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1. INTRODUCTION

In addition to all other experiments we have made to study
the possibility of the magnetic shear current effect, we have
now developed a closer connection to the work of Squire and
Bhattacharjee. Squire (in an email after the Tokyo MPPC
meeting) made a concrete proposal to try to reproduce their
Fig 9 in Squire & Bhattacharjee (2015), which is attempted
here.

In this figure they show cases where they use both kinetic
and magnetic forcing of variable strengths in a box with an
aspect ratio of 8 with a shear parameterS=1 and forcing wave
number ofkf=3. They state that the resultingurms in their
purely kinematically forced model is 0.2, and the magnetic
Reynolds number is roughly five. This corresponds to a shear
number ShK = −1.7 using our definition. So far none of our
models have such large shear numbers, hence a completely
new set of runs had to be performed to match their results.

2. MODELS USED

As we do not have the compressible test-field method yet
in a state of full production, we have to adopt a cumbersome
step-by-step approach. The test-field method currently avail-
able for the magnetically forced case is the non-linear test-
field method that utilises simplified MHD equations. Hence,
we first need to establish how the simplified MHD compares
with the full MHD in the quasi-kinematic regime (that is,
without magnetic forcing), by utilizing the quasi-kinematic
test-field method on these runs. At our final step, we then
switch on magnetic forcing, and utilize the simplified non-
linear test-field in the limit of simplified MHD, and com-
pare how the results change in between kinetic and magnetic
forcing. The systems of equations and test field methods are
briefly described in the appendix.

3. RESULTS

In all cases, be it full or simplified MHD, the first instability
to be excited is the generation of patchy flows in the horizon-
tal velocity components. These are most likely signatures of
the vorticity dynamo (see, Elperin et al. 2003; Käpyl̈a et al.
2009); it is unclear whether in Squire & Bhattacharjee (2015)
such flows were present or not. In any case, they have a very
strong effect on the dynamics and especially on the solutions
of the test problems (cause instabilities). Therefore we need
to suppress these mean (xy-averaged) flows artificially.

3.1. Kinetically forced full MHD case

The first studied case is a full MHD (FK8*) runs with ki-
netic forcing. We aim for ShK and ReM matching as closely
as possible to those of Squire & Bhattacharjee (2015). We
initialise the magnetic field with Gaussian noise of the am-
plitude10−10. As seen in Figure 1 rightmost columns, the ra-
dial (x) component undergoes an exponential decay, while the
azimuthal (y) component is first enhanced until 40 turnover
times. After that, however, it will start decaying with the same
exponential rate as the radial component. It undergoes some

occasional burst-like enhancement episodes, very often seen
in sheared systems due to the tangling caused by the shear
flow, but the overall trend remains decaying. Looking at the
individual Fourier modes (lower left panels of Figure 1) one
sees that all except one Fourier mode (kzLz=1), at the largest
scale of the box, show a decaying trend. The slower decay of
the smallest allowed wavenumber may be explained by diffu-
sion acting slowest on it; hence we do not interpret this being
the dynamo solution eigenmode that would appear when the
dynamo would be supercritical.

To see the real dynamo eigenmode, we perform an ad-
ditional run, Run FK8b, with somewhat larger magnetic
Reynolds number (by lowering the magnetic diffusivities).
The results are shown in Figure 2. In this run, indeed, we
see an exponential growth, both in the rms values of the hori-
zontally averaged fields, but also in the individual large-scale
Fourier modes, with radial and azimuthal components having
identical growth rates. The dominating mode in the azimuthal
field spectrum iskzLz=9, and we regard this as the wavenum-
ber of the dynamo instability in this system.

