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SHEAR-CURRENT EFFECT IN MAGNETIZED BURGULENCE
MAARIT J. KAPYLA, MATTHIAS RHEINHARDT, AXEL BRANDENBURG, NISHANT SINGH, PETRI KAPYLA

Subject headings:

1. INTRODUCTION occasional burst-like enhancement episodes, very oftem se
In addition to all other experiments we have made to study IN Sheared systems due to the tangling caused by the shear

the possibility of the magnetic shear current effect, weehay [10W: but the overall trend remains decaying. Looking at the
now developed a closer connection to the work of Squire andindividual Fourier modes (lower left panels of Figure 1) one
Bhattacharjee. Squire (in an email after the Tokyo MPPC S€es that all except one Fourier modiel{.=1), at the largest

meeting) made a concrete proposal to try to reproduce their>cal€ of the box, show a decaying trend. The slower decay of
Fig 9 in Squire & Bhattacharjee (2015), which is attempted the smallest allowed wavenumber may be explained by diffu-
here. sion acting slowest on it; hence we do not interpret thisdpein

In this figure they show cases where they use both kinetict€ dynamo solution eigenmode that would appear when the

and magnetic forcing of variable strengths in a box with an dynamo would be supercritical.

aspect ratio of 8 with a shear parameferl and forcingwave 10 S€€ the real dynamo eigenmode, we perform an ad-
number ofk;=3. They state that the resulting,.. in their ditional run, Run FK8b, with somewhat larger magnetic

purely kinematically forced model is 0.2, and the magnetic Réynolds number (by lowering the magnetic diffusivities).

Reynolds number is roughly five. This corresponds to a shear! "€ results are shown in Figure 2. In this run, indeed, we

number Sk = — 1.7 using our definition. So far none of our  S€€ @n exponential growth, both in the rms values of the hori-

models have such large shear numbers, hence a completeléomia”y av%raged_ fri]eldgz ?Ut %'SO in thﬁ i?dividual Iargarl]s .
new set of runs had to be performed to match their results. I ourier modes, with radial and azimuthal components having
identical growth rates. The dominating mode in the azimutha

2. MODELS USED field spectrum is. L.=9, and we regard this as the wavenum-
As we do not have the compressible test-field method yetber of the dynamo instability in this system.
in a state of full production, we have to adopt a cumbersome Next we turn into the measurements of the turbulent trans-
step-by-step approach. The test-field method currently-ava port coefficients, to try to explain what is driving the dyram
able for the magnetically forced case is the non-linear test in this system. We use the quasi-kinematic test-field method
field method that utilises simplified MHD equations. Hence, which behaves here very well with stable test solutions that
we first need to establish how the simplified MHD compares saturate into a plateau, and the measurement of the turbu-
with the full MHD in the quasi-kinematic regime (that is, lent transport coefficients can be done reliably. We recover
without magnetic forcing), by utilizing the quasi-kinenitat  the standard result of large, positiyg,, and a much smaller,
test-field method on these runs. At our final step, we then positiven, ., see Table 1. The diagonal elements of the dif-
switch on magnetic forcing, and utilize the simplified non- fusivity tensor are positive and about equally big. We also
linear test-field in the limit of simplified MHD, and com- measure the rms-values of theensor coefficients, to check
pare how the results change in between kinetic and magnetidor the possibility of an incoherent shear-effect in the sys-
forcing. The systems of equations and test field methods argem. As the presence of shear-current effect requiresinegat
briefly described in the appendix. values ofn,, (see Appendix D), the cause of the dynamo in
3. RESULTS the system cannot be this effect. This is not a new result, and
I allcass, b il simplfed MHD, e sttt omrts o nsnces yoen s vt computed o
to be excited is the generation of patchy flows in the horizon- 510 number®,,s for this instability (see Appendix E), and
tal velocity components. These are most likely signatufes o easure subcritical values for the Run FK8a, while clearly s
the vorticity dynamo (see, Elperin et al. 2003apy et al.  hecritical values for the Run FK8b. The dynamo eigenmode

