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ABSTRACT
The possibility of explaining shear flow dynamos in terms of amagnetic shear–current effect is examined.

Our primary diagnostics is the determination of the turbulent magnetic diffusivity tensor. Using stochastic
monochromatic forcing, we show that in the case of magnetically forced turbulence, the quasi-kinematic test-
field method yields results similar to a nonlinear method—at least for a simplified set of magnetohydrodynamic
equations. For a shear flow in they direction with negativex derivative, negative values of the componentηyx
could be suggestive of a shear–current effect and are found in some cases without rotation, but the temporal
fluctuations are generally large. In the presence of rotation in the positivez direction,ηyx is always negative,
which is due to the R̈adler effect. Both with and without rotation, small-scale magnetic fields tend to quench
the turbulent transport coefficients. We argue that the dynamos found in turbulent shear flow simulations are
mainly the result of an incoherentα–shear dynamo.
Subject headings: Sun: magnetic fields — dynamo — magnetohydrodynamics — turbulence

1. INTRODUCTION

Astrophysical bodies such as the Sun and our Galaxy har-
bour equipartition-strength magnetic fields whose energy den-
sity is comparable to the kinetic energy density. Those mag-
netic fields are produced by fluid motions through dynamo
action (Parker 1979). Shear is likely to play a major role in
amplifying the magnetic field. While shear is present in the
Sun and in the Galaxy, it is particularly important in accretion
disks. Indeed, numerical simulations have shown that accre-
tion disks can produce turbulence from a magnetic field by the
magneto-rotational instability (MRI; see Balbus & Hawley
1991, 1998), and those magnetic fields are then constantly be-
ing replenished by a dynamo instability (Moffatt 1978). This
has been seen not only in density-stratified systems (Bran-
denburg et al. 1995; Stone et al. 1996), where the dynamo
can be explained by a turbulentα effect (Krause & R̈adler
1980), but also in systems without density stratification (Haw-
ley et al. 1996), where no coherentα effect can be produced.
This led to the idea that an incoherentα–shear dynamo could
explain the large-scale magnetic fields found in shear flows.
By measuring the rms value ofα in such a shear flow with
the test-field method (TFM), Brandenburg et al. (2008a) con-
cluded that this could indeed the right explanation.

The TFM (Schrinner et al. 2005, 2007) has been used ex-
tensively over the past decade to compute turbulent transport
coefficients such as theα effect and the turbulent magnetic
diffusivity tensor (Brandenburg et al. 2008c). When one em-
ploys horizontal averages, both tensors have only four com-
ponents each. Several important results have been obtained
using theTFM; see Brandenburg et al. (2010) for a review.
For the purpose of the present work, we note that for turbu-
lent flows without stratification in density and turbulent in-
tensity and with no helicity, all components of theα tensor
turn out to vanish within error bars, as expected. The diag-
onal components of the turbulent magnetic diffusivity tensor,
ηij with i, j = x, y are usually always finite and positive. Its
off-diagonal components are in general also finite if there is
rotation or shear. In conjunction with shear, dynamo action
from both effects is possible. The former is generally referred
to asΩ×J or Rädler effect (R̈adler 1969a,b). The latter effect
is referred to as the shear–current (SC) effect (Rogachevskii

& Kleeorin 2003, 2004) and can, for a suitable sign of the
relevant off-diagonal component ofηij , lead to dynamo ac-
tion even without rotation. Both the Rädler and SC effects
have been discussed as additional or even major dynamo ef-
fects in stars (Pipin & Seehafer 2009), accretion disks (Lesur
& Ogilvie 2008; Blackman 2010), and galactic magnetism
(Chamandy & Singh 2018).

In the kinematic and quasi-kinematic situations, that is, if
the background turbulence is formed solely by velocity fluc-
tuations, the turbulent transport coefficients can be computed
from the full knowledge of the velocity field alone. How-
ever, when one talks about themagnetic Rädler or SC effects,
that is, effects which are due to a magnetic background tur-
bulence (Squire & Bhattacharjee 2015a) this may not be the
case anymore. A clear example when this distinction makes
a decisive difference is the magnetically forced Roberts flow
(Rheinhardt & Brandenburg 2010, hereafter RB10). Unlike
the kinetically forced Roberts flow (Feudel et al. 2003), where
a suitable volume forcing is applied in the momentum equa-
tion, and analogous forcing is applied underneath the curl on
the right-hand side of the induction equation. For the Roberts
flow, there is anα effect that can be computed using theTFM.
In the special case when the magnetic field has no variation
in the z direction, the horizontally averaged mean magnetic
field is just a constant and there is no mean current density.
This allows for an independent verification of the values of the
α components by computing the electromotive force result-
ing from an imposed magnetic field (imposed field method).
The result from a nonlinearTFM (NLTFM), designed to deal
with a magnetic background turbulence, and the imposed field
method were found to agree, but were different from those of
the quasi-kinematicTFM (QKTFM; see RB10). TheQKTFM
produced even the wrong sign ofα. Thus, the distinction be-
tween kinetically and magnetically driven flows can be essen-
tial.