Next we turn into the measurements of the turbulent trans-
port coefficients, to try to explain what is driving the dynamo
in this system. We use the quasi-kinematic test-field method,
which behaves here very well with stable test solutions that
saturate into a plateau, and the measurement of the turbu-
lent transport coefficients can be done reliably. We recover
the standard result of large, positiveηxy, and a much smaller,
positiveηyx, see Table 1. The diagonal elements of the dif-
fusivity tensor are positive and about equally big. We also
measure the rms-values of theα tensor coefficients, to check
for the possibility of an incoherentα shear-effect in the sys-
tem. As the presence of shear-current effect requires negative
values ofηyx (see Appendix D), the cause of the dynamo in
the system cannot be this effect. This is not a new result, and
has been already obtained by many authors. The remaining
candidate is theα-shear dynamo; we have computed the dy-
namo numbersDαS for this instability (see Appendix E), and
measure subcritical values for the Run FK8a, while clearly su-
percritical values for the Run FK8b. The dynamo eigenmode
is relatively close to the forcing scale, which further supports
this dynamo of being of this type.

3.2. Kinetically forced simplified MHD case of ”Magnetized
Burgulence”

Next we repeat the same experiment with the simplified
MHD setup with kinetic forcing only (SK8a). This is to bridge
the way to the non-linear test-field method that currently only
works with the simplified MHD equations. This time we find
an exponentially growing dynamo (although the growth is re-
ally slow), both radial and azimuthal rms mean field com-
ponents exhibiting the same growth rate, see Figure 3. The
scale of the excited mean magnetic fields iskzLz = 2, the ra-
dial and azimuthal Fourier mode time evolutions being shown
with thick blue lines in Figure 3. Two things are worth noting
immediately: here, dynamo growth is obtained with identical
parameters to the Run FK8a, that was not dynamo-active, and
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TABLE 1
SUMMARY OF THE RUNS. ALL OF THEM HAVE kf =5, ν = 10

−2 , η = 3× 10
−3 (FK, SK1,SMX), η2× 10

−3 (SK2),η = 5× 10
−4 (SK3), AND

S = −0.25.

Run ShK ReM Lu ηxx/η ηyy/η ηxy/η ηyx/η αrms kzLz DηS DαS

FK8a -1.6 2.1 1(-10) 0.402± 0.008 0.396± 0.007 0.265± 0.008 0.033± 0.001 0.037 9* -0.5 1.1
FK8b -1.6 12.7 3(-8) 2.557± 0.108 2.521± 0.103 1.784± 0.118 0.095± 0.005 0.219 9 -3.0 6.1
SK1a -1.6 2.1 0.0 0.241± 0.003 0.264± 0.004 0.193± 0.004 −0.007± 0.000 0.074 1 0.4 3.9
SK1b -1.6 12.8 9(-6) 1.782± 0.015 1.888± 0.022 1.778± 0.040 −0.067± 0.003 0.692 1 4.2 43.0
SK1c -1.6 13.0 1.6 1.758± 0.053 1.875± 0.053 1.747± 0.088 −0.067± 0.004 0.691 1 4.1 43.4
SK4a -1.5 2.2 1(-10) 0.241± 0.002 0.262± 0.003 0.191± 0.007 −0.007± 0.000 0.037 3 0.7 4.6
SK4b -1.5 13.0 2(-7) 1.774± 0.010 1.864± 0.012 1.744± 0.040 −0.073± 0.002 0.342 4 4.6 21.4
SK4c -0.7 1.9 9(-11) 0.262± 0.004 0.269± 0.004 0.080± 0.003 −0.007± 0.001 0.039 3 0.2 2.6
SK8a -1.6 2.2 1(-8) 0.245± 0.002 0.266± 0.002 0.196± 0.004 −0.007± 0.000 0.052 2 6.0 94.4
SK8b -1.6 12.9 2(-4) 1.800± 0.016 1.892± 0.010 1.776± 0.029 −0.071± 0.003 0.25 8 4.4 15.2
SK8c
SKM1a -1.8 1.9 4.6 0.168± 0.003 0.191± 0.006 0.178± 0.004 −0.009± 0.000 0.066 1 0.5 3.9
SKM1b -1.3 15.9 40.5 2.839± 0.191 3.340± 0.249 2.923± 0.288 −0.196± 0.014 1.227 1 5.8 36.7
SKM1c -0.9 1.6 4.3 0.185± 0.008 0.191± 0.008 0.084± 0.009 −0.007± 0.001 0.059 1 0.2 1.4
SKM4a -1.5 2.3 4.9 0.264± 0.022 0.316± 0.027 0.306± 0.019 −0.015± 0.001 0.056 1 12.2 180.1
SKM4b -1.3 15.2 40.0 2.659± 0.250 3.024± 0.345 2.582± 0.471 −0.187± 0.025 0.574 1 101.5 1244.8
SKM4c
SM8a -1.6 2.1 4.7 0.221± 0.045 0.261± 0.059 0.252± 0.060 −0.013± 0.003 0.036 1 44.0 1005.9
SM8b
SM8c
SKM8a -1.9 1.7 4.6 0.198± 0.029 0.237± 0.039 0.240± 0.051 −0.012± 0.002 0.025 2 11.1 89.6
SKM8b -1.3 16.0 41.0 2.864± 0.311 3.331± 0.481 2.979± 0.679 −0.198± 0.028 0.428 2 93.1 794.1
SKM8c -0.9 1.5 4.3 0.192± 0.014 0.199± 0.018 0.092± 0.014 −0.006± 0.001 0.020 2 2.4 30.1
SKM16a -1.5 2.3 5.0 0.258± 0.018 0.305± 0.020 0.289± 0.014 −0.015± 0.000 0.028 3 20.6 211.6
SKM16b
SKM16c

