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ABSTRACT

Context. The formation of magnetic flux concentrations within the solar convection zone leading to sunspot formation is unexplained.
Aims. We study the self-organization of initially uniform sub-equipartition magnetic fields by highly stratified turbulent convection.
Methods. We perform simulations of magnetoconvection in Cartesian domains representing the uppermost 8.5−24 Mm of the solar
convection zone with the horizontal size of the domain varying between 34 and 96 Mm. The density contrast in the 24 Mm deep
models is more than 3 × 103 or eight density scale heights, corresponding to a little over 12 pressure scale heights. We impose either
a vertical or a horizontal uniform magnetic field in a convection-driven turbulent flow in set-ups where no small-scale dynamos are
present. In the most highly stratified cases we employ the reduced sound speed method to relax the time step constraint arising from
the high sound speed in the deep layers. We model radiation via the diffusion approximation and neglect detailed radiative transfer in
order to concentrate on purely magnetohydrodynamic effects.
Results. We find that super-equipartition magnetic flux concentrations are formed near the surface in cases with moderate and high
density stratification, corresponding to domain depths of 12.5 and 24 Mm. The size of the concentrations increases as the box size
increases and the largest structures (20 Mm horizontally near the surface) are obtained in in the models that are 24 Mm deep. The field
strength in the concentrations is in the range of 3–5 kG, almost independent of the magnitude of the imposed field. The concentrations
grow approximately linearly in time. The effective magnetic pressure measured in the simulations is positive near the surface and
negative in the bulk of the convection zone. Its derivative with respect to the mean magnetic field, however, is positive in most of
the domain, which is unfavourable for the operation of the negative effective magnetic pressure instability (NEMPI). Simulations in
which a passive vector field is evolved do not show a noticeable difference from magnetohydrodynamic runs in terms of the growth
of the structures. Furthermore, we find that magnetic flux is concentrated in regions of converging flow corresponding to large-scale
supergranulation convection pattern.
Conclusions. The linear growth of large-scale flux concentrations implies that their dominant formation process is a tangling of the
large-scale field rather than an instability. One plausible mechanism that can explain both the linear growth and the concentration of
the flux in the regions of converging flow pattern is flux expulsion. A possible reason for the absence of NEMPI is that the derivative
of the effective magnetic pressure with respect to the mean magnetic field has an unfavourable sign. Furthermore, there may not be
sufficient scale separation, which is required for NEMPI to work.
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1. Introduction1

The current paradigm of sunspot formation relies on the2

existence of strong magnetic flux tubes (of the order of 105 G)3

created by some unknown mechanism at the base of the convec-4

tion zone or just below it. Their buoyant rise to the solar sur-5

face is thought to lead to sunspot formation (Parker 1955). This6

idea has also profoundly influenced solar dynamo modelling: in7

the so-called flux transport models a highly non-local α-effect8

is used to parametrize the rise of toroidal flux tubes from the9

tachocline to form poloidal fields near the surface. A single-cell10

meridional flow is then supposed to carry the surface poloidal11

? Movies associated to Figs. 4 and 5 are available in electronic form
at http://www.aanda.org

field back to the tachocline where it is sheared back to toroidal 12

form and amplified to close the dynamo loop (e.g. Choudhuri 13

et al. 1995, 2007; Dikpati & Charbonneau 1999; Dikpati & 14

Gilman 2006). 15

Although superficially plausible, these concepts face sev- 16

eral theoretical difficulties: the generation and storage of suf- 17

ficiently strong magnetic fields has proven to be difficult (e.g. 18

Ghizaru et al. 2010; Guerrero & Käpylä 2011), the stability of 19

the tachocline has been questioned in the case of such strong 20

fields (Arlt et al. 2005), and there are helioseismic indications 21

(Schad et al. 2013; Zhao et al. 2013) and numerical evidence 22

(e.g. Käpylä et al. 2014; Passos et al. 2015; Featherstone & 23

Miesch 2015) that the meridional circulation pattern of the Sun 24

is likely to consist of multiple cells. Lastly, the rotational speeds 25

of active regions are also consistent with the idea that spots are 26
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formed near the surface (Brandenburg 2005), which calls for a1