It is an open question whether a magnetically forced system
corresponds to any physical system. It is possible that it could
model the case of a system in which a small-scale dynamo
operates, but there is no clear indication in support of such
an assertion. Likewise, it is unclear when exactly theQKTFM
breaks down. For example, in the case of helically forced
high Reynolds number turbulence, Brandenburg et al. (2008a)
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found turbulent transport coefficients with theQKTFM that
were consistent with what is expected from quenchedαij and
ηij tensor components. In their experiments, the magnetic
Reynolds number was up to 20 times larger than the criti-
cal value for small-scale dynamo action in a nonhelical flow
(Haugen et al. 2004), and yet, no evidence for a breakdown of
theQKTFM was found.

Coming back to the SC effect, numerical simulations using
the QKTFM with a shear flow∂Uy/∂x = S < 0 have re-
sulted in a positive value ofηyx, which cannot yield dynamo
action (Brandenburg 2005a). TheTFM results were consis-
tent with those of analytic approaches (Rädler & Stepanov
2006; R̈udiger & Kitchatinov 2006; Sridhar & Singh 2010;
Singh & Sridhar 2011). Simulations have shown, however,
that large-scale magnetic fields can be generated in nonheli-
cal shear flows (Brandenburg 2005b; Yousef et al. 2008a,b;
Brandenburg et al. 2008a). This was associated either with an
incoherentα–shear dynamo (Vishniac & Brandenburg 1997)
or with some other type of shear dynamo (Yousef et al. 2008a;
Heinemann et al. 2011). There is some evidence, however,
that these are actually the same mechanism (Mitra & Bran-
denburg 2012; Sridhar & Singh 2014; Jingade, Singh & Srid-
har 2018).

The idea of an SC effect has been reinvigorated by Squire
& Bhattacharjee (2015a,b, 2016), who presented evidence for
amagnetic SC effect. They first studied the case of a magnet-
ically forced shear flow and later also the kinetically forced
case, where small-scale dynamo action was present. The main
evidence was obtained by measuring negativeηyx both in
magnetically forced and small-scale dynamo-active flows. At
that time, only theQKTFM was applied, hence the verification
of this result with theNLTFM is now in order.

In the presence of rotation, as already mentioned above,
there is another important turbulence effect known as the
Rädler effect (R̈adler 1969a,b). In order for it to lead to dy-
namo action, shear is needed to stretch the magnetic field, but
this is not a turbulence effect and hence distinct from the SC
effect. Yousef et al. (2008b) showed that the presence of rota-
tion is not very important and that the dynamo appears similar
both with and without rotation. However, this does not consti-
tute evidence for the existence or even dominance of the SC
effect, because other mechanisms such as the incoherentα–
shear dynamo could operate equally well both with and with-
out rotation. Since rotation has been invoked in several recent
papers (Squire & Bhattacharjee 2015a,b, 2016), it will be im-
portant to consider both cases separately when determining
ηyx.

The purpose of the present work is to compute theαij and
ηij tensors for shear flows with and without rotation using the
NLTFM and compare with theQKTFM. TheNLTFM has been
developed so far only for the analysis of a simplified system
of magnetohydrodynamic (MHD) equations without the self-
advection term, i.e., without theu · ∇u nonlinearity for the
velocityu and without the pressure gradient term. We call this
simplifiedMHD (SMHD), which we compare against fullMHD
under comparable conditions to assure ourselves that this sim-
plification is not critical to our results.

In some cases, we also inspect the actual dynamo process
occurring in our models. We verify that it is broadly con-
sistent with earlier models of turbulent shear flow dynamos
studied in the literature. As well as shown in some of the
earlier papers, the fluctuations in the instantaneous and local
value ofαij are sufficient to explain the dynamo action occur-

ring in the those models. By comparison, theηyx was already
found to be of the wrong sign for providing a possible expla-
nation for the observed dynamo process. To study whether
the importance of small-scale dynamo action or even of mag-
netic forcing changes this picture, we study a range of mod-
els and measureηyx using different approaches. This helps
building some confidence in the validity of those approaches
and allows us to determineηyx with sufficient accuracy as the
importance of the small-scale fields changes. We begin by
exposing those approaches and the different analysis toolsin
Sect. 2. Next we present results for the various combinations
of approaches and tools in turn in Sect. 3. We conclude in
Sect. 4.

2. THE BASIC MODEL

In this section we present the basic equations forSMHD and
MHD and describe theNLTFM andQKTFM.

