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1 Background

1.1 Cataclysmic variables

[The notes in this subsection are excerpts from an
excellent wikipedia article1.] Cataclysmic variables
(CV) consist of a white dwarf (WD) primary and
a mass transferring secondary (donor star). Strong
UV and X-ray emission is often seen from the ac-
cretion disc, powered by the loss of gravitational
potential energy from the infalling material. Mate-
rial at the inner edge of disc falls onto the surface
of the white dwarf primary. A classical nova out-
burst occurs when the density and temperature at
the bottom of the accumulated hydrogen layer rise
high enough to ignite runaway hydrogen fusion re-
actions. The accretion disc may be prone to an in-
stability leading to dwarf nova outbursts, when the
outer portion of the disc changes from a cool, dull
mode to a hotter, brighter mode for a time, before
reverting to the cool mode. Dwarf novae can recur
on a timescale of days to decades.

1.2 Relevant literature

In a recent paper, Hirose et al. (2014) presented
shearing box simulations of magneto-rotational in-
stability (MRI) turbulence in a regime relevant to
dwarf novae and soft X-ray transient outbursts.
They find two stable thermal equilibria in the ef-
fective temperature versus surface mass density di-
agram, which is consistent with the hypothetical
S-curve dependence adopted since the 1980s (Bath
& Pringle, 1981, 1982; Meyer & Meyer-Hofmeister,
1981, 1982; Cannizzo et al., 1982). In their new
work, Hirose et al. (2014) find that convection
strengthens the dynamo and enhances the Shakura-
Sunyaev α parameter (Shakura & Sunyaev, 1973)
by generating vertical magnetic field that seed the
axisymmetric MRI and by increasing cooling. Our

1https://en.wikipedia.org/wiki/Cataclysmic_

variable_star

goal is to provide an independent confirmation of
the results of Hirose et al. (2014) and to arrive at
a better understanding of the transition between
the two branches that help parameterizing the rel-
evant physics, which can then be used in simpler
one-dimensional accretion disk models.

2 Polytropic solution

2.1 Hydrostatic balance

We expect accretion disks to be turbulent, e.g., be-
cause of MRI or because of convection in the outer
layers. In both of these cases, the cause of turbu-
lence is related to the occurrence of an instability
of the hydrostatic base state, Once turbulence de-
velops, the original base state would no longer be
directly relevant, because it would become strongly
modified. To understand this transition, we need to
establish first the hydrostatic reference state.
Hydrostatic balance implies2

0 = −∇h+ T∇S −∇φ, (1)

where T is temperature, S is specific entropy, h =
cpT is the enthalpy for a perfect with fixed ion-
ization with cp being the specific heat at constant
pressure, and φ = 1

2
(z∞ − z) Ω2 is the gravitational

potential with z being the height from the midplane,
z∞ is the height of the surface, and Ω is the angular
velocity at the position where the our local coordi-
nate system is situated.
For a polytropic solution, the T∇S can be writ-

ten underneath a gradient and can be combined
with the enthalpy to give what we might call the
pseudo-enthalpy, so

0 = −∇(h̃+ φ) (2)

so

h̃ =
1− 1

γ

1− 1
Γ

cpT =
1

2

(

z2∞ − z2
)

Ω2, (3)

2
see the manual to the Pencil Code on https://github.

com/pencil-code
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where γ = cp/cv is the ratio of specific heats, cv is
the specific heat at constant volume, and Γ is a pa-
rameter characterizing the polytropic solution and
is related to the polytropic index; see Appendix A
for details. For monatomic gas we have γ = 5/3. If
we assume a Kramers-like opacity, then n = 3.25,
so Γ = 1+1/n = 1.308; see Barekat & Brandenburg
(2014) for details. Thus, we have

h̃ = (n+ 1)

(

1−
1

γ

)

cpT =
1

2

(

z2∞ − z2
)

Ω2, (4)

and therefore

T = 5
17

(

z2∞ − z2
)

Ω2/cp. (5)

2.2 Thermal balance

To sustain thermal equilibrium, we have to include
a heating term H, so the time-dependent entropy
equation takes the form

ρT
Ds

Dt
= ∇ ·K∇T +H (6)

Here we choose

H = 5× 10−3 g cm−3 km3 s−3 Mm−1, (7)

Using σSB = 5.67×10−20 (in code units; see Barekat
& Brandenburg, 2014), we have

Tsurf =
(

3
4
zheatH/σSB

)1/4

=
(

0.75× 5× 10−3/5.67× 10−20
)1/4

= 23980K. (8)

We find
K = 7.14× 10−6 (9)

For details about radiation transfer, see Barekat
& Brandenburg (2014) and references therein. At
some point, ionization will need to be included; see
Bhat & Brandenburg (2016).

2.3 Sketchy notes

Tall box in Figure 3. Time step is less stringent
when the opacity floor is allowed to be smaller, but
it is quadratic in the invert mean free path, δt ∝

ℓ2 ∝ (κρ)−2. Unclear.
2-D convection, u↓ = 1.2 km s−1, u↑ =

0.8 km s−1. Note the extreme aspect ratio.

nu kappa0 omeg Run

5e-2 1e5 144f

5e-2 3e5 144g never ran

2e-2 1e5 288a

1e-2 1e5 2.47 288b

Figure 1: κ0 = 104, zmax = 12, zheat = 5, H =
5× 10−3 a = 1, b = −3.5. 144 meshpoints.