new mechanism of sunspot formation.2

One possibility is the negative effective magnetic pressure in-3

stability (NEMPI) in highly stratified turbulence, which results4

from the reduction of the total (hydrodynamic plus magnetic)5

turbulent pressure caused by large-scale magnetic fields. As a6

result, the effective magnetic pressure (the sum of non-turbulent7

and turbulent contributions to the large-scale magnetic pres-8

sure) becomes negative and a large-scale magnetohydrodynamic9

instability can become excited. This instability does not pro-10

duce new magnetic flux, but redistributes the large-scale mag-11

netic field so that the regions with super-equipartition magnetic12

fields are separated by regions with weak magnetic field. This13

effect has been thoroughly studied analytically (e.g. Kleeorin14

et al. 1989, 1990, 1993, 1996; Kleeorin & Rogachevskii 1994;15

Rogachevskii & Kleeorin 2007) and more recently numerically16

(e.g. Brandenburg et al. 2010, 2012; Kemel et al. 2012b; Käpylä17

et al. 2012a, and references therein). Further numerical studies18

have confirmed the existence of NEMPI in direct numerical sim-19

ulations (DNS) of forced turbulence with weak imposed hori-20

zontal (Brandenburg et al. 2011) and vertical (Brandenburg et al.21

2013) magnetic fields, and in a two-layer system with an up-22

per unforced coronal layer and a lower forced layer (Warnecke23

et al. 2013, 2015). With NEMPI, even uniform, sub-equipartition24

magnetic fields can lead to flux concentrations if there is suf-25

ficient scale separation between the forcing scale and the size26

of the domain in highly stratified turbulence. This mechanism27

is compatible with a shallow origin of sunspots. Furthermore,28

numerical simulations of convective dynamos produce diffuse29

magnetic fields throughout the convection zone (e.g. Ghizaru30

et al. 2010; Käpylä et al. 2012b; Yadav et al. 2015; Augustson31

et al. 2015), which could act as the seed field for NEMPI.32

An entirely different kinematic process that can form mag-33

netic concentrations is flux expulsion where magnetic fields are34

expelled from regions of rapid motion. A classical example is35

a convection cell where fields are swept away from the diverg-36

ing upflows of granules into intergranular lanes and vertices to37

form concentrations (Clark 1965; Weiss 1966). Results from rel-38

atively weakly stratified numerical simulations of convection can39

be explained by this process (e.g. Tao et al. 1998; Kitiashvili40

et al. 2010; Tian & Petrovay 2013), but its role in the presence41

of strong stratification has not yet been studied. A further pos-42

sibility is a mean-field instability caused by the suppression of43

turbulent heat flux by magnetic fields. Such a suppression causes44

a concentration of the magnetic field, which causes enhanced45

quenching of convection and further concentration of the field46

(Kitchatinov & Mazur 2000).47

Realistic numerical simulations of solar surface convection48

in Cartesian domains including radiation transport and ioniza-49

tion are now routinely used to study the structure of sunspots50

and active regions (e.g. Rempel et al. 2009a,b; Cheung et al.51

2010). These models, however, do not address the question of52

sunspot formation, as the field configuration is controlled by pre-53

scribed boundary conditions at the base of the layer. A more self-54

consistent approach is adopted in the model of Stein & Nordlund55

(2012) where a 1 kG purely horizontal field is advected through56

the bottom boundary of the highly stratified gas in their domain,57

mimicking the emergence of flux from deeper layers. In this set-58

up, encompassing the top 20 Mm of the solar convection zone,59

the magnetic field ultimately forms a magnetic structure which is60

buoyantly unstable and rises to the surface to form a small bipo-61

lar spot pair. The authors relate the formation of the structure62

with the large-scale supergranular convection in the deep layers63

of their simulation, which would be qualitatively consistent with64

flux expulsion. However, this conclusion is based on a single ex- 65

periment and these results have yet to be put into a theoretical 66

framework that would allow these results to be generalized to 67

other conditions. 68

Based on the recent success in the detection of NEMPI in 69

forced turbulence set-ups, it is of great interest to study whether 70

it can also be excited in convection, especially in circumstances 71

similar to those in the study of Stein & Nordlund (2012). Earlier 72

work on the subject revealed the existence of a negative effec- 73

tive magnetic pressure caused by a negative contribution of tur- 74

bulent convection, but NEMPI was not observed (Käpylä et al. 75

2012a, 2013). The failure to excite NEMPI in the earlier models 76

is possibly related to insufficient density stratification and poor 77

separation of scales. We set out to study magnetic structure for- 78

mation with improved high-resolution local convection simula- 79

tions that are constructed so that they should be more favourable 80

for NEMPI to be excited. However, we also consider other pro- 81

cesses, namely flux expulsion, that can explain magnetic struc- 82

ture formation in our simulations. 83

2. The model 84

As a basis for our model we use the set-up from Käpylä et al. 85

(2013) with several improvements in order to increase the den- 86

sity stratification and scale separation. First, we use a thin cool- 87

ing layer at the top where the temperature is cooled toward a 88

constant value. As a consequence, the density decreases expo- 89

nentially in this region. Second, instead of regular constant kine- 90

matic viscosity, we apply a version of Smagorinsky viscosity 91

(Haugen & Brandenburg 2006) in the highest resolution cases to 92

increase the effective fluid Reynolds number and degree of scale 93

separation. Third, to facilitate computations with the increased 94

stratification, which leads to low Mach numbers at the base of 95

the convectively unstable layer, we apply the so-called reduced 96

sound speed method (Rempel 2005; Hotta et al. 2012, 2014) to 97

alleviate the time step constraint. 98

We solve the compressible hydromagnetics equations, 99

∂A
∂t

= u × B − ηµ0 J, (1)

∂ρ

∂t
= −

1
ξ2∇ · (ρu), (2)

Du
Dt

= g +
1
ρ

[
∇ · (2νρS) − ∇p + J × B

]
, (3)

T
Ds
Dt

=
1
ρ

[
∇ · (K∇T + χSGSρT∇s) + µ0ηJ2

]
+ 2νS2 + Γ, (4)

where A is the magnetic vector potential, u is the velocity, B = 100

B0+∇×A is the magnetic field, B0 is the imposed magnetic field, 101

J = µ−1
0 ∇×B is the current density, η is the magnetic diffusivity, 102

µ0 is the vacuum permeability, ρ is the density, ξ is the sound 103

speed reduction factor, D/Dt = ∂/∂t + u ·∇ is the advective time 104

derivative, g = −gêz = const is the gravitational acceleration, ν 105

is the kinematic viscosity, K is the radiative heat conductivity, 106

χSGS is the subgrid scale (SGS) heat conductivity, Γ describes 107

the cooling applied at the surface, s is the specific entropy, T is 108

the temperature, and p is the pressure. The fluid obeys the ideal 109

gas law with p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio 110

of specific heats, cP and cV, at constant pressure and constant 111

volume, respectively, and e = cVT is the internal energy. The 112

traceless rate-of-strain tensor S is given by 113

Si j = 1
2 (Ui, j + U j,i) − 1

3δi j∇ · U. (5)
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For the viscosity we either apply constant kinematic viscosity1

ν = ν0 or the Smagorinsky viscosity ν = (Ck∆)2
√

S2, where ∆ is2

the filtering scale (here the grid spacing) and Ck = 0.35 has been3

found suitable.4

For the sound speed reduction factor ξ we either use a con-5

stant value of unity when there is no reduction or a profile6

that matches the vertical stratification of sound speed. The lat-7

ter choice leads to an effective sound speed which is constant in8

the whole domain. In the latter case the gain in the time step is9

roughly a factor of five in comparison to the ξ = 1 case in the10

runs with the greatest vertical extent.11

The depth of the layer is Lz = d and the horizontal extents in12

the x and y directions are Lh = 4 d. We consider three values of13

Lz that correspond to 8.5, 12.5, and 24 Mm in physical units; see14

Sect. 2.3. The top and bottom boundaries are impenetrable and15

stress free for the flow16

∂ux

∂z
=

∂uy
∂z

= uz = 0, (6)

and the magnetic field (not including the imposed field) is as-17

sumed to be either a perfectly vertical or horizontal field:18

Bx = By = 0 (vertical field), (7)
∂Bx

∂z
=

∂By
∂z

= Bz = 0 (perfect conductor). (8)

The energy flux at the lower boundary is fixed19

Fbot = −K
∂T
∂z
− χSGSρT

∂s
∂z
· (9)

At the top boundary the temperature is fixed. The radiative con-20

ductivity is given by K = ρcPχ, where χ is assumed constant21

throughout the domain. For χSGS we use a profile so that it has22

a constant value 0.1χSGS in the lower 20 per cent of the domain23

and connects smoothly to a value χSGS in the middle part. In the24

layer consisting of the uppermost four per cent of the box χSGS25

drops smoothly to zero.26

To maximize the density contrast within the convection zone,27

we omit a stably stratified layer below it. We add a nearly isother-28

mal cooling layer at the top where the density stratification is29

also strong. The cooling term Γ relaxes the temperature toward30

the value at the surface31

Γ = f (z)L0
T − Tcool

Tcool
, (10)

where f (z) = 1 in the cooling layer above z = zcool and zero32

elsewhere, and L0 is a cooling luminosity. The pressure scale33

height in the cooling layer is given by34

H(cool)
p =

cV(γ − 1)Tcool

gd
· (11)