2.1. SMHD

As stated in the introduction, the equations ofSMHD are
similar to those ofMHD, but without self-advection of the flow
and without the pressure gradient. The momentum equation
is then analogous to the uncurled induction equation for the
magnetic vector potential and we have

DxyA=U ×B + FK + η∇2A, (1)

D2Ω
yxU =J ×B + FM + ν∇2U , (2)

whereDa
ij = ∂/∂t + S(x̂ix̂j + x∂/∂y) − aǫijz is the shear

operator (which also includes rotation ifa 6= 0), so

DxyA=∂A/∂t+ S(x̂Ay + x∂A/∂y), (3)

D2Ω
yxU =∂u/∂t+ S(ŷUx + x∂U/∂y) + 2Ω×U , (4)

B = ∇×A is the magnetic field,J = ∇×B is the current
density in units where the vacuum permeability is unity,FK

andFM are kinetic and magnetic forcing functions, respec-
tively, U is the velocity,η is the magnetic diffusivity, andν is
the kinematic viscosity. The main advantage of usingSMHD
is its simplicity, which allows for the development of an anal-
ogousTFM for both equations, as will be reviewed next. The
full details are described in RB10.

2.2. NLTFM

The evolution equations for the fluctuations in the magnetic
vector potentiala = A−A and the velocityu = U −U are
given by

Dxya=U × b+ u×B + (u× b)′ + fK + η∇2a, (5)

D2Ω
yxu=J × b+ j ×B + (j × b)′ + fM + ν∇2u, (6)

where fluctuations are either denoted by lowercase symbols,
b = B −B for the magnetic field,j = J −J for the current
density,fK/M = FK/M−FK/M for the forcing functions, or
by primes. Specifically, we have(u×b)′ = u×b−u× b, and
likewise for(j×b)′ = j×b−j × b. We solve these equations
not for the actual mean field resulting from the solutions of
Equations (1) and (2), but rather for a set of test fields,BT,
namely

B1 = (cos kz, 0, 0), B2 = (sin kz, 0, 0), (7)

B3 = (0, cos kz, 0), B4 = (0, sin kz, 0), (8)
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wherek = 2π/Lz is the wavenumber of the test field. From
the solutions of Equations (5) and (6) we can construct the
mean electromotive force,E = u× b and the mean pondero-
motive force,F = j × b, which are then expressed in terms
of the mean field by the ansatzes

E i = αijBj − ηijJj , (9)

F i = φijBj − ψijJj . (10)

Each of the four tensors,αij , ηij , φij , ψij , has four compo-
nents, i.e., altogether we have 16 unknowns.

The QKTFM, considered as a functional ofu, E, andB,
is linear inB. A difficulty encountered in the more general
case lies in the fact that this is now a priori no longer the
case. To deal with this difficulty, RB10 introduced auxiliary
fields,u0 andb0, which obey evolution equations similar to
Equations (5) and (6), but for zero mean field. In this way, one
can splitE into a contributionu0 × b0 that is independent of
the mean field and a contribution

E
B̄

= u0 × b
B̄
+ u

B̄
× b0 + u

B̄
× b

B̄
, (11)

which, usingu = u0 + u
B̄

andb = b0 + b
B̄

, can be written
in two equivalent ways as

E
B̄

= u× b
B̄
+ u

B̄
× b0 = u0 × b

B̄
+ u

B̄
× b. (12)

Both are linear functionals of quantities with subscriptB.
Likewise, one writes the ponderomotive force as

F
B̄

= j × b
B̄
+ j

B̄
× b0 = j0 × b

B̄
+ j

B̄
× b ; (13)

see Equations (29) and (30) of RB10. We recall that, although
the two formulations in Equations (12) and (13) are mathe-
matically equivalent, they have different stability properties.
Here we chose to use in each of them the first one. This im-
plies thatj andu are taken from the main run, which is why
this is called theju method; see Table 1 of RB10.

This qualitative description of theNLTFM should suffice to
grasp the essentials of this method. Again, for details we refer
to RB10.

2.3. QKTFM

We now state here for comparison the governing equations
for theQKTFM. They consist of solving just Equation (5), but
not Equation (6). The functional is then a linear one, because
the velocity from the background simulation is used, so it ig-
nores any influence of the test field. In that case, we only use
Equation (9), and Equation (12) reduces simply to

E
B̄

= u× b
B̄

(QKTFM). (14)

Again, those details are discussed in full detail in RB10 and
were used in Brandenburg et al. (2008b).

2.4. MHD

The full MHD system of equations is more complex because
of the occurrence of the pressure gradient, so we have an addi-
tional evolution equation for the density, and also the diffusion
operator is more complex, namely

DxyA=U ×B + FK + η∇2A,

ρ(D2Ω
yx +U ·∇)U +∇p=J ×B + ρFM +∇ · (2νρS),

(D +U ·∇) ln ρ=−∇ · u. (15)

Here,Sij = (Ui,j +Uj,i)−
1
3
∇ ·u are the components of the

rate-of-strain tensorS, where commas denote partial differen-
tiation,D without subscripts is∂/∂t + S∂/∂y, andp is the
pressure related to the density viap = c2sρ, with cs = const
being the isothermal sound speed.

2.5. The resetting procedure

The TFM is usually unstable, but this does not usually af-
fect the values of the resulting turbulent transport coefficients,
unless one runs over times that are so large that numerical
errors become too large. This is why we always reset the
small-scale field to zero in regular intervals (usually every
50 turnover times). In the absence of shear, the instability
of the TFM turns out to be particularly large. In that case,
we ignore all data where the normalized rms value of the TF,
βT = bTrms/Btot, with B2

tot = ρU2
rms + B2

rms exceeds a cer-
tain critical value. We will show below that comparison with
a critical value twice as large results in almost the same setof
transport coefficients.