that the scale of the generated field here is considerably larger.
This already hints that maybe the same dynamo mechanisms
are not at play in these two systems.

We again apply the quasi-kinematic test-field method, and
find well-behaved test solutions, similarly to the full MHD
case. The sign ofηyx is now negative and the diagonal ele-
ments ofη are nearly ten times smaller than in the full MHD
cacse, see Table 1. When we consider the dynamo numbers
DηS andDαS for the shear-current and incoherentα shear
dynamo instabilities, respectively, we see that both dispersion
relations predict dynamo action, and hence, based on this run
alone, it is difficult to judge which dynamo instability would
be in operation here.

Therefore, we perform some additional runs, SK1 and SK4
inspecting the sensitivity of the system to its vertical size.
Run SK1 is a cubic box of the dimensions of2π, whilst SK4
has an aspect ratio of four. In the former system, no dynamo
develops, but all field components and individual Fourier
components decay. Again, the slowest to decay is the box-
scalekzLz component that can persist quite some time in this
strongly sheared system. Run SK4 shows close to marginal
dynamo action similar to Run FK8a, with radial modes show-
ing exponential decay at all times, while azimuthal compo-
nent first shows enhancement, which is closer to being linear
than exponential, but then after some time an eventual decay
occurs. The vertical scale of the eigenmode is close to that in
Run SK8a. Hence, the dynamo instability is strongly depen-
dent on the vertical box size, hinting towards the box having
to be large enough to capture the growing dynamo mode. The
measured turbulent transport coefficients in these three runs,
only varying by their vertical extent, are nearly identical, as
expected, further giving credibility to this hypothesis. The
dispersion relations indicate that the system should be sub-,

slightly sub, and clearly supercritical for the shear-current ef-
fect, while supercritical to the incoherentα- shear effect in
all of SK1, SK4, and SK8a, respectively. We have also per-
formed some additional runs with varying magnetic Reynolds
number, which shows that the growth rate of the instability is
enhanced with growingRm. With all this evidence at hand,
we conclude that the dynamo seen in the magnetized Burgu-
lence setup is most likely a shear-current dynamo effect.

3.3. Magnetically forced simplified MHD cases; ”Doubly
magnetic Burgulence”

Finally, we switch to magnetic forcing of the same magni-
tude as the kinetic forcing. (thus corresponding to Fig. 9d of
SC15), and use the nonlinear test-field method. We again per-
form several runs with varying vertical extent of the box, and
also vary the magnetic Reynolds number.