In this set-up convection transports most of the flux, whereas ra-35

diative diffusion is only important near the bottom of the domain.36

We start hydrodynamic progenitor runs from isentropic stratifi-37

cations throughout and apply the cooling above zcool. In the ther-38

mally relaxed states we obtain density contrasts, Γρ = ρbot/ρtop,39

of 230 (Set A), 900 (Set B), and 3.2 × 103 (Set C) in the three40

sets of runs; see Table 1. The corresponding density contrasts41

within the convectively unstable region are denoted Γconv
ρ , and42

are in the range 60–320 for Sets A–C. The horizontally averaged43

profiles of density and pressure, along with the corresponding44

scale heights and the specific entropy, are shown in Fig. 1.45

Fig. 1. Comparison of the stratifications of our three hydrodynamic runs
A00 (black), B00 (red), and C00 (blue) showing density a), pressure b),
the density (solid lines) and pressure scale heights (dashed lines) c),
correlation length lcorr = 2π/kω d), and specific entropy e).

2.1. Diagnostics 46

We define the fluid and magnetic Reynolds numbers as 47

Re =
urms

νk1
, Rm =

urms

ηk1
, (12)

where urms is the root-mean-square value of the volume averaged 48

velocity and k1 = 2π/d. We also define Prandtl numbers as 49

Pr =
ν

χ
, PrSGS =

ν

χSGS
, Pm =

ν

η
, (13)
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Table 1. Summary of the sets of runs.

Set Grid L2
h × Lz[Mm] Lc[Mm] Γρ Γconv

ρ F [10−6]

A 5762 × 288 342 × 8.5 0.17 230 60 7.0
B 5123 502 × 12.5 0.25 900 110 1.7
C 10243 962 × 24 0.36 3200 320 0.10

Notes. Here Lc is the depth of the cooling layer. In Set A Ra = 1.2×108,
PrSGS = 1, and Pr = 10. Runs in Sets B and C employ Smagorinsky
viscosity and the reduced sound speed method. In these two sets,
urms/νrmsk1 is around 480 and 1200, respectively.

and the Rayleigh number1

Ra =
gd4

νχSGS

(
−

1
cP

ds
dz

)
zm

, (14)

where zm = 0.5 d denotes the middle of the unstable layer.2

In many of the simulations considered here, only the magnetic3

Reynolds number is well defined because we are using the4

Smagorinsky scheme for the viscosity. The normalized energy5

flux is given by6

F =
F0

(ρc3
s )bot

, (15)

where the input flux F0, density ρ, and the sound speed cs =7 √
γp/ρ are evaluated at the lower boundary. We also define the8

Taylor microscale wavenumber9

kω =
ωrms

urms
, (16)

which is used in the estimate of the correlation length lcorr =10

2π/kω plotted in Fig. 1d. Here ω = ∇ × u. In isotropically11

forced turbulence, kω is proportional to the square root of the12

Reynolds number based on the integral wavenumber; see Fig. 313

in Candelaresi & Brandenburg (2013). Calculating the integral14

wavenumber is usually done via energy spectra, but in stratified15

convection these spectra change significantly with height, mak-16

ing this approach less practical. The equipartition field strength17

is defined as18

Beq(z) =
〈
µ0ρu2

〉1/2

xy
. (17)

In the following, averaging over the xy plane is also indicated by19

an overbar. We typically apply concurrent horizontal and tem-20

poral averages to present our results. However, in the cases with21

an imposed horizontal field we sometimes average along the im-22

posed field, which is mentioned explicitly when applied. In order23

to extract the large-scale flows generated in the simulations we24

perform temporal averaging over snapshots without spatial aver-25

aging in Sect. 3.3. We use grid resolutions of up to 10243. The26

computations were performed with the P C1.27

2.2. Modelling strategy28

Making the simulation domain deeper and thus increasing the29

density stratification in convection simulations implies that the30

sound speed in the deep layers becomes very large and lim-31

its the time step. We use the above-mentioned reduced sound32

1 https://github.com/pencil-code/

speed method to overcome this problem. Furthermore, the pres- 33

sure scale height near the surface becomes small, necessitating 34

high spatial resolution. We also choose a sufficiently low input 35

flux such that the Mach number near the surface remains suf- 36

ficiently below unity. This implies a small radiative diffusivity 37

χ = K/ρcP and a long thermal relaxation time, which would 38

require prohibitive computational resources if the simulations 39

were run from scratch. 40

To address the these difficulties, we first evolve hydrody- 41

namic runs where the horizontal extent is reduced by a factor of 42

between four and eight to save computational time. Once these 43

runs have relaxed sufficiently, we replicate them onto a larger 44

horizontal domain and introduce a localized small-scale pertur- 45

bation in one of the subdomains to break the symmetry intro- 46

duced in the replication. The system loses the symmetry within a 47

few convective turnovers. We continue to run these hydrodynam- 48

ical progenitor runs for several tens of convective turnover times 49

before introducing a uniform magnetic field into the system. 50

2.3. Application to solar parameters 51

In order to make a comparison with the Sun, is convenient to 52

transform the results into physical units. This can be done in sev- 53

eral ways, which can place the computational domain at different 54

depths in the solar convection zone. As the sunspot are mani- 55

festations of the solar magnetic field at the surface, it is logical 56

to place the computational domain near the surface. We assume 57

that the pressure scale height, gas density, and temperature at 58

the surface are the same as in the Sun, i.e. H(�)
p ≈ 1.5 × 105 m, 59

ρ� = 2.5 × 10−4 kg m−3, and T� = 5800 K defining the units 60

of length, density, and temperature, respectively. Furthermore, 61

we take the acceleration due to gravity to have the solar surface 62

value g� = 274 m s−2, and we use the permeability of vacuum 63

µ0 = 4π × 10−7 N A−2 to derive the unit of magnetic field. With 64

these choices we obtain 65

[x] = H(cool)
p = H(�)

p , (18)

[t] = (H(cool)
p /g)1/2 = (H(�)

p /g�)1/2, (19)[
ρ
]

= ρtop = ρ�, (20)
[T ] = Tcool = T�, (21)

