January 7, 2017, Revision: 1.4

1 Background

Recent simulations suggest that shear-current effect might exist in the presence of a small-scale dynamo (Squire & Bhattacharjee, 2016). Earlier work using the TFM was entirely kinematic (Brandenburg et al., 2008). Here are now new quasi-kinematic calculations showing that η_{21} has still the wrong sign if there is a small-scale dynamo. Next, we may need to invoke the fully nonlinear method, which has not been one yet.

As in Brandenburg et al. (2008), we use $k_{\rm f} = 5$. In the first panel of Fig. 1, $u_{\rm rms}$ is shown in blue and $B_{\rm rms}$ in red. As in Singh et al. (2017), $u_{\rm rms}$ increases because of shear while $B_{\rm rms}$ saturates around 0.06. This value of $B_{\rm rms}$ remains similar even when \Pr_M is changed (Figures 2 and 3) or when rotation is added (Figures 4 and 5), but then $u_{\rm rms}$ is smaller and comparable to $B_{\rm rms}$.

 η_t/η is well above unity, suggesting that we are in a fully turbulent and nonlinear regime. Here, η_{11} and η_{22} are shown in red and blue, respectively. We reset b^T in regular time intervals ($\Delta t = 100$) and show only those times where the amplitude of b^T is above some threshold. η_{yx} is typically close to zero.

2 Models with shear and rotation

There are two models where rotation $(\Omega > 0)$ is included (Figures 4 and 5). This should help making η_{yx} more negative, but this didn't seem to happen.

References

Brandenburg, A., R\u00e4dler, K.-H., Rheinhardt, M., & K\u00e4pyl\u00e4, P. J. 2008, ApJ, 676, 740

Figure 1: peta_MOxJ288b $u_{\rm rms} = 0.1, S = -0.1, \eta = 5 \times 10^{-5}, \nu = 10^{-3}, \text{Re} = 20, R_{\rm m} = 400.$

- Singh, N. K., Rogachevskii, I., & Brandenburg, A. 2017, PRL, submitted 1610.07215
- Squire, J., & Bhattacharjee, A. 2016, J. Plasma Phys., 82, 535820201

\$Header: /var/cvs/brandenb/tex/mhd/magshearcurrent/notes.tex,v 1.4 2017/01/07 17:23:04 brandenb Exp \$

Figure 4: peta_M0xJ288b_0m01 $u_{\rm rms} = 0.05, S = -0.1, \Omega = 0.1, \eta = 2 \times 10^{-5}, \nu = 1 \times 10^{-3}, \text{Re} = 11, R_{\rm m} = 220.$

Figure 5: peta_M0xJ288b_0m05 $u_{\rm rms} = 0.05, S = -0.1, \Omega = 0.5, \eta = 2 \times 10^{-5}, \nu = 1 \times 10^{-3}, \text{Re} = 11, R_{\rm m} = 220.$