2009); it is unclear whether in Squire & Bhattacharjee (2015 g relatively close to the forcing scale, which further sogig
such flows were present or not. In any case, they have a veryig dynamo of being of this type.

strong effect on the dynamics and especially on the solsition o o )
of the test problems (cause instabilities). Therefore wedne 3.2. Kinetically forced simplified MHD case of "Magnetized
to suppress these mearytaveraged) flows artificially. Burgulence”

3.1 Kinetically forced full MHD case D Setup with Kinetc forcing only (SK82). This |10 bridge.

The first studied case is a full MHD (FK8%) runs with ki- - ha \yay to the non-linear test-field method that currently on

netic forcing. We aim for Sk and Re; matching as closely  yorks with the simplified MHD equations. This time we find
as possible to those of Squire & Bhattacharjee (2015). Wegap, exponentially growing dynamo (although the growth is re-
initialise the magnetic field with Gaussian noise of the am- ally slow), both radial and azimuthal rms mean field com-
plitude10~1°. As seen in Figure 1 rightmost columns, the ra- h5nents exhibiting the same growth rate, see Figure 3. The
dial (z) component undergoes an exponential decay, while thegc|e of the excited mean magnetic fields.i&, = 2, the ra-
azimuthal ) component is first enhanced until 40 turmover ia| and azimuthal Fourier mode time evolutions being shown
times. After that, however, it will start decaying with tr&nse  th thick blue lines in Figure 3. Two things are worth noting
exponential rate as the radial component. It undergoes SOMé&mmediately: here, dynamo growth is obtained with identica

parameters to the Run FK8a, that was not dynamo-active, and



TABLE 1

SUMMARY OF THE RUNS. ALL OF THEM HAVE k;=5,v = 1072, = 3 x 1073 (FK, SK1,SMx), n2 x 1073 (SK2),7 = 5 x 10~* (SK3), AND
S = —0.25.

Run Sk Rey Lu Naw /1N Myy /M Ny /1 Nya /1 arms  k:L: Dyg Das
FK8a -1.6 2.1 1(-10) 0.402 +0.008 0.396 £ 0.007 0.265 £ 0.008 0.033 £ 0.001 0.037 9* -0.5 1.1
FK8b -1.6 12.7 3(-8) 2.5574+0.108 2.521+0.103 1.784 4+0.118 0.095 £ 0.005 0.219 9 -3.0 6.1
SKla -1.6 2.1 0.0 0.241 +0.003 0.264 +£0.004 0.193 +0.004 —0.007 +0.000 0.074 1 0.4 3.9
SK1b -1.6 12.8 9(-6) 1.782+0.015 1.888+0.022 1.778+0.040 —0.067 +0.003 0.692 1 4.2 43.0
SKlc -1.6 13.0 1.6 1.758 £ 0.053 1.8754+0.053 1.747 +£0.088 —0.067 +0.004 0.691 1 4.1 43.4
SK4a -1.5 2.2 1(-10) 0.241 +0.002 0.262 £ 0.003 0.191 +0.007 —0.007 +0.000 0.037 3 0.7 4.6
SK4b -1.5 13.0 2(-7) 1.774+0.010 1.864+0.012 1.744+0.040 —0.073+0.002 0.342 4 4.6 21.4
SK4c -0.7 1.9 9(-11) 0.262 +0.004 0.269 +0.004 0.080 +0.003 —0.007 +0.001 0.039 3 0.2 2.6
SK8a -1.6 2.2 1(-8) 0.245+0.002 0.266 = 0.002 0.196 +0.004 —0.007 +0.000 0.052 2 6.0 94.4
SK8b -1.6 129 2(-4) 1.800+0.016 1.892+0.010 1.776+0.029 —0.0714+0.003 0.25 8 4.4 15.2
SK8c
SKMla -1.8 1.9 4.6 0.168 +0.003 0.191 £0.006 0.178 +0.004 —0.009 + 0.000 0.066 1 0.5 3.9
SKM1b -1.3 159 405 2.839+0.191 3.3404+0.249 2.923+0.288 —0.196 +0.014 1.227 1 5.8 36.7
SKMlc -0.9 1.6 4.3 0.185 4+ 0.008 0.191 £0.008 0.084 +0.009 —0.007 +£0.001 0.059 1 0.2 1.4
SKM4a -1.5 2.3 4.9 0.264 +0.022 0.316 £0.027 0.306 +0.019 —0.015+0.001 0.056 1 12.2 180.1
SKM4b -1.3 15.2 40.0 2.659+0.250 3.0244+0.345 2.582+0.471 —0.187+0.025 0.574 1 1015 12448
SKM4c
SM8a -1.6 2.1 4.7 0.221 +0.045 0.261 £0.059 0.252 +0.060 —0.013 +£0.003 0.036 1 44.0 1005.9
SM8b
SM8c
SKM8a -1.9 1.7 4.6 0.198 +0.029 0.237 £0.039 0.240 +0.051 —0.012+£0.002 0.025 2 11.1 89.6
SKM8b -1.3 16.0 41.0 2.864+0.311 3.331 +£0.481 2.979+0.679 —0.1984+0.028 0.428 2 93.1 794.1
SKM8c -0.9 1.5 4.3 0.192 £ 0.014 0.199 £0.018 0.092 +0.014 —0.006 £ 0.001 0.020 2 2.4 30.1
SKMl1l6a -1.5 2.3 5.0 0.258 0.018 0.305 £ 0.020 0.289 +0.014 —0.015+0.000 0.028 3 20.6 211.6
SKM16b
SKM16c