[B] =
(
µ0ρtopgH(cool)

p

)1/2
=

(
µ0ρ�g�H(�)

p

)1/2
, (22)

where ρtop = ρ(z = 0) is the surface density, while H(cool)
p and 66

Tcool are the pressure scale height and temperature in the cooling 67

layer, respectively. 68

The profiles of horizontally averaged rms velocity and the 69

equipartition magnetic field strength Beq = 〈µ0ρu2〉1/2 from the 70

hydrodynamic progenitor runs for each of our density stratifica- 71

tions are shown in Fig. 2. The depths of the domains are now 72

8.5 Mm in Set A, 12.5 Mm in Set B, and 24 Mm in Set C with 73

horizontal sizes of 34, 50, and 96 Mm, respectively. The box in 74

our Set C is comparable to the domain size used by Stein & 75

Nordlund (2012). We find that the velocities near the surface 76

are of the order of 2−3 km s−1, which is similar to the con- 77

vective velocities observed in the Sun and also obtained from 78

mixing length theory (e.g. Stix 2002). The lower overall veloc- 79

ity in Run C00 is due to a lower input energy flux than in the 80

other runs, which is due to the lower value of K adopted in or- 81

der to limit the Mach number near the surface. Using the mixing 82

length model of Stix (2002), we note that we obtain a value of 83

F ≈ 2.7 × 10−7 in the Sun at a depth of roughly 24 Mm. The 84

equipartition magnetic field strength is of the order of 3 kG in 85
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Fig. 2. Profiles of horizontally averaged rms velocity urms a) and
equipartition magnetic field Beq b) from the same runs as in Fig. 1 in
units of m s−1 and kG, respectively.

Sets B and C. The lower value in Set A is due to the overall1

lower density in the interior for the runs in that set.2

Using these values, the imposed magnetic field strength in3

Set C, where the clearest indications of flux concentrations are4

visible, is in the range 230–920 G; see Table 2. The maximum5

strength of the concentrations shown (Figs. 4 and 5) is in the6

range 3–5 kG and the size of the largest field concentrations in7

our simulations are of the order of 20 Mm. Both of these values8

are in the range observed for sunspots.9

3. Results10

We perform three sets of simulations in which we increase the11

size of the domain systematically while keeping the box aspect12

ratio fixed; see Table 1. We study the cases of horizontal and ver-13

tical imposed fields and analyse the detected flux concentrations14

separately for the two cases. We also measure the effective mag-15

netic pressure from all runs and study whether NEMPI can be16

the explanation for the observed features.17

3.1. Imposed horizontal field18

Early studies of negative effective magnetic pressure and NEMPI19

in turbulent convection have been performed with an imposed20

horizontal field (Käpylä et al. 2012a, 2013). This choice is mo-21

tivated by the anticipated presence of a diffuse, azimuthally22

dominated large-scale field in the bulk of the solar convection23

zone. The origin of such a field could be, e.g., an αΩ-type dy-24

namo. (Warnecke et al. 2014). When NEMPI is excited, mag-25

netic field concentrations were best detected in averages taken26

along the direction of the imposed field (Brandenburg et al.27

2011; Kemel et al. 2012a, 2013) if the scale separation between28

forcing scale and the size of the box is smaller than 30. We show29

two such cases for Runs A3h and C1h with the lowest and high-30

est stratifications in Figs. 3a and b, respectively. We find flux31

Table 2. Summary of the runs.

Run Re Rm Brms B0êy B0êz B(20)
z B(10)

z B(5)
z B(2)

z B(1)
z

A1v 109 55 0.27 0.00 0.05 0.13 0.31 0.52 1.48 2.33
A2v 105 52 0.35 0.00 0.10 0.19 0.51 0.81 1.83 2.64
A3v 94 47 0.39 0.00 0.25 0.36 0.78 1.11 2.11 2.76
A4v 83 42 0.36 0.00 0.49 0.61 1.03 1.41 2.37 3.02
A5v 74 37 0.33 0.00 0.74 0.83 1.35 1.75 2.63 3.13
A6v 68 34 0.30 0.00 0.99 1.06 1.59 2.05 2.91 3.37
A1h 114 46 0.12 0.05 0.00 0.01 0.05 0.10 0.40 0.97
A2h 110 44 0.22 0.12 0.00 0.03 0.09 0.16 0.59 1.40
A3h 103 41 0.31 0.25 0.00 0.05 0.18 0.32 1.01 1.98
A4h 90 30 0.36 0.49 0.00 0.12 0.33 0.63 1.48 2.43
A5h 76 25 0.26 0.99 0.00 0.19 0.59 0.82 1.81 2.57
B1v LES 51 0.50 0.00 0.09 0.70 1.11 2.01 3.46 3.91
B2v LES 50 0.58 0.00 0.17 0.88 1.31 2.25 3.57 4.06
B3v LES 44 0.65 0.00 0.45 1.25 1.60 2.50 3.74 4.17
B4v LES 37 0.53 0.00 0.86 1.37 1.94 2.73 3.89 4.29
C1v LES 76 0.82 0.00 0.23 1.83 2.83 3.68 4.18 4.23
C2v LES 69 0.85 0.00 0.46 1.93 2.97 3.80 4.22 4.26
C3v LES 59 0.68 0.00 0.92 2.11 3.18 3.93 4.30 4.34
C1h LES 79 0.80 0.23 0.00 0.05 0.14 0.36 1.10 2.09
C2h LES 80 0.60 0.23 0.00 0.20 0.47 1.15 2.90 3.77
C3h LES 52 0.63 0.46 0.00 0.64 1.40 2.64 3.78 4.03
C4h LES 34 0.42 0.92 0.00 1.08 2.00 3.16 3.88 4.01

Notes. LES in the column for Re indicates runs where Smagorinsky vis-
cosity is used. We apply vertical field conditions for the magnetic field
in all runs except C1h where the top boundary is perfectly conducting.
The data in the last seven columns are given in units of kG. The last
five columns refer to temporally averaged maxima of low-pass filtered
vertical magnetic field Bz at a depth of roughly 1 Mm, and where the
superscripts 1, 2, 5, 10, and 20 refer to the filtering scale in Mm.

concentrations with maximum field strength of the order of 1 kG, 32

which is roughly four times the imposed field strength. This is 33

similar to what was obtained in the above-mentioned studies em- 34

ploying forced turbulence clearly showing NEMPI. 35

In the present case, the flux concentrations are associated 36

with large-scale downflows (black/white arrows in Fig. 3). The 37

concentrations become visible near the surface in regions of con- 38

verging flows. In the 8.5 Mm domain the structures descend to a 39

depth of roughly 6 Mm in five hours; see Fig. 3a. The timescale 40

in Run C1h appears similar (second panel from the top of 41

Fig. 3b) and the concentration reaches the bottom of the do- 42

main in roughly 25 h, corresponding to roughly ten large-scale 43

convective turnover times. This is similar to the so-called potato 44

sack effect where horizontal magnetic structures become heav- 45

ier than their surroundings, often observed as a consequence of 46

the negative effective magnetic pressure. This effect was found 47

in both DNS and mean-field simulations (MFS) of forced turbu- 48

lence (Brandenburg et al. 2011; Kemel et al. 2013), where the 49

downflows of the magnetic concentrations can be directly asso- 50

ciated with the negative effective magnetic pressure. In turbulent 51

convection, the potato sack effect was previously found only in 52

MFS (Käpylä et al. 2012a). In the present study we detect a sim- 53

ilar effect for the first time in DNS and LES of convection; see 54

Figs. 3a and b. On the other hand, in convection, downflows oc- 55

cur naturally without the presence of the negative effective mag- 56

netic pressure, so it is not clear a priori whether these downflows 57

are affected or even driven by the magnetic field, as was found 58

in isothermal forced turbulence, where no thermal buoyancy is 59

possible. 60
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Fig. 3. a) Mean magnetic field component By = By(x, z)−Byz) + B0 in units of kG from Run A3h from five different times indicated in the legends.
b) The same as Fig. 3, but for Run C1h. c) The same as Fig. 3a, but from an otherwise similar run, except the Lorentz force and Ohmic heating
are omitted. The white and black arrows indicate the y-averaged flows in the (x, z) plane.