In all the Runs, the magnetic forcing (in a few turnover
times) quickly generates a superequipartition magnetic field.
From this point onwards, the radial and azimuthal mean rms
fields and their individual Fourier components behave differ-
ently than in the two previous setups investigated. We do not
see distinguishable exponential growth in the azimuthal nor
in the radial fields, and the growth/decay rates of the different
field components are different. The azimuthal component un-
dergoes similar, erratic, ”activity bursts” than seen in the other
types of setups as well, their frequency depending on the ver-
tical box scale. In the cubic2π run of SKM1, see Figure 4, the
outburst frequency is high, and the generated structures fill in
the whole domain vertically. The outbursts get less and less
frequent in SKM4 (see Figure 5), SKM8 (see Figure 5) and
SKM16 (see Figure 5), and the structures are more long lived.
In none of the cases, however, any signs of dynamo instabil-
ity can be distinguished. In all cases except SKM16, which
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FIG. 1.— Horizontally averaged magnetic fields as function of time(upper left azimuthal, upper middle radial component), the timeevolution of the mean rms
fields computed from these averages (top right, linear scale;bottom right, logarithmic scale), and the time evolution of the individual twenty smallest Fourier
modes (lower left for azimuthal component; lower middle for the radial component). Time is measured in turnover times. The rms values of the radial component
has been enhanced by 40 times. In the plot for the Fourier modes,increasingly blue color indicates smaller wavenumbers, increasingly red higher wavenumbers.
The thick line indicates the Fourier mode where the fastest growing mode (kzLz=9) is obtained in a run with a supercritical dynamo (FK8b).

may be due to the fact that it has not been run long enough,
the final field configuration is volume filling. We interpret this
as the action of the shear, tangling the magnetic fluctuations
provided by the continuous forcing, and diffusion acting as
erasing the smaller scales more rapidly than the larger ones.

The measurement of the turbulent transport coefficients
does not reveal any dramatic changes in any of the coeffi-
cients due to setting the magnetic forcing on. Also the purely
magnetically forced Run SM8 yields coefficients of the same
magnitude and sign as its purely kinematically or kinetically-
magnetically forced cases of the same aspect ratio. Inspect-
ing the dispersion relations, even though it is not meaning-
ful in the case of any of the magnetically forced cases, as no
dynamo instabilities (pre-requisite for using these formulae)
are found, reveals that both dynamo effects should be present
nearly in all the systems investigated. The only case where
the dynamo coefficient for the magnetic shear current effect
is less than one (subcritical) is Run SKM1, which shows the
generation of coherent volume-filling structures in the same
way as all the other runs. Hence, the magnetically forced runs
cannot be interpreted in the framework of mean-field dynamo

effects.

4. CONCLUSIONS

We have studied different types of sheared MHD systems
with the quasi-kinematic (QKTFM) and simplified non-linear
(NLTFM) test-field methods. In the case of full MHD equa-
tions studied with the we confirm the evidence for dynamo
action owing to the incoherentα shear effect. In magnetized
Burgulence, perhaps only an academically interesting simpli-
fication of the MHD equations (neglecting the pressure gradi-
ent term from the Navier Stokes equation), but the only sys-
tem that can currently be studied with the NLTFM, we ob-
serve a sign change of theηyx component, that can be the-
oretically shown to enable the shear-current effect drivendy-
namos. Indeed, dynamo action is found, and its properties and
excitation conditions match those of expected from the shear-
current effect theory. In the case of the recently frequently
studied systems with magnetic forcing, we do not find any sig-
natures of dynamo action (no exponential growth of the mag-
netic field components, the radial and azimuthal components
showing different, non-exponential behavior), nor a signifi-
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FIG. 2.— The same as Figure 1, but the thick line in the lower leftmost panels indicates the dominant Fourier mode generated by the dynamo, namely (kzLz=9).