that the scale of the generated field here is consideralggrar

are not at play in these two systems.

slightly sub, and clearly supercritical for the shear-eatref-

This already hints that maybe the same dynamo mechanisméect, while supercritical to the incohereat shear effect in

all of SK1, SK4, and SK8a, respectively. We have also per-
We again apply the quasi-kinematic test-field method, andformed some additional runs with varying magnetic Reynolds

find well-behaved test solutions, similarly to the full MHD number, which shows that the growth rate of the instabitity i

case. The sign of,, is now negative and the diagonal ele- enhanced with growingzm. With all this evidence at hand,

ments ofny are nearly ten times smaller than in the full MHD we conclude that the dynamo seen in the magnetized Burgu-

cacse, see Table 1. When we consider the dynamo numberkence setup is most likely a shear-current dynamo effect.

D,s and D,s for the shear-current and incoherentshear

dynamo instabilities, respectively, we see that both di&pe

3.3. Magnetically forced simplified MHD cases; "Doubly

relations predict dynamo action, and hence, based on this ru

alone, it is difficult to judge which dynamo instability walll

be in operation here.

Therefore, we perform some additional runs, SK1 and SK4
inspecting the sensitivity of the system to its verticalesiz

Run SK1 is a cubic box of the dimensionsXf, whilst SK4

has an aspect ratio of four. In the former system, no dynamoal
develops, but all field components and individual Fourier
components decay. Again, the slowest to decay is the box
scalek, L, component that can persist quite some time in this
strongly sheared system. Run SK4 shows close to marginal
dynamo action similar to Run FK8a, with radial modes show-
ing exponential decay at all times, while azimuthal compo-
nent first shows enhancement, which is closer to being linea
than exponential, but then after some time an eventual deca;f
occurs. The vertical scale of the eigenmode is close tothat i
Run SK8a. Hence, the dynamo instability is strongly depen-
dent on the vertical box size, hinting towards the box having
to be large enough to capture the growing dynamo mode. Th
measured turbulent transport coefficients in these thneg, ru