Fig. 4. Vertical magnetic field Bz near the surface at a depth of 0.6 Mm from representative snapshots of Runs C2h (left panel), C3h (middle), and
C4h (right). The magnetic field scale is clipped at ±3 kG in each panel. The maximum field strengths obtained are of the order of 5 kG. Animation
associated with Run C4h can be found online and at http://research.ics.aalto.fi/cmdaa/group-Movies.shtml (Online movie).

As a control, we run one of the models (Run A3h) from the1

same initially hydrodynamic snapshot and neglect the Lorentz-2

force and Ohmic heating. In this simulation the induction equa-3

tion does not affect the flow and the magnetic field is a passive4

vector. We show in Fig. 3c the passive vector evolution corre-5

sponding to the magnetic field evolution in Fig. 3a. We find that6

a flux concentration forms near x ≈ 14.5 Mm as it does in the7

hydromagnetic run. This is explained by a downflow that existed8

previously in the hydrodynamic parent run. However, in the pas-9

sive vector case the concentration is somewhat weaker and less10

coherent, and the time scale after which the structure reaches the11

bottom of the convection zone is shorter. The latter is likely a12

consequence of missing magnetic buoyancy in the passive vec-13

tor model. Thus it appears that the downflows, although charac-14

teristic of the formation of magnetic concentrations, are already15

present in the hydrodynamic case and play a crucial role in con-16

centrating the flux. We discuss the role of the negative effective17

magnetic pressure in Sect. 3.3.18

In the earlier simulations of magnetic flux concentrations in 19

stratified convection with an imposed horizontal field (Käpylä 20

et al. 2012a, 2013) a perfect conductor boundary condition did 21

not allow the formation of spot-like structures near the sur- 22

face. However, in highly stratified simulations when potential 23

or vertical field conditions were applied, the studies of Stein & 24

Nordlund (2012) and Warnecke et al. (2013) found the possibil- 25

ity of bipolar-region formation. Motivated by these results we 26

apply a vertical field condition in most of the current models. 27

The surface appearance of the magnetic fields of Runs C2h–C4h 28

is shown in Fig. 4. For the weakest imposed field (Run C2h, 29

|B0| ≈ 230 G ≈ 0.07Beq) we find rather small concentrations 30

of either sign, but no clear bipolar regions. As the imposed 31

field strength is increased, the size of the concentrations grows. 32

In the case with the strongest imposed field (Run C4h, where 33

|B0| ≈ 920 G ≈ 0.38Beq), the maximum horizontal size of the 34

surface structures is roughly 20 Mm, and it is possible to iden- 35

tify bipolar spot pairs. To quantify this we study low-pass filtered 36
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data of Bz from slices taken near the surface. We apply five1

filtering scales between 1 and 20 Mm; see Table 2. We find that2

the maximum field strength (in the case where the smallest re-3

tained scale is 20 Mm) increases from 0.05 in Run A3h to 0.20 in4

Run C2h. The maximum field strength in the two largest scales5

(B(10)
z and B(20)