2.6. Simulation parameters

The simulations are characterized by magnetic Prandtl and
Reynolds numbers as well as the Lundquist number,

PrM = ν/η, ReM = Urms/ηkf , Lu = Brms/ηkf . (16)

In addition, shear and rotation are characterized by kinetic
shear and Coriolis numbers,

ShK = S/Urmskf , CoK = 2Ω/Urmskf . (17)

Alternatively, especially for magnetically driven runs, it is ad-
vantageous to use the magnetic shear and Coriolis numbers,

ShM = S/Brmskf , CoM = 2Ω/Brmskf . (18)

The aspect ratios areAzx = Lz/Lx andAzy = Lz/Ly,
whereLx, Ly, andLz are the lengths of the computational
domain in all three directions. Unless specified otherwise,we
setAzy = Azx, i.e., the ratioAyx = Ly/Lx is unity. We
define as the basic wavenumberk1 = 2π/Lx. Velocities are
often normalized bycs and the magnetic field is normalized
by the equipartition field strength,Beq = 〈ρu2〉1/2.

In most of the runs, we findηxx ≈ ηyy. It is then advan-
tageous to defineηt = (ηxx + ηyy)/2 as the isotropic con-
tribution to the turbulent magnetic diffusivity tensor. Insome
cases we quote the ratiorη = ηyy/ηxx of the two diagonal
components.

3. RESULTS

We begin by presenting results for magnetically forced
SMHD using theNLTFM. This allows for a mathematically
consistent system whose mean-field properties can be ana-
lyzed rigorously. We then demonstrate the similarity of the
results using theQKTFM applied first toSMHD and then to
full MHD, before applying it to kinetically forcedMHD. We
do not specifically discuss here the possibility of generating
large-scale magnetic fields and the nature of such a process,
which is not a standard dynamo owing to the magnetic forc-
ing.

3.1. NLTFM applied to magnetically forced SMHD

We present first the case of magnetically forcedSMHD at
small values of ReM and Lu and compare two different forc-
ing wavenumbers,kf/k1 = 5 and 20, and analyze those sys-
tems with theNLTFM. We compare here cases with ShM =
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TABLE 1
DEPENDENCE ONkf FOR ShM = −0.20 AND CoM = 0 IN

MAGNETICALLY FORCED SMHD ANALYZED WITH THE NLTFM .

kf ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η

5 13 17 4.6± 0.2 4.6± 0.2 2.2± 0.4 −0.1± 0.1
20 16 22 6.4± 0.1 6.5± 0.1 0.6± 0.1 −0.0± 0.1

TABLE 2
DEPENDENCE ON ASPECT RATIO FORShM ≈ −0.17, CoM = 0,

ReM ≈ 80 AND Lu ≈ 110. MAGNETICALLY DRIVEN TURBULENCE
ANALYZED WITH THE NLTFM .

Azx ηxx/η ηyy/η ηxy/η ηyx/η

1 26.9± 0.5 27.7± 0.7 5.4± 0.2 −0.0± 0.1
4 27.0± 0.8 30.8± 0.8 7.9± 0.8 0.1± 0.1

16 28.6± 0.6 31.6± 0.8 10.5± 0.6 0.1± 0.1

TABLE 3
SIMILAR TO TABLE 1, BUT FOR CoM ≈ 1.5.

Azx ηxx/η ηyy/η ηxy/η ηyx/η

1 27.2± 0.2 31.6± 0.4 10.9± 0.3 −2.7± 0.3
4 28.7± 1.0 34.5± 1.2 12.6± 1.1 −2.1± 0.2

16 42.7± 1.6 49.2± 1.8 65.9± 6.0 −2.2± 0.2

−0.20 (corresponding to ShK = −0.26), but no rotation. It
turns out that the resulting value ofηyx is compatible with
zero in both cases; seeTable 1. The resolution is in both cases
2883 mesh points. We recall that the values of ReM and Lu
are defined in terms ofkf . Thus, forkf/k1 = 20, the grid
Reynolds number,urmsδx/ν is four times larger, which is in
the present example about 14, which does already exceed the
typical value that can be simulated at that resolution. We see
however, that the components ofηij are similar.

Next, we compare three different aspect ratiosAzx = Azy

by making the computational domain taller, allowing us to
computeηij for vertical wavenumbersk less thank1. The
result is shown inTable 2 for Azx = 1, 4, and 16 using
ReM ≈ 80 and Lu≈ 110. Here the resolution is1442 × 576
meshpoints. Again, it turns out thatηyx is compatible with
zero, except possibly for the run with aspect ratio16, where
ηyx/η is −0.3 ± 0.2, but here the numerical error may be
unrealistically small. Furthermore, in no case doesηxy ever
vanish. This is interesting in view of the fact that the corre-
lation method (see Brandenburg & Sokoloff 2002) tends to
yield negativeηyx only if one imposesηxy = 0 as an ad-
ditional constraint (Squire & Bhattacharjee 2015a; Shi et al.
2016).

