LETTERS TO NATURE

The timing properties of the pulsar, PSR1509 —58, greatly
strengthen the identification of MSH15 — 52 with the supernova
of AD 185. It is the second-youngest known radio pulsar after
the Crab pulsar. Given the measured pulsar frequency v,
frequency derivative » and braking index n, we can calculate
the characteristic age (in 1982) of the pulsar, 7=—-v/(n—1)7 =
1.69 kyr (ref. 19). The true age may be slightly greater if the
braking index increases with time, or less if the initial spin
frequency was not much greater than the current frequency.
Without an assumption of a variable braking index, the charac-
teristic age of the pulsar excludes the 1.8-kyr-old supernova at
about the 20 level'®, but this is almost certainly due to a slight
corruption of the braking index by red timing noise such as that
observed in nearly all young pulsars®®. In any case, it is hard
to imagine that the close match between the pulsar age and that
of SN185 can be coincidental. Even with the most generous
estimates of the galactic supernova rate, the chances of two
different supernovae in the direction of @ and 8 Cen within a
few hundred years are remote.

Despite the evident youth of PSR1509—58, its remnant is
sometimes assigned an age of ~10 kyr, on the basis of a model
of Sedov expansion into a moderately dense (1 cm ™) medium'*.
Measurements of the optical filaments in the bright knot RCW86
also indicate that neither free nor adiabatic expansion is con-
sistent with their slow velocities”'. There is no problem reconcil-
ing the remnant and pulsar ages, however, if the remnant’s initial
expansion was into an underdense medium (~0.01 cm ™) such
as might be expected in the stellar wind bubble of the massive
progenitor star'**%?_ Interaction with a high-density medium
on the northwest side (towards the galactic plane) would account
for both the enhanced luminosity and the slow expansion of
the knots.

It is straightforward to make a rough estimate of how bright
the supernova would have been in China. If we assume an
absolute magnitude at supernova peak of about —19, a distance
of 4.2 kpc and an absorption Ay =3 (absorption varies across
the remnant; this is a typical value®*), the apparent magnitude
at peak would be about —3, similar to a bright planet. With
atmospheric extinction, due to its low elevation, the apparent
magnitude from Lo-Yang would be about —1.

On 7 December 185, MSH15—52 was only about a week past
its heliacal rising, and was at an elevation of ~2.9° at sunrise,
high enough for an object of magnitude m = —1 to be observed
as a morning star. Note that there is no indication in the record
that SN185 was ever observable during daylight hours. The
coincidence of the reported date of appearance of the guest star
and its heliacal rise date suggests that the supernova probably
occurred during the weeks (or months) before 7 December, but
was unobservable until then. Low elevation (and possibly
weather) may account for the week’s delay of its discovery after
heliacal rising.

On 5 July 186, MSH15 —52 was still at an elevation of ~4.2°
at sunset, and was above the horizon for 1.5 hours after sunset,
so it would have been easy to observe as an evening star. By
the end of the month, however, the source set before the Sun,
hence its disappearance. No error in the record need be assumed.
By the second heliacal rise date, a year after the initial discovery,
the guest star would have faded below naked-eye visibility.

Although the good agreement of the heliacal rising