z ) increases roughly proportionally to the imposed6

field strength in Sets A and C (Cols. 6 and 7 in Table 2) indicat-7

ing the presence of large-scale magnetic structures. The increase8

in the cases of smaller filtering scales is less dramatic, especially9

in Set C with the larger domain size.10

3.2. Imposed vertical field11

Pronounced effects of the negative effective magnetic pressure12

have been found in the case of an imposed vertical field in stud-13

ies where turbulence is forced (e.g. Brandenburg et al. 2013,14

2014; Losada et al. 2014). This occurs because a vertical field,15

contrary to a horizontal one, is not advected by the resulting16

downflow, i.e. there is no potato sack effect. However, as the17

downflow removes gas from the upper layers, the pressure de-18

creases, which results in a return flow that draws with it more19

vertical field. This can lead to field amplification to a strength20

that exceeds the equipartition field strength in the top layers; see21

Brandenburg et al. (2013) for numerical simulations in isother-22

mal stratified turbulence. In the above-mentioned studies the23

field concentrations often form a spot-like structure because the24

ratio between the domain size and forcing scale is sufficiently25

large (e.g. Brandenburg et al. 2013, 2014; Losada et al. 2014).26

In the top row of Fig. 5 we show visualizations of the vertical27

magnetic field Bz, velocity uz, and temperature T from a depth28

of 0.6 Mm for Run C1v with an imposed vertical field of 230 G.29

We note that there are now three large patches, the largest ex-30

ceeding 20 Mm in diameter, where positive Bz of the order of31

3 kG is found. Line plots through two of the patches (two bot-32

tom panels of Fig. 5) show that the magnetic field exceeds the33

local equipartition field strength by a factor of more than ten34

because convection is nearly completely suppressed in regions35

of strong magnetic fields. The temperature within the magnetic36

structures at the depth of 0.6 Mm is reduced by roughly 2000 K,37

which is within the observed range for sunspots. We also find38

that the structures penetrate almost the entire depth of the layer;39

see the second and third rows of Fig. 5. The temperature is af-40

fected mostly near the surface, whereas in the deeper layers the41

difference to the ambient atmosphere is 1–2 orders of magnitude42

smaller than near the surface. The structures are qualitatively43

similar to those seen in forced turbulence simulations with poor44

scale separation where they are caused by NEMPI; see Fig. 1745

of Brandenburg et al. (2014). This result is also reminiscent of46

early work of Tao et al. (1998), who found similar behaviour47

in large aspect ratio convection simulations, although at much48

smaller Rayleigh numbers and weaker density stratification.49

Representative results of the vertical field near the surface50

from the three domain sizes with comparable imposed fields of51

the order of 0.5 kG are shown in Fig. 6. We find that the size52

of the structures increases from roughly 5 Mm to 20 Mm as53

the domain size is increased from 34 Mm to 96 Mm. In ad-54

dition, the field topology changes from a web-like network of55

strong fields in Run A4v with the smallest domain size to one56

with more isolated structures in Run C2v for the largest phys-57

ical size. A possible explanation is that the equipartition field58

is smaller in Run A4v than in the other two runs (Fig. 2) and59

that the magnetic field has a greater effect on the flow. A sim-60

ilar transition from isolated magnetic structures for relatively61

weak fields to a network-like structure for intermediate field62

strengths has previously been reported by e.g. Tao et al. (1998)63

and Tian & Petrovay (2013). We have not explored such strong 64

fields as Tian & Petrovay (2013); this would induce small-scale 65

convection throughout the domain, as seen in the flux concentra- 66

tions in the rightmost panel of Fig. 6. 67

The magnetic field redistribution factor (the relative areas in 68

which vertical field exceeds the equipartition value) is roughly 69

proportional to the imposed field strength; see Fig. 7. This result 70

follows from the conservation law for the total magnetic flux, 71

B0Ŝ = BeqŜ 1 + (Ŝ − Ŝ 1)Bres, where Ŝ is the total area and Ŝ 1 72

is the area of the strong field (about the equipartition field), and 73

Bres � Beq is the final weak magnetic field (much smaller than 74

the equipartition field). This yields f = Ŝ 1/Ŝ ∝ B0/Beq. 75

As in the case of the imposed horizontal field, we find here 76

for the vertical field that the large-scale contribution indicative 77

of magnetic flux concentrations, increases as the imposed field 78

strength is increased; see Table 2. The growth of the maximum, 79

however, is significantly less steep in the vertical field case, 80

especially in Sets B and C. In Set C, B(20)
z increases by only 81

20 per cent when the imposed field increases fourfold. 82

Given that the negative effective magnetic pressure is ca- 83

pable of producing downflows in ways similar to thermal con- 84

vection, an interesting question is whether there are any notice- 85

able differences between downflows produced with and without 86

magnetic fields; Fig. 8 shows a comparison between the two 87

(Runs C00 and C1v). For horizontal fields we show above that 88

in both cases there are downflows, but it is not clear whether 89

they are significantly affected by the presence of flux concen- 90

trations. Here, the most pronounced difference occurs immedi- 91

ately in the top layer; we see large-scale patches with almost 92

vanishing velocity in the areas where strong magnetic fields are 93

present. Some extended patches are also still seen at a depth of 94

z = 6 Mm, but they are now subdominant compared with the nar- 95

rower downdrafts. However, in deeper layers (below z = 12 Mm) 96

the flow structure is similar in the two cases, except that in 97

the case with magnetic field the flow patterns are somewhat 98

smoother. A similar effect of dynamo-generated magnetic fields 99

on the small-scale flow structure has been noted by Hotta et al. 100

(2015). 101

We find that the magnetic concentrations tend to appear in re- 102

gions where large-scale convective downflows occur; see Fig. 9 103

where the temporally averaged vertical magnetic field is shown 104

along with the similarly averaged flows from Run C1v. The 105

large-scale fields were extracted by temporally averaging over 106

ten snapshots of the simulation data, each separated by 4.5 h. The 107

horizontal scale of the large-scale cells is roughly 40−50 Mm, 108

and they span the entire vertical extent of the domain. Flows 109

at these scales correspond to supergranulation in the Sun. The 110

fact that the flux concentrations are situated at the vertices of the 111

large-scale convection pattern suggests that their origin is the 112

flux expulsion mechanism proposed by Clark (1965) and Weiss 113

(1966). 114

3.3. Effective magnetic pressure 115

In our study we measure the effective magnetic pressure in order 116

to clarify the role of NEMPI in the formation of inhomogeneous 117

magnetic structures in turbulent convection. Below we define the 118

effective magnetic pressure and describe the method of its mea- 119

surement. The total turbulent stress, including the contributions 120

of Reynolds and Maxwell stresses is given by 121

Π
(f)
i j = ρuiu j + δi jb

2
/2µ0 − bib j/µ0, (23)

where δi j is the Kronecker tensor and the superscript “(f)” refers 122

to contributions from the fluctuations. The turbulent stress is 123
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Fig. 5. Top row: vertical magnetic field Bz, vertical velocity uz, and temperature T , respectively, at z = 0.6 Mm for Run C1v. The second and third
rows show vertical cuts from cuts through y = 15.9 Mm and y = −5.8 Mm. In the rightmost panels we show the δT = T −T (z) and oversaturate the
scale so that structures in the deeper layers become visible. The line plots on the last two rows show the vertical magnetic field and equipartition
field strength, and temperature at z = 0.6 Mm from the same y-positions. The red lines indicate low-pass filtered data where the filtering scale is
dsm = 6.0 Mm. The positions of the cuts are indicated as red dotted lines in the uppermost row. Animation associated with this run can be found
online and at http://research.ics.aalto.fi/cmdaa/group-Movies.shtml (Online movie).

split into two contributions that are either independent of (Π(f,0)
i j )1

or dependent on (Π(f,B)
i j ) the mean field. Their difference ∆Π

(f)
i j =2

Π
(f,B)
i j − Π

(f,0)
i j is due to the mean magnetic field and can be3

parametrized in the form4

∆Π
(f)
i j = µ−1

0

(
qsBiB j −

1
2

qpδi jB
2
− qgĝiĝ jB

2
)
, (24)

where ĝi is the unit vector along the direction of grav-5

ity. Furthermore, qs represents the contribution of turbulence6

to the mean magnetic tension and qp is the corresponding7

contribution to the mean magnetic pressure. Finally, qg refers to 8

the anisotropic contribution to the mean turbulent pressure ow- 9

ing to gravity. The effective magnetic pressure (the sum of turbu- 10

lent and non-turbulent contributions to the large-scale magnetic 11

pressure) is related to qp via 12

Peff =
1
2

(1 − qp)β2, (25)

where β = B/Beq. 13

We compute qp by performing a reference simulation with- 14

out an imposed field to find Π
(f,0)
i j and a set of simulations with 15
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Fig. 6. Horizontal slices of Bz near the surface from Runs A4v, B2v, and C2v with different box sizes. The physical scale is shown in the legend.