Next, we consider the case with rotation using CoM ≈ 1.5.
The result is shown inTable 3, again for aspect ratios of one,
four, and 16. In these runs we have ReM ≈ 80 and Lu≈ 130.
The sign ofηyx is now indeed negative, as would be required
for dynamo action by the SC effect. Interestingly, the value
of ηyx is approximately independent of the aspect ratio and
of the wavenumber of the magnetic field. Thus, the idea that
large aspect ratios may be important, as suggested by the MRI
simulations of Shi et al. (2016), may not be borne out by the
present simulations where turbulence is magnetically driven.

In Table 4we show the dependence of the components of
−ηij on CoM. The results show thatηyx increases with CoM,
until it reaches a maximum of−ηyx at CoM ≈ 1 and then de-
creases again. What is curious, however, is thatηyx is approx-

TABLE 4
DEPENDENCE ON ROTATION RATE FORShM = −0.15 AND 0 USING

Azx = 4. MAGNETICALLY DRIVEN SMHD WITH NLTFM .

CoM ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η

−1.5 82 132 36.5± 0.4 35.5± 0.5 18.4± 0.9 −1.0± 0.1
−0.4 82 111 33.1± 1.7 36.5± 2.8 16.7± 3.4 −1.2± 0.1

0 115 115 26.0± 1.3 28.9± 2.0 7.2± 1.1 0.0± 0.1
0.4 82 111 35.6± 0.7 41.0± 1.9 34.2± 2.8 −2.1± 0.1
1.5 82 127 28.7± 1.0 34.5± 1.2 12.6± 1.1 −2.1± 0.2
5.7 22 53 12.3± 0.7 13.4± 0.7 10.7± 1.9 −0.4± 0.1

TABLE 5
DEPENDENCE ON SHEAR AND ROTATION RATES ATReM ≈ 80 AND

Lu ≈ 120 FOR MAGNETICALLY DRIVEN TURBULENCE ANALYZED WITH
THE NLTFM. THE ASTERISK DENOTES A RUN WHERE THE ZERO

SOLUTION IS FORCED. IT IS STILL SHORT, SO THE ERRORS ARE LARGE.

−ShM CoM βT ηxx/η ηyy/η ηxy/η ηyx/η

0.15 1.5 2404 28.8± 1.0 34.6± 1.2 12.7± 1.1 −2.1± 0.2
0.15 1.5 < 200 28.7± 1.0 34.5± 1.2 12.6± 1.1 −2.1± 0.2

0 1.6 < 200 25.8± 0.4 26.0± 0.5 2.0± 0.5 −1.4± 0.3
0 1.6 < 800 22.1± 0.2 22.3± 0.1 −1.6± 0.0 1.3± 0.0
0* 1.6 < 800 36.0± 1.4 38.0± 1.0 0.1± 1.3 1.1± 0.8
0 −1.6 < 800 36.5± 0.6 35.5± 1.1 18.5± 0.9 −1.0± 0.1

imately independent of CoM. By contrast, in the absence of
shear, we expectηxy = −ηyx to change sign whenΩ changes
direction. In the absence of shear, this is still true, as will be
confirmed in a moment.

The results presented above suggest that the negativeηyx is
mainly a consequence of rotation and not of shear. In order
to test this, we now also compare with the case without shear.
The result is shown inTable 5, where we compare cases with
finite rotation (CoM ≈ 1.6, corresponding here to CoK ≈
2.5), and either finite shear (ShM = −0.15, corresponding to
ShK = −0.24) or zero shear. The run with ShM = −0.15 and
CoM ≈ 1.5 is the same as that inTable 4for CoM ≈ 1.5. It
turns out that without shear,|ηyx| decreases to about half the
value it has with shear. Thus, shear does clearly contributes
to enhancing|ηyx|, but it requires the presence of rotation.
Furthermore, we always haveηxy = −ηyx in the absence of
shear. This corresponds to the Rädler effect where

E = ...+ δΩ× J , (19)

with δ = (ηxy − ηyx)/2 being positive (negative) for positive
(negative) values of CoM or CoK. This is the same sign as
for in kinetically driven turbulence; see Brandenburg et al.
(2008a).

As explained in Sect. 2.5, the evolution equations advanced
by TFM are usually unstable and grow exponentially for suffi-
ciently large values of ReM, so we need to reset the response
to the test field to zero in regular intervals. In our runs without
shear, the instability of theTFM is particularly large. In that
case, we ignored all data whereβT exceeds a critical value of
400. Comparison with a critical value twice as large resulted
in almost the same set of transport coefficients; see rows 3 and
4 in Table 5.

3.2. Comparison with full MHD and kinetically forced cases

The results presented above have all been obtained using
SMHD, because this allowed us to apply theNLTFM. Be-
fore comparing with fullMHD, we first use theQKTFM on
magnetically forcedSMHD to see whether this method pro-
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TABLE 6
COMPARISON BETWEEN STEPS0–3; SEE TEXT. ALL RUNS HAVE

CoK ≈ 1.5.