only varying by their vertical extent, are nearly identjcas$
expected, further giving credibility to this hypothesisher

dispersion relations indicate that the system should be sub

magnetic Burgulence”
Finally, we switch to magnetic forcing of the same magni-

tude as the kinetic forcing. (thus corresponding to Fig. Bd o
SC15), and use the nonlinear test-field method. We again per-

form several runs with varying vertical extent of the boxdan

so vary the magnetic Reynolds number.
In all the Runs, the magnetic forcing (in a few turnover
times) quickly generates a superequipartition magnetid. fie
From this point onwards, the radial and azimuthal mean rms
fields and their individual Fourier components behave diffe
ently than in the two previous setups investigated. We do not
see distinguishable exponential growth in the azimuthal no
fn the radial fields, and the growth/decay rates of the differ
ield components are different. The azimuthal component un-
dergoes similar, erratic, "activity bursts” than seen im ¢ither
types of setups as well, their frequency depending on the ver
tical box scale. In the cubizr run of SKM1, see Figure 4, the
eoutburst frequency is high, and the generated structutés fil
the whole domain vertically. The outbursts get less and less

frequent in SKM4 (see Figure 5), SKM8 (see Figure 5) and
SKM16 (see Figure 5), and the structures are more long lived.

In none of the cases, however, any signs of dynamo instabil-
ity can be distinguished. In all cases except SKM16, which
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FiG. 1.— Horizontally averaged magnetic fields as function of t{oqgper left azimuthal, upper middle radial component), the grwution of the mean rms
fields computed from these averages (top right, linear soaligom right, logarithmic scale), and the time evolution & thdividual twenty smallest Fourier
modes (lower left for azimuthal component; lower middle for theial component). Time is measured in turnover times. The rmesalfithe radial component
has been enhanced by 40 times. In the plot for the Fourier modesasingly blue color indicates smaller wavenumbersgemsingly red higher wavenumbers.
The thick line indicates the Fourier mode where the fasteatijlg mode k. L., =9) is obtained in a run with a supercritical dynamo (FK8b).

may be due to the fact that it has not been run long enough effects.
the final field configuration is volume filling. We interpretsh
as the action of the shear, tangling the magnetic fluctustion 4. CONCLUSIONS
provided by the continuous forcing, and diffusion acting as  \ye have studied different types of sheared MHD systems
erasing the smaller scales more rapidly than the larger. ones \yith the quasi-kinematic (QKTFM) and simplified non-linear
The measurement of the turbulent transport coefficients | TFM) test-field methods. In the case of full MHD equa-
does not reveal any dramatic changes in any of the coeffi-jions studied with the we confirm the evidence for dynamo
cients due to setting the magnetic forcing on. Also the gurel 5ction owing to the incoherent shear effect. In magnetized
magnetically forced Run SM8 yields coefficients of the same g,rqulence, perhaps only an academically interesting lsimp
magnitude and sign as its purely kinematically or kinetical  fication of the MHD equations (neglecting the pressure gradi
magnetically forced cases of the same aspect ratio. InSpectent term from the Navier Stokes equation), but the only sys-
ing the dispersion relations, even though it is not meaning-tem that can currently be studied with the NLTFM, we ob-
ful in the case of any of the magnetically forced cases, as N0ggpye g sign change of thg, component, that can be the-
dynamo instabilities (pre-requisite for using these foB)l  gretically shown to enable the shear-current effect driven
are found, reveals that both dynamo effects should be presen,amos. Indeed, dynamo action is found, and its propertigs an
nearly in all the systems investigated. The only case wheregyitation conditions match those of expected from thershea
the dynamo coefficient for the magnetic shear current effecteyrent effect theory. In the case of the recently frequyentl
is less than one (subcritical) is Run SKM1, which shows the g,died systems with magnetic forcing, we do not find any sig-
generation of coherent volume-filling structures in the 8am 5¢,res of dynamo action (no exponential growth of the mag-
way as all the other runs. Hence, the magnetically forcedl run pegic field components, the radial and azimuthal components
cannot be interpreted in the framework of mean-field dynamo showing different, non-exponential behavior), nor a digni
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FiG. 2.— The same as Figure 1, but the thick line in the lower leftrpasels indicates the dominant Fourier mode generated byttab, namelyX, L .,=9).