Fig. 7. Magnetic field redistribution factor (the relative areas in which
vertical fields exceeding the equipartition value, Bz > Beq) in runs with
vertical fields from Sets A (black), B (red), and C (blue). The dotted
lines are proportional to Beq.

a mean field to determine Π
(f,B)
i j for a given field strength. Using1

Eq. (24) in the x direction we find that it is sufficient to measure2

∆Π
(f)
xx, from which we obtain3

qp = −2µ0∆Π(f)
xx/B

2
. (26)

This expression agrees with that used in earlier work (Losada4

et al. 2014).5

Our measurements of the effective magnetic pressurePeff de-6

tected negative values in the bulk of the convection zone, roughly7

consisting of 80% of the deepest parts. In the uppermost 20% of8

the domain Peff is always positive; see the representative result9

in Fig. 10 from Run C2v. The effective magnetic pressure in the 10

middle regions of the layer between depths 2.3 and 7.0 Mm for 11

all the runs in Set A are shown in the top panel of Fig. 11. In 12

the present convection set-ups, the equipartition field strength is 13

almost a constant throughout the layer and causes the curves in 14

Fig. 11 to appear roughly as vertical lines, especially for weak 15

imposed fields. Taking data from the same depths in runs with 16

different B0 show a trend which is very similar to that seen in 17

forced turbulence with a negative Peff for weak magnetic fields 18

and positive Peff when the imposed field approaches equiparti- 19

tion; see the lower panel of Fig. 11. 20

The growth rate of NEMPI is proportional to the derivative 21

of Peff with respect to the mean magnetic field strength: 22

λ ∝

(
−2

dPeff

dβ2

)1/2

; (27)

see Kemel et al. (2013) for an imposed horizontal field and 23

Brandenburg et al. (2014) for an imposed vertical one. We find 24

that in most of our simulations the derivative of the effective 25

magnetic pressure with respect to β2 is positive (i.e. dPeff/dβ2 > 26

0) almost everywhere in the convection layer; see the representa- 27

tive result from Run C2v in the lower panel of Fig. 10. In the runs 28

with the strongest imposed vertical fields dPeff/dβ2 is negative in 29

the lower parts of the convection zone. In Runs B3v and C3v this 30

regime covers roughly half of the depth of the layer. The differ- 31

ence between the current simulations and the density-stratified 32

forced turbulence models is that in our case the equipartition 33

strength of the field is almost constant in the bulk of the convec- 34

tion zone (lower panel of Fig. 2), whereas in the latter Beq ∝
√
ρ. 35

Therefore, β varies relatively little in the bulk, which is where 36

Peff < 0. Furthermore, the derivative dPeff/dβ2 has the wrong 37

sign for the excitation of NEMPI. We have not tried to devise 38

a situation where the derivative dPeff/dβ2 would be suitable for 39

instability, although this could perhaps be achieved by using im- 40

posed or dynamo-generated fields that vary with height. 41
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Fig. 8. From left to right: vertical velocity uz from depths 18, 12, 6.0, and 0.5 Mm from a hydrodynamical run C00 (top row) and a run with
imposed vertical field C1v (bottom row). The velocity is given in units of km s−1.

Fig. 9. Temporally averaged vertical magnetic field (black and white
contours), horizontal flows (black and white arrows), and downflows
exceeding 250 m s −1 (blue contours) at a depth of 6 Mm in Run C1v.

In addition to a negative derivative dPeff/dβ2, the scale sep-1

aration ratio of turbulence needs to be sufficiently large for the2

excitation of NEMPI. DNS of forced turbulence (Brandenburg3

et al. 2011, 2013) show that, to excite NEMPI, the scale sep-4

aration ratio between the forcing scale and the size of the box5

should be larger than 15. Unlike the case of forced turbulence6

where the forcing scale can be chosen as desired, the dominant7

scale of turbulence in convection has to be estimated from the8

non-linear outcome of the instability. This can be achieved by9

finding the peak of the power spectrum of velocity. Convection10

is known to generate large-scale circulations that are considered11

large-scale structures rather than turbulence (e.g. Elperin et al.12

2002, 2006). Thus, we first extract the fluctuating part, u′, by13

subtracting the average velocity obtained by adding five snap-14

shots separated by roughly half a large-scale convective turnover15

Fig. 10. Top panel: effective magnetic pressure Peff as a function of
height for Run C2v. The solid black line shows the time averaged data,
whereas the other curves show instantaneous data from times indicated
in the legend. Bottom panel: Peff as a function of β2 in regions where
Peff < 0 for the temporally averaged data from the top panel. Red (blue)
part of the curve indicates dPeff/dβ2 > 0 (dPeff/dβ2 < 0).

time. We show power spectra of the fluctuating velocity at four 16

depths for Run C1v in Fig. 13. We also show a comparison with 17

the spectra from the full velocity field, showing that the power 18

at large scales is significantly reduced. Near the surface and at a 19

depth of 6 Mm, we find that the spectra peak at the largest possi- 20

ble scale that fits into the simulation domain. In the deeper lay- 21

ers, the peak is found near kHρ ≈ 2, which is of the same order 22
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Fig. 11. Top panel: mean effective magnetic pressure as a function of β
for the runs in Set A with vertical (black) and horizontal (red) imposed
fields for z in the range 2.3 Mm ≤ z ≤ 7.0 Mm. Lower panel: Peff

at heights z = 2.3 Mm (triangles), 4.6 Mm (diamonds), and 7.0 Mm
(stars).

of magnitude as in Kemel et al. (2013). A similar estimate is also1

found for the near-surface layers from the power spectra of the2

vertical velocity; see the lower panel of Fig. 13. This is in con-3

tradiction with the estimate obtained from the Taylor microscale,4

i.e. kωHρ (Eq. (16)), which is typically an order of magnitude5

higher than kmax corresponding to the peak of the fluctuating ve-6

locity spectra. In contrast to earlier lower resolution simulations7

(e.g. Cattaneo & Hughes 2006; Käpylä et al. 2008), we find a8

clear inertial range appearing at intermediate scales in the deeper9

layers.10

Previous work on NEMPI has shown evidence of an interme-11

diate phase during which the magnetic field at large scales (char-12

acterizing the large-scale structures) grows exponentially. This13

was possible to see by isolating the large-scale magnetic field14

through appropriate Fourier filtering. In contrast, the total mag-15

netic field, which includes the small-scale magnetic field, grows16

linearly in time, which is expected when turbulence acts on the17

applied magnetic field through tangling. The exponential evolu-18

tion of the large-scale field was taken as evidence for the exis-19

tence of a large-scale instability. To check whether similar evi-20

dence can be produced here as well, we study the early evolution21

of the largest scale Fourier components of the vertical magnetic22

field near the surface of Run C1v; see Fig. 12. However, it turns23

out that we do not find clear evidence of exponential growth for24

any wavenumber. The data is more consistent with linear growth25

suggesting that the structure formation is related to tangling of26

the field by large-scale convection. The lower panel of Fig. 1227

shows the comparison of the two largest scale Fourier modes of28

By in Run A3h and a corresponding run without backreaction29

to the flow. In the latter case NEMPI cannot occur as the field30

is passive and does not contribute to turbulent pressure. We find31

Fig. 12. Top panel: normalized Fourier amplitudes B̃(k)/B0 for the
wavenumbers k̃ = k/k1 = 1 . . . 3, where k1 = 2π/Lx, as functions of
time from a depth of 0.6 Mm in Run C1v. The inset shows the same
in linear scale. The dotted lines in the inset indicate growth linearly
proportional to time. Bottom panel: Fourier amplitudes of k̃ = 1 (solid
lines) and 2 (dashed lines) for runs A3h (black lines) and correspond-
ing runs without backreaction from the magnetic field to the flow (red
lines).