Step ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η

0 81 126 28.3± 0.6 34.0± 0.7 12.2± 0.6 −2.2± 0.1
1 81 127 30.8± 1.1 36.7± 1.3 18.6± 1.9 −2.2± 0.0
2 82 143 18.3± 1.0 22.7± 1.0 7.2± 0.4 −3.0± 0.3
3 71 36 15.9± 0.3 23.0± 1.0 12.4± 1.0 −1.2± 0.2

TABLE 7
SIMILAR TO TABLE 6, BUT FOR CoK = 0.

Step ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η

0 116 118 26.1± 0.5 29.6± 0.6 6.2± 0.4 0.2± 0.1
1 114 114 25.4± 0.7 27.8± 0.5 6.9± 0.6 −0.0± 0.1
2 59 58 11.1± 0.2 11.1± 0.2 1.8± 0.1 0.0± 0.0
3 97 26 34.2± 3.0 32.8± 2.8 20.6± 2.7 −0.4± 0.4

TABLE 8
COMPARISON OF THE FOUR METHODS FORSTEP 0 OF TABLE 7 SIMILAR

TO TABLE 6, BUT FOR CoK = 0.

Method ηxx/η ηyy/η ηxy/η ηyx/η

ju 47.4± 1.9 43.8± 1.2 3.5± 0.4 2.9± 0.4
bu 37.7± 1.3 40.2± 1.6 2.6± 0.2 0.4± 0.0
jb 2.8± 0.3 2.6± 0.3 0.5± 0.1 0.0± 0.0
bb 2.7± 0.3 2.5± 0.3 0.5± 0.0 0.0± 0.0

duces incorrect results (step 1). We can then apply theQK-
TFM to full MHD (step 2). Finally, we apply is to kinetically
forcedMHD where small-scale magnetic fields are produced
by small-scale dynamo action (step 3). The results of these
three steps are shown inTable 6and compare with the origi-
nal model (step 0).

Remarkably, the results forηyx are almost unchanged
(within error bars) as we go from theNLTFM to theQKTFM,
althoughηt is reduced to about one half. Finally, when chang-
ing to kinematic forcing,ηt remains roughly unchanged, but
nowηyx changes to about one half of its former value.

Importantly, however, in all four cases,ηyx has the same
sign. Furthermore, the ratioηyx/ηt is roughly the same in the
case of magnetically forcedSMHD analyzed withNLTFM and
in kinetically forcedMHD analyzed with theQKTFM.

The comparison between the four steps was shown inTa-
ble 6for CoK ≈ 1.5, but similar results are also obtained for
CoK = 0; seeTable 7, except that now the values ofηyx are
generally closer to zero and more strongly fluctuating.

We now stick with kinetically forced models, keep analyz-
ing the flow with theQKTFM, and vary ReM. Except for one
case, we fix PrM = 1, but Lu varies because bothη andbrms

vary. In one case we have Lu= 0, which has been achieved
by setting the initial seed magnetic field to zero. The resultis
shown inTable 9. It turns out thatηyx does not change much
as we increase ReM from 28 to 185, and Lu increases from
11 to 163. Surprisingly, however, the run without small-scale
dynamo (Lu= 0) turns out to have an even more negative
value ofηyx. Also the diagonal components ofηij have in-
creased by more than a factor of two. This could be compati-
ble with the interpretation that the small-scale dynamo results
in an overall suppression of turbulent transport rather than the
generation of its own dynamo effect.

Here the aspect ratio is four, but the results are similar also

TABLE 9
K INETICALLY DRIVEN TURBULENCE ANALYZED WITH THE STANDARD

TFM FOR ShK ≈ −0.3 AND CoK ≈ 3.

PrM ReM Lu ηt/η rη ηxy/η ηyx/η

1 28 11 7.7± 0.1 1.5 5± 0.3 −0.8± 0.1
1 72 37 20± 0.7 1.5 12± 1 −1.2± 0.2
1 85 0 56± 0.9 1.3 45± 2 −5.7± 0.6

20 186 156 19± 0.4 1.2 −10± 2 −1.1± 0.1

TABLE 10
ReM-DEPENDENCE FOR KINETICALLY FORCED TURBULENCE.

ReM Lu ηt/η rη ηxy/η ηyx/η

0.4 0 0.04 1.05 0.01 0.005
1.4 0 0.4 1.02 0.17 0.06
2.1 0 0.8 1.02 0.42± 0.02 0.11± 0.01
11 0 12 1.12 6± 0.6 0.3± 0.2
18 0 20 1.11 8± 0.5 0.1± 0.1
33 8 32 1.11 15± 0.3 0.1± 0.0
61 20 35 0.99 14± 0.5 −0.5± 0.0

TABLE 11
PrM EFFECT FOR KINETICALLY FORCED TURBULENCE.