cant change in any of the turbulent transport coefficients when
compared to their kinetically forced counterparts. On the con-
trary, the generated coherent large-scale structures could be

due to the tangling of the magnetic fluctuations by the strong
shear. We conclude that the magnetically forced cases cannot
be interpreted in the framework of mean-field dynamo theory.
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APPENDIX

A. SMHD

The equations ofSMHD, as defined here, are similar to those ofMHD, but without the pressure gradient in the momentum
equation. Correspondingly, the densityρ is held constant. So we have

DAA = U ×B + FM + η∇2A, (A1)

DUU = −U · ∇U + J ×B/ρ+ FK

+ν(∇2U +∇∇ ·U/3) (A2)

with the linear expressions

DAA=(∂t + Sx∂y)A+ Sx̂Ay, (A3)

DUU =(∂t + Sx∂y + 2Ω×)U + SŷUx. (A4)
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FIG. 3.— The same as Figure 2, but for Run SK8a.

B = ∇×A is the magnetic field,J = ∇×B is the current density in units where the vacuum permeability is unity,FK andFM

are kinetic and magnetic forcing functions, respectively,U is the velocity,η is the magnetic diffusivity, andν is the kinematic
viscosity, both considered constant.

The main advantage of usingSMHD is to avoid the necessity of dealing with density fluctuations and corresponding effects in
the mean quantities. As self-advectionU ·∇U is no longer discarded, we are here more general than Rheinhardt & Brandenburg
(2010) (hereafter, RB10) which, in physical terms, suffered from the implied assumption of slow fluid motions, that is, Strouhal
number St≪ 1 or Re≪ 1. Moreover, a complete neglect of the self-advection term isinadequate in the present context given
that shear plays its essential role just via this term. So merely the terms arising from an additional mean flow (apart fromthe shear
flow US) and that by the fluctuating velocity,u · ∇u could all be neglected. The latter neglect, however, would be equivalent to
restrict the method to SOCA w.r.t. to the self-advection term which is not desirable.

B. NLTFM

In situation with shear, a complication in applying mean-field concepts based on the horizontal average arises from the fact,
that, for linear shear, in generalUS 6= US (when defined to be∝ x the mean even vanishes) whereas∂iU

S
j is spatially constant,

hence a pure mean.
The evolution equations for the fluctuations in the magneticvector potential,a = A−A, and the velocity,u = U −U , follow
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FIG. 4.— The same as Figure 2, but for Run SKM1.

from Equations (A1) and (A2) as

DAa=U × b+ u×B + (u× b)′ + fK + η∇2a, (B1)

DUu=
(

J × b+ j ×B + (j × b)′
)

/ρ+ fM (B2)

+(u · ∇u)′ +U · ∇u+ u · ∇U (B3)

+ν(∇2u+∇∇ · u/3),

where fluctuations are either denoted by lowercase symbols,or by primes like(u× b)′ = u× b− u× b, etc.
We solve these equations not by settingB to the actual mean field resulting from the solutions of Equations (A1) and (A2), but

rather withB from a set of test fields,BT, namely

B1 = (cos kz, 0, 0), B2 = (sin kz, 0, 0), (B4)

B3 = (0, cos kz, 0), B4 = (0, sin kz, 0), (B5)

wherek is the wavenumber of the test field, being a multiple of2π/Lz. From the solutions of Equations (B1) and (B2) we can
construct the mean electromotive force,E = u× b and the mean ponderomotive force,F = j × b, which are then expressed in
terms of the mean field by the ansatzes

E i = αijBj − ηijJj , (B6)

F i = φijBj − ψijJj . (B7)

wherei, j adopt only the values1, 2 as a consequence of setting the anyway constantBz arbitrarily to zero. Hence, each of the
four tensors,αij , ηij , φij , ψij , has four components, i.e., altogether we have 16 unknowns.
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FIG. 5.— The same as Figure 2, but for Run SKM4.

