
prescription for the opacity of the form

κ = κ0 (ρ/ρ0)
a (T/T0)

b, . (1)

where the exponents a and b and the pre-factor κ0

will be varied, and the coefficients ρ0 and T0 will be
kept fixed.
The numerical treatment of such a system poses

numerical difficulties owing to the requirement of
very short time steps. This is because the radiative
cooling time becomes short at high temperatures,
which is when the radiation pressure tends to play

an important role. This was recently investigated
in detail in a separate paper (Brandenburg & Das,
2019). To cope with this difficulty, we simply reduce
the speed of light. This increases the effect of radi-
ation pressure, but has no direct effect on the rest
of the equations. However, since c is related to the
Stefan-Boltzmann constant through σSB = aradc/4,
there are two possibilities. Either we keep arad fixed
and vary σSB, or we vary arad and keep σSB fixed.
In that case, however, it would therefore gives the
system more radiation energy than it actually has.

2 The model

2.1 Governing equations

We solve the basic equations for the logarithmic
density ln ρ, the velocity u, and the specific entropy
s, in the form

D ln ρ

Dt
= −∇ · u, (2)

ρ
Du

Dt
= −∇p+ ρg +

ρκ

c
Frad +∇ · (2ρνS), (3)

ρT
Ds

Dt
= −∇ · Frad + 2ρνS2, (4)

n̂ ·∇I = −κρ (I − S), (5)

Frad =

∫

4π

n̂I dΩ, (6)

∇ · Frad =

∫

4π

(I − S) dΩ, (7)

where g = (0, 0,−g) is the gravitational acceler-
ation in Cartesian coordinates (x, y, z), c is the
speed of light, Frad is the radiative flux, Sij =
1
2 (∂iuj + ∂jui) −

1
3δij∇ · u are the components of

the traceless rate-of-strain tensor, and ν is the kine-
matic viscoity.
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2.2 Nondimensional form of the

equations

It is useful to write the equations in non-
dimensional form by normalizing temperature and
density by some representative values that charac-
terize the surface. In a non-convecting gray atmo-
sphere with constant exponents a and b, the tem-
perature falls of linearly with height until it reaches
a constant value, T0. In the deeper, optically thick
part, the density falls off like a polytrope, so ρ ∝ Tn

where n = (3 − b)/(1 + a). In the upper opti-
cally thin part, which is isothermal, the density
falls off exponentially with the pressure scale height
Hp0 = cpT∇ad/g, which is also equal to the density
scale height in this isothermal part. It is then con-
venient to measure lengths in units of Hp0, i.e.,

[x] = Hp0. (8)

Since g = const, it is convenient to measure time in
units of [t] =

√

Hp0/g, and velocity in units of

u0 ≡
√

Hp0g. (9)

Finally, we measure density and pressure in units
of the values ρ0 and p0 at the crossover between
polytropic and isothermal stratifications. They are
related to each other through an equation of state

p0/ρ0 = RT0/µ0, (10)

where R is the universal gas constant and µ0 is the
mean molecular weight.

To determine ρ0, it is useful to recall the analytic
solution for a gray atmosphere with constant a and
b in the form (Brandenburg, 2016)

T/T0 =
[

1 + (n+ 1)∇
(0)
rad(p/p0)

1+a
]1/(4+a−b)

(11)

with ∇
(0)
rad = cpFrad∇ad/(gK0) being the usual

radiative double-logarithmic temperature gradient
and K0 = 16σT 3

0 /(3κ0ρ0) the radiative conductiv-
ity evaluated for our representative values T0 and

ρ0. Since ∇
(0)
rad itself depends on ρ0, we can de-

termine ρ0 such that (n + 1)∇
(0)
rad = 1. Using

Frad = σSBT
4
eff = 2σSBT

4
0 , where Teff is the effective

temperature, this yields

ρ0 = 8/(3κ0Hp0). (12)

2.3 Stratification without radiation

pressure

In thermodynamic equilibrium, the radiative flux
must be constant, i.e.,

Frad = −K dT/dz = const, (13)

where K = 16σSBT
3/(3κρ) is the radiative conduc-

tivity with σSB being the Stefan–Boltzmann con-
stant, and z is the vertical coordinate in a Carte-
sian coordinate system. We have then a polytropic
stratification with ρ ∝ Tn, where

n = (3− b)/(1 + a) (14)

is the polytropic index.
The double-logarithmic temperature gradient is

obtained by dividing the two equations through
each other, i.e.,

∇ =
d lnT

d lnP
=

FP

KT ρg
=

FcP∇ad

Kg
, (15)

where we have used the perfect gas equation of state
in the form P/T ρ = cP − cV = cP (1 − 1/γ) =
cP∇ad. We can also define a hypothetical radia-
tive temperature gradient ∇rad that would result if
all the energy were carried by radiation, so we can
write

Ftot =
Kg

cP∇ad
∇rad, (16)

which follows from Equation (15).
Dividing Equation (13) by the equation for hy-

drostatic equilibrium, dP/dz = −ρg, we have

dT

dP
=

Frad

K0ρ0g

(P/P0)
a

(T/T0)3+a−b
, (17)

where K0 = 16σSBT
3
0 /(3κ0ρ0) is a constant and

P/P0 = (ρ/ρ0)(T/T0) is the ideal gas equation with
a suitably defined constant P0 = (cp − cv)ρ0T0.
Here, ρ0 and T0 are reference values that were de-
fined in Equation (1). Equation (17) can be inte-
grated to give

(T/T0)
4+a−b = (n+1)∇

(0)
rad(P/P0)

1+a+(Ttop/T0)
4+a−b,
(18)

where ∇
(0)
rad = FradP0/(K0T0ρ0g), which is defined

analogously to the ∇rad without superscript (0) in
Equations (15) and (16), and Ttop is an integration
constant that is specified such that T → Ttop as
P → 0. Note also that 4 + a − b = (n + 1)(1 +
a), where n was defined in Equation (14) as the
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Figure 1: pvar_s144x72a The yellow horizontal line
around z ≈ 8Mm marks the loation of the τ = 1
surface.

polytropic index, so the ratio of 4 + a − b to 1 +

a is just n + 1, which enters in front of the ∇
(0)
rad

term in Equation (18). Since K ∝ T 3−b/ρ1+a ∝

T 4+a−b/P 1+a, we have K → const = K0 for T ≫

Ttop.

(19)

Hot stars are observed to exhibit macroturbu-
lence. Those stars have either no or only very shal-
low subsurface convection zones that are associated
with local maxima in the temperature dependence
of the opacity. Photoconvection is a form of convec-
tion that is driven by super-Eddington luminosities
where the fluid remains suspended.
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