cant change in any of the turbulent transport coefficientsrwh  due to the tangling of the magnetic fluctuations by the strong
compared to their kinetically forced counterparts. Onthec ~ shear. We conclude that the magnetically forced cases tanno

trary, the generated coherent large-scale structuresl dmul  be interpreted in the framework of mean-field dynamo theory.
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APPENDIX
A. SMHD

The equations o6MHD, as defined here, are similar to thosemiD, but without the pressure gradient in the momentum
equation. Correspondingly, the densitis held constant. So we have

DAA = U x B + Fy +1V?A, (A1)
DYU=-U-VU +J x B/p+ Fx
+v(V2U +VV -U/3) (A2)
with the linear expressions
DAA=(0; + Szd,)A + Sz A,, (A3)

DU = (9, + Sz, + 2Q9x)U + SyU,. (A4)
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FIG. 3.— The same as Figure 2, but for Run SK8a.

B = V x Aisthe magnetic field] = V x B is the current density in units where the vacuum permewlisliinity, Fx and Fy
are kinetic and magnetic forcing functions, respectivélyis the velocity,n is the magnetic diffusivity, and is the kinematic
viscosity, both considered constant.

The main advantage of usirgMHD is to avoid the necessity of dealing with density fluctuagiand corresponding effects in
the mean quantities. As self-advectiobn VU is no longer discarded, we are here more general than Rhidira8randenburg
(2010) (hereafter, RB10) which, in physical terms, sufigirem the implied assumption of slow fluid motions, that isp8hal
number St« 1 or Re< 1. Moreover, a complete neglect of the self-advection terinadequate in the present context given
that shear plays its essential role just via this term. Seméne terms arising from an additional mean flow (apart ftbenshear
flow US) and that by the fluctuating velocity, - Vu could all be neglected. The latter neglect, however, woeldduivalent to
restrict the method to SOCA w.r.t. to the self-advectiomterhich is not desirable.

B. NLTFM

In situation with shear, a complication in applying meartefieoncepts based on the horizontal average arises fronatie f
that, for linear shear, in gener@lS # U* (when defined to bec 2 the mean even vanishes) Wher@a[s’;9 is spatially constant,

hence a pure mean. - o
The evolution equations for the fluctuations in the magnegator potentialg = A — A, and the velocityy = U — U, follow
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FIG. 4.— The same as Figure 2, but for Run SKM1.
from Equations (Al) and (A2) as
D%=U x b+u x B+ (uxb) + fx +nVa, (B1)
DYu=(J xb+jxB+(jxb))/p+ fu (B2)
+(u-Vu) +U-Vu+u-VU (B3)

+v(V2u + VV - u/3),

where fluctuations are either denoted by lowercase symtols; primes like(u x b)’ = u x b — u X b, etc.
We solve these equations not by setti@do the actual mean field resulting from the solutions of Eiquat(A1) and (A2), but
rather with B from a set of test fieldsB™, namely
B' = (coskz,0,0), B? = (sinkz,0,0), (B4)
B? = (0,coskz,0), B*=(0,sinkz,0), (B5)
wherek is the wavenumber of the test field, being a multipl@oef .. From the solutions of Equations (B1) and (B2) we can

construct the mean electromotive forée= u x b and the mean ponderomotive for¢g,= 5 x b, which are then expressed in
terms of the mean field by the ansatzes

g\

3 a;;Bj — (B6)
¢Uﬁ w%] (B7)

wherei, j adopt only the values, 2 as a consequence of setting the anyway congtarsrbitrarily to zero. Hence, each of the
four tensorsev;;, 1:5, ¢i;, i, has four components, i.e., altogether we have 16 unknowns.
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FIG. 5.— The same as Figure 2, but for Run SKM4.