In the QKTFM, E , considered as a functional ofu, U , andB, is linear inB. In the more general case with a magnetic
background turbulence, this is a priori no longer the case. To deal with this difficulty, RB10 added the evolution equations for
the background turbulence, that is, the turbulence in the absence of the mean field, (u0, b0) which are similar to Equations (B1)
and (B2), but for zero mean field, to the equations of the TFM. In general,E can be split into a contributionu0 × b0 that is
independent of the mean field and a contribution

E
B̄

= u0 × b
B̄
+ u

B̄
× b0 + u

B̄
× b

B̄
, (B8)

whereu
B̄

andb
B̄

denote those parts of the solutions of Equations (B1) and (B2) which are supposed to vanish for vanishingB.
Usingu = u0 + u

B̄
andb = b0 + b

B̄
, E

B̄
can be written in two equivalent ways as

E
B̄

= u× b
B̄
+ u

B̄
× b0 = u0 × b

B̄
+ u

B̄
× b. (B9)

Both become linear in quantities with subscriptB whenb andu are identified with the fluctuating fields in the main run. In
this way, we have recovered the mentioned linearity property of E [B] in the QKTFM. Likewise, one writes the part of the mean
ponderomotive forceF , which results from the Lorentz force as

j × b
B̄
+ j

B̄
× b0 = j0 × b

B̄
+ j

B̄
× b ; (B10)

and that resulting from self-advection as

u · ∇u
B̄
+ u

B̄
· ∇u0 = u0 · ∇u

B̄
+ u

B̄
· ∇u ; (B11)

see Equations (29) and (30) of RB10. Corresponding expressions can be established for the fluctuating parts of the bilinear terms,
(u × b)′, (j × b)′ and(u · ∇u)′. We recall that the different formulations of the fluctuating parts, obtained this way, result in
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FIG. 6.— The same as Figure 2, but for Run SKM8.

different stability properties of the test problems. Here we chose to use in each of them the first formulation, resultingin what is
called the “ju method”; see Table 1 of RB10.

C. QKTFM

We now state here for comparison the governing equations forthe QKTFM. They consist of just Equation (B1), but not
Equation (B2), and Equation (B6). Then Equation (B9) reduces simply to

E
B̄

= u× b
B̄
. (QKTFM). (C1)

Obviously, the contributionu
B̄
× b0 is missing. Again, for further details see RB10.

D. DISPERSION RELATION FOR SHEAR-CURRENT EFFECT DRIVEN DYNAMOS

For shear-current driven dynamos, the dispersion relationfrom the linear stability analysis for exponentially growing solutions
reads (see e.g. Brandenburg et al. 2008)

λ±
ηT k2z

= −1±
1

ηT

√

(

S

k2z
+ ηxy

)

ηyx + ǫ2, (D1)

whereηT = η+ ηt, ηt = 1

2
(ηxx + ηyy), andǫ = 1

2
(ηxx − ηyy). A necessary and sufficient condition for exponentially growing

solutions is that the term in the square root is positive, andthat it is larger thanη2T . In other words (forǫ ≈ 0, holding within the
error limits for the measured diagonal elements ofη)

DηS ≡

(

S

k2z
+ ηxy

)

ηyx
η2T

> 1. (D2)
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FIG. 7.— The same as Figure 2, but for Run SKM16.

We note here that the contribution fromηxy is sometimes not included in the excitation condition, as its effect is smaller than
that coming from the first term. This also holds for systems studied here, but we note that, in general,ηxy is clearly non-zero,
positive, and its magnitude is much larger than that ofηyx, hence setting it to zero, as is customary in some fitting experiments to
determine the turbulent transport coefficients, is not justified.

E. DISPERSION RELATION FOR INCOHERENT SHEAR-α DYNAMOS

For incoherentα -shear driven dynamos, the dispersion relation from the linear stability analysis for exponentially growing
solutions reads (see e.g. Brandenburg et al. 2008)

DαS =
αrms |S|

η2T k
3
z

, (E1)

where the rms fluctuations of theαyy component are usually accounted for. (see e.g. Brandenburget al. 2008) derived the critical
DαS of approximately 2.3 for white-noiseα effect.