PrM ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η

1 61 20 35.4± 0.7 35.0± 0.6 13.6± 0.5 −0.5± 0.0
20 85 93 24.5± 1.3 24.7± 1.4 6.5± 1.1 0.4± 0.0

for unit aspect ratio; seeTable 10, where we present results
for PrM = 1 in tabular form. For kinetically forced turbu-
lence, the components ofηij were already computed by Bran-
denburg et al. (2008a) and then by Squire & Bhattacharjee
(2015b); see their Figure 5. The results agree qualitatively in
sign and slope with those of Brandenburg et al. (2008a) for
Re = 1.4 and variable PrM, but in the present case, small-
scale dynamo action is possible, as is indicated by the finite
values of Lu.

We stress that the negative values ofηyx/η for ReM = 61,
as given inTable 10, are the result of temporal averaging over
more than 10,000 turnover times. The fluctuations are large;
seeFig. 1. In comparison with the incoherentα–shear dy-
namo, this makes the magnetic SC effect an implausible can-
didate for explaining dynamo action in such systems. The
other components ofηij are also strongly fluctuating, but
there is always a well-defined and nonvanishing average both
for ηxy/η andηt/η.

It is interesting to note that a large magnetic Prandtl number
is not always beneficial. InTable 11we show a corresponding
example where, at least forAzx = 1, no negative value ofηyx
is found.

It also turns out that the small-scale dynamo effect plays
a surprisingly small role in affecting the SC effect. This is
shown inTable 12, where we see that there is no difference
in ηyx between runs with and without small-scale dynamo.
This is different from the case when there is also rotation,
as we have seen inTable 9where in the absence of a small-
scale dynamo (Lu= 0), we foundηyx/η = −5.7, while with
small-scale dynamo (Lu= 36), we foundηyx/η = −1.3.

Thus, we can conclude that a negativeηyx can be obtained
using both magnetically and kinetically forced turbulence, us-
ing bothMHD andSMHD, analyzed either with theNLTFM or



6

FIG. 1.— Fluctuations ofηyx/η (top) andηxy/η, along withηt/η in red
(bottom). In the top panel, the temporal averageηyx/η (red) is only slightly
below the zero line (white).

TABLE 12
SMALL -SCALE DYNAMO EFFECT FOR KINETICALLY FORCED

TURBULENCE, ANALYZED WITH QKTFM .

ReM Lu ηt/η rη ηxy/η ηyx/η

86 94 24.6± 1.3 1.01± 0.00 6.5± 1.1 0.4± 0.0
49 0 7.2± 0.3 7.4± 0.3 4.1± 0.5 0.5± 0.1

theQKTFM.
In Table 13we show additional runs without rotation. They

show thatηyx is either small or positive, being an unfavorable
sign for dynamo action. Nevertheless, these runs all exhibit
both small-scale and large-scale dynamo action; seeFig. 2.
The growth rate of the small-scale dynamo can be determined
as λ = d lnBrms/dt during the early phase, and we find
λ = 0.045urmskf , which is similar to what has been obtained
before (Haugen et al. 2004). During a later phase, horizontally
averaged mean magnetic and flow fields are being generated.

In Fig. 3we show the resulting mean magnetic fields. They
are superficially similar to those found previously for other
forced shear flows; see Yousef et al. (2008a) and Branden-
burg et al. (2008a). In this particular run with PrM = 20, the
velocity is obviously much smoother than the magnetic field.
This is evident from snapshots of the toroidal velocity and
magnetic fields; seeFig. 4. We also clearly see the presence
of a mean flow, which is due to what is referred to as a vor-
ticity dynamo; see Elperin et al. (2003); Käpyl̈a et al. (2009).
Yousef et al. (2008b) found that its presence does not affect
the shear-flow dynamo. To confirm this for the present runs,
we show inFig. 5 the same run as inFig. 3, but with rotation
q = 1, corresponding here to CoK = 0.9 (or CoM = 0.64).
There is now no mean flow, but the mean magnetic field is
qualitatively similar in both cases and compatible with what

FIG. 2.— Evolution of rms values ofxy averaged magnetic field (solid line),
yz averaged field (dotted), andxz averaged field (dashed). The dash-dotted
slopes denote growth rates (i)0.045urmskf , and (ii)0.002urmskf . The inset
shows similarly horizontal averaged rms velocities.Brms andUrms versus
t.

FIG. 3.— Horizontally averaged velocity and magnetic fields as a function
of t andz for the run with CoK = 0 of Table 13.

FIG. 4.— Snapshots ofUy andBy at the last time.

has been found in earlier shear flow dynamos.
With all these preparations in place, we can finally turn to

the case without any driving and consider the case when tur-
bulence is driven by just the MRI. Since the MRI is a finite
amplitude instability, we used as initial condition a solution
where kinetic forcing was turned on. The results are shown
in Table 14, again for different values of ReM, ranging now
from 14 to 155 and Lu ranging from 123 to 477. All cases are
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FIG. 5.— Similar toFig. 3, but for the run with CoK = 0.9 of Table 13.