Figure 2: κ0 = 105, zmax = 8, zheat = 5, H =
10−4 aKr = 1, bKr = −3.5, a−H = 1, b−H = 4. 144
meshpoints.

2.4 New runs

Σ = 2 × 10−12, H = 7.1 × 10−7, two stable disk
states; see Figure 9.
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Figure 3: Floor values 0.2 and 0,02, kappa0=1e5
H=1e-4, time steps 4e-7 and 4e-6, respectively. 288
meshpoints, 1D, but time still short because of short
timestep. Should plot s profile.

Figure 4: Stratification, 144f

3 CV disks

The following parameters have been assembled from
the paper by Shaviv & Wehrse (1991).

Figure 5: Vertical slice, 2D, 288x288, time step
2e-3. Initial amplitude 0.1 km/s. t = 4ks. ν =
0.02Mmkms−1.

Figure 6: Vertical slice, 2D, 288x288, time step 8e-
4. t = 200 ks ν = 0.01Mmkms−1. κ0 = 3 × 105,
H = 10−4.

M = 1M⊙, R = 108 m, so Ω =
√

GM/R3 =

12 ks−1, Σ = 102 g cm−2 = 10−6 Mmg cm−3.
We start with an isothermal model with
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Figure 7: Vertical slice, 2D, 288x288, time step 1e-
3. t = 3600 ks. ν = 0.005Mmkms−1. κ0 = 106,
H = 10−5.

cs = 36 km s−1, ρ0 = 10−6 Gcm−3.

kappa0 Heat ztau1 z [Mm] taumax chimin run

1e10 1e-5 3.65 0 ... 4.5 289 3.2 CV288n

4e10 1e-5 5.37 0 ... 6.0 270 28 CV288q

1.6e11 5e-6 6.72 \pm 7.5 140 401 CV288q5

M_WD=0.8 Msun

R_WD=10 Mm

R=(6.67e-11*2e30/12e-3^2)^.3333333333333

0.9e8 = 90 Mm.

A Relation between Γ and n

A polytropic stratification is one where the stratifi-
cations of density and pressure, ρ(z) and P (z) are
related to that of temperature T (z) in a powerlaw
fashion, i.e.,

ρ(z) ∝ T (z)n, P (z) ∝ T (z)n+1. (10)

where the latter relation is a consequence of the per-
fect gas equation, P ∝ ρT . Thus, n = d ln ρ/d lnT
and n+1 = d lnP/d lnT . It is also useful to define

Γ = d lnP/d ln ρ =
n+ 1

n
= 1 +

1

n
, (11)

Figure 8: Vertical slice, 2D, 288x288, time step 8e-
4. t = 700 ks, and 4200 ks. ν = 0.01Mmkms−1.
κ0 = 106, H = 10−5.

which is convenient as it can easily be compared
with γ (which is a property of the gas, not of the
stratification, as is Gamma). To see that, let us
calculate the vertical gradient of the specific entropy
s using the formula

ds/cp =
1

γ
d lnP − d ln ρ. (12)

4



Figure 9: Σ = 2× 10−12, H = 5× 10−5, two stable
disk states.

Figure 10: κ0 = 2 × 1012 cm3 g−1 Mm−1, a−H = 1,
b−H = 4.

Figure 11: Run with κ0 = 2× 1012 cm3 g−1 Mm−1,
a−H = 1, b−H = 4. H = 2× 10−5, zH = 0.5Mm.

Thus, we have

ds/cp
d lnP

=
1

γ
−

1

Γ
, (13)

Figure 12: Run with κ0 = 2× 1012 cm3 g−1 Mm−1,
a−H = 1, b−H = 4. H = 0

Figure 13: Run with κ0 = 2× 1012 cm3 g−1 Mm−1,
a−H = 1, b−H = 4. H = 3× 10−6, zH = 1Mm.

which is also known as the superadiabatic gradi-
ent, ∇ − ∇ad. where ∇ = d lnT/d lnP is the
double-logarithmic temperature gradient. Since
d lnP/dz = −HP is a negative quantity (HP is
the pressure scale height), a positive superadiabatic
gradient corresponds to a negative specific entropy
gradient and thus to a Schwarzschild-unstable strat-
ification. Thus, ∇−∇ad > 0 means Γ > γ.

We have thus three closely related quantities,
n = d ln ρ/d lnT , Γ = d lnP/d ln ρ, and ∇ =
d lnT/d lnP , which are related to each other via

Γ = 1 +
1

n
=

1

1−∇
, (14)

n =
1

Γ− 1
=

1

∇
− 1, (15)

∇ = 1−
1

Γ
=

1

n+ 1
. (16)

For γ = 5/3, marginal stability corresponds to n =
3/2 = 1.5, Γ = γ = 5/3, and ∇ = 5/2 = 2.5.
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Figure 14: Stratification
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