In the QKTFM, &, considered as a functional of, U, and B, is linear in B. In the more general case with a magnetic
background turbulence, this is a priori no longer the casedéal with this difficulty, RB10 added the evolution equasidor
the background turbulence, that is, the turbulence in tiserad®e of the mean fieldw(, by) which are similar to Equations (B1)

and (B2), but for zero mean field, to the equations of the TAMgéneral, £ can be split into a contributiom, x by that is
independent of the mean field and a contribution

EBZUOXbBJruBXbOJruBXbB, (B8)

whereu 5 andb 5 denote those parts of the solutions of Equations (B1) anjl\{Bih are supposed to vanish for vanishiBg
Usingu = ug + ug andb = by + by, £ 5 can be written in two equivalent ways as

Eg=uxbgtugxby=uoxbg+ugxb. (B9)

Both become linear in quantities with subscritwhenb andu are identified with the fluctuating fields in the main run. In
this way, we have recovered the mentioned linearity proper [B] in the QkTFM. Likewise, one writes the part of the mean
ponderomotive forceF, which results from the Lorentz force as

Jxbg+3pxby=7goxbg+jpxb; (B10)

and that resulting from self-advection as

u-Vug+ug-Vuy=up-Vug+ug-Vu; (B11)

see Equations (29) and (30) of RB10. Corresponding exmmessian be established for the fluctuating parts of the faifiterms,
(u x b),(j xb) and(u - Vu)'. We recall that the different formulations of the fluctuatiparts, obtained this way, result in
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FIG. 6.— The same as Figure 2, but for Run SKM8.

different stability properties of the test problems. Herahose to use in each of them the first formulation, resuitivghat is
called the fu method”; see Table 1 of RB10.

C. QKTFM

We now state here for comparison the governing equationsh®BQKTFM. They consist of just Equation (B1), but not
Equation (B2), and Equation (B6). Then Equation (B9) redwsimply to

Eg=uxbg. (QKTFM). (C1)
Obviously, the contributiom 5 x by is missing. Again, for further details see RB10.

D. DISPERSION RELATION FOR SHEAR-CURRENT EFFECT DRIVEN DYNAQS

For shear-current driven dynamos, the dispersion reldtam the linear stability analysis for exponentially gragisolutions
reads (see e.g. Brandenburg et al. 2008)

A 1 S
; __li\/(kQ+nxy> Ty + €, ©1)

77Tk§ nr

whereny = n+ne, m = & (New + 1yy), ande = 1 (0. — ny,). A necessary and sufficient condition for exponentiallygny
solutions is that the term in the square root is positive, thatlit is larger tham?Z. In other words (fok ~ 0, holding within the
error limits for the measured diagonal elementg)of

S e
Dys = (2 +may | 22 > 1. (D2)
kz 77T
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FIG. 7.— The same as Figure 2, but for Run SKM16.

We note here that the contribution from,, is sometimes not included in the excitation condition, asffect is smaller than
that coming from the first term. This also holds for systeruslisid here, but we note that, in genergl, is clearly non-zero,
positive, and its magnitude is much larger than thaj,@f hence setting it to zero, as is customary in some fitting Ex@ats to

determine the turbulent transport coefficients, is noffjest

E. DISPERSION RELATION FOR INCOHERENT SHEAR-DYNAMOS
For incoherenty -shear driven dynamos, the dispersion relation from thealirstability analysis for exponentially growing
solutions reads (see e.g. Brandenburg et al. 2008)
Qrmg |S‘
npkd

where the rms fluctuations of tlke,,, component are usually accounted for. (see e.g. Brandeebaftg2008) derived the critical
D, of approximately 2.3 for white-noise effect.

Dys = (El)