TABLE 13
K INETICALLY DRIVEN TURBULENCE FOR PrM = 20, Lu ≈ 230,

ShM = −0.33, AND Azx = 1 ANALYZED WITH THE STANDARD TFM .

CoK −ShK ReM ηxx/η ηyy/η ηxy/η ηyx/η

0 0.25 304 67± 3 70± 3 17± 3 +1.7± 0.2
0.9 0.45 170 46± 1 50± 1 14± 1 −1.8± 0.3

TABLE 14
RESULTS FORMRI-DRIVEN TURBULENCE WITH PrM = 20, Azx = 4

AND Azy = 4 (Azy = 1) DENOTED WITHOUT (WITH) ASTERISK.

ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η
∗14 123 1.0± 0.3 1.0± 0.3 1.8± 0.3 0.0± 0.0

29 161 2.8± 1.6 2.6± 1.6 4.1± 2.1 0.1± 0.1
58 204 13.0± 0.4 12.7± 0.4 19.9± 1.8 0.5± 0.1

122 440 17.7± 2.9 17.3± 2.8 17.1± 2.4 0.5± 0.1
∗155 477 42.2± 4.1 45.4± 4.5 26.8± 0.7 0.8± 0.1

for PrM = 20. We see that, toward smaller values ofΩ, ηyx
remains positive. At the same time, the value ofηxy remains
comparable to those ofηxx andηyy. In particular,ηyx is pos-
itive, so it would not be suitable for explaining the large-scale
dynamo action found in this run. The dynamo can therefore
neither be explained by the magnetic nor by the ordinary SC
effect. This agrees with earlier results by Gressel (2013) and
Gressel & Pessah (2015) using theQKTFM, but disagrees with
those of Shi et al. (2016) using the correlation method (Bran-
denburg & Sokoloff 2002).

4. CONCLUSIONS

Our work has illuminated the possible importance of small-
scale magnetic fields on the components of the turbulent mag-
netic diffusivity tensor in mean-field electrodynamics. Those
small-scale magnetic fields could be the result of small-scale
dynamo action, but in simulations they could also be driven by

applying magnetic forcing. In particular, we have inspected
the possibility that for shear-flow turbulence, large-scale mag-
netic fields could be produced by the SC effect, which im-
plies that the poloidal magnetic field is replenished by the
off-diagonal component of the turbulent magnetic diffusivity
tensor acting on the toroidal magnetic field. This component
must have the same sign as the corresponding component of
the velocity gradient matrix for this effect to work. We found
that this component can, under certain circumstances, havea
suitable sign, but it is dominated by strong fluctuations, mak-
ing it an implausible candidate.

In shear flows with rotation, the relevant off-diagonal com-
ponent of the magnetic diffusivity tensor is less strongly fluc-
tuating and is found to have the same sign as in the absence
of small-scale magnetic fields. In that case, the effect of the
small-scale magnetic field is primarily a suppression of the
turbulent transparent coefficients, including both the turbulent
diffusivity and the R̈adler effect, which yields a contribution
to the electromotive force proportional toΩ× J .

Comparing both quasi-kinematic and fully nonlinear TFMs,
we found no indication for a genuinely magnetic effect that
can only be described by a fully nonlinear method. In fact,
the only case where a genuinely magnetic effect was found
is the magnetically forced Roberts flow (RB10). Such a flow
lacks Galilean invariance and depends on the position of the
forcing function. By contrast, the flows considered here are
Galilean invariant owing to theδ-correlated nature of the forc-
ing. While it would be of interest to pursue the possibil-
ity of a magnetic SC effect in the presence of flows lacking
Galilean invariance, this question is not directly connected
with the original goal of explaining the dynamo action found
in numerical shear flow experiments that were all caused by
Galilean invariant flows. A leading candidate for explain-
ing such magnetic field generation is the incoherentα–shear
dynamo (Vishniac & Brandenburg 1997). This mechanism
was originally applied to the dynamo action found in unstrat-
ified accretion disks (Hawley et al. 1996), which are rotating
shear flows. Subsequently, large-scale fields were found also
in nonrotating shear flows (Brandenburg 2005b; Yousef et al.
2008a), and the same incoherentα–shear dynamo was found
to work also in those.

Of course, real accretion disks are not only rotating, but
they are also stratified, so large-scale magnetic fields can then
be produced by a coherentα effect, as was already found in
Brandenburg et al. (1995). Furthermore, the presence of non-
periodic boundary conditions may be important in producing
large-scale magnetic fields, especially at low magnetic Prandtl
numbers (K̈apyl̈a & Korpi 2011), where dynamo action may
otherwise not be possible (Lesur & Longaretti 2007).

Finally, we may speculate that earlier suggestions for a
magnetic SC effect may have suffered from the assumption
that thexy component of the turbulent magnetic diffusivity
tensor is zero. While this component is not “needed” for dy-
namo action, our present work shows that it was small. Re-
laxing this assumption can imply an unfavorable sign ofηyx,
as detected by the correlation method (Amelia Hankla, private
communication).
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