no significant difference in the growth of the large-scale modes 32

in these cases. This suggests that even though we find a nega- 33

tive contribution to the effective magnetic pressure in Run A3h, 34

NEMPI is not excited in the simulation. We conclude that the 35

lack of clear exponential growth of the structures in all the runs 36

suggests that even though the sign of dPeff/dβ2 is favourable to 37

NEMPI in some cases, the instability is not excited. 38

In an earlier study, Kitiashvili et al. (2010) attribute the 39

growth of magnetic structures to vortical flows at the vertices 40

of convection cells. They also state that “usually the process 41

starts at one of the strongest vortices”. We note that in the sim- 42

ulations of Kitiashvili et al. (2010) the aspect ratio of the box 43

is close to unity. Compared to our runs with aspect ratio four, 44

we find that only a few large-scale convection cells are present 45

in the deep layers; see Fig. 8. This suggests that most likely 46

only a single large-scale convection cell exists in the simula- 47

tions of Kitiashvili et al. (2010). This is not obvious from the 48

flows at the surface where several vortical downflows, which are 49
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Fig. 13. Top panel: power spectra of the fluctuating velocity from four
horizontal planes as indicated in the legend in Run C1v. The horizontal
wavenumber is made non-dimensional by multiplying with the density
scale height Hρ at the same depth. The dashed line shows the slope
for Kolmogorov k−5/3 scaling. The inset shows a comparison of power
spectra of the full velocity field (dashed lines) and the fluctuating ve-
locity from which the temporal average is removed (solid lines) from
two depths. Bottom panel: wavenumbers corresponding to Taylor mi-
croscale (black solid line; see Eq. (16)), and the peaks of the fluctuating
velocity power spectra (red dashed) and the fluctuating vertical velocity
(blue dash-dotted) spectra as functions of depth and normalized by Hρ.

all connected to the same large-scale downflow at deep layers,1

can be identified. Thus, in their case a single downflow plume is2

likely dominating the dynamics and concentrating the magnetic3

field, which is consistent with the interpretation in terms of flux4

expulsion.5

4. Conclusions6

We demonstrate that stratified turbulent convection leads to con-7

centrations of magnetic field from an initially uniform field. The8

area that these concentrations occupy in the volume is roughly9

proportional to the imposed field strength. We also show that the10

average size of the structures increases with the box size when11

the imposed field strength is kept constant. The strength of mag-12

netic structures at large scales is linearly proportional to the im-13

posed field for horizontal fields. For imposed vertical fields we14

find the same dependency for the smallest domain size, whereas 15

in larger domains the maximum approaches a constant value. 16

We also find a negative contribution to the effective magnetic 17

pressure, which is in agreement with earlier studies of turbulent 18

convection (Käpylä et al. 2012a, 2013). However, the magnetic 19

field in the concentrations does not grow exponentially at any 20

wavenumber, but is consistent with linear growth. This indicates 21

that the formation of magnetic concentrations is not associated 22

here with an instability like NEMPI. We find that the magnetic 23

concentrations appear in regions where downflows associated 24

with large-scale, i.e. supergranular, convection occur. This pro- 25

cess is more commonly known as flux expulsion (Clark 1965; 26

Weiss 1966; Galloway et al. 1977; Tao et al. 1998). However, 27

the role of turbulence in such flux expulsion is not yet clear. We 28

note that this process is distinct from the magnetic pumping ef- 29

fect (e.g. Nordlund et al. 1992; Tobias et al. 1998; Ossendrijver 30

et al. 2002), which is related to the inhomogeneity of turbulence 31

and leads to an effective advection of the large-scale magnetic 32

fields down the gradient of turbulence intensity (e.g. Krause & 33

Rädler 1980). This process cannot promote the growth of mag- 34

netic flux concentrations, but can lead to downward pumping of 35

the large-scale magnetic fields. 36

There are several reasons why the current simulations – 37

whose density stratifications are an order of magnitude higher 38

than in our earlier studies – are unable to excite NEMPI. The 39

excitation of NEMPI requires a negative sign of the derivative 40

of the effective magnetic pressure with respect to the large-scale 41

magnetic field. In many cases in our simulations this derivative 42

was positive, i.e. unfavourable for NEMPI. In addition, it is pos- 43

sible that the separation of scales between the system size and 44

the turbulent scale is insufficient (which in our simulations is 45

only between 1–2 when measured from the peak of the velocity 46

power spectra, while in forced turbulence the scale separation 47

ratio of around 15 is needed to observe NEMPI). Furthermore, 48

convection in the current set-up always tends to develop at the 49

largest possible scale, which increases as the domain size in- 50

creases, and which dominates the generation of magnetic con- 51

centrations. If this tendency carries over to the Sun, a naive 52

assumption is that giant cells of the order of 200 Mm should 53

be present and that they would dominate the process of mag- 54

netic structure formation. Although detection of giant cells in 55

the Sun has been reported (e.g. Hathaway et al. 2013), local 56

time-distance helioseismology appears to indicate a gaping dis- 57

crepancy between the Sun and current global simulations in that 58

the latter produce significantly too much power at large scales 59

(Hanasoge et al. 2012). Local ring-diagram helioseismology, on 60

the other hand, gives much larger convective velocities (Greer 61

et al. 2015). Nevertheless, at least circumstantial evidence sug- 62

gests that a new paradigm of convection could be needed. A 63

possible candidate is the concept of “entropy rain” (Spruit 1997; 64

Brandenburg 2015) where only a thin top layer of the convection 65

zone, perhaps only a few Mm, is Schwarzschild unstable and the 66

rest of the layer is mixed by strong downflows plunging deep 67

into the stably stratified interior. In such a scenario the largest 68

scale excited by convection would be of the order of the depth 69

of the Schwarzschild unstable layer, and thus very much smaller 70

than in the current simulations where typically the whole domain 71

is unstable. This would eliminate giant cells and also increase the 72

scale separation drastically, perhaps enabling NEMPI. However, 73

devising numerical models capturing this idea is challenging. 74

Another future step is to study the formation of magnetic 75

structures in turbulent stratified convection from the dynamo- 76

generated field similar to that of a forced turbulence (Mitra et al. 77

2014; Jabbari et al. 2014, 2015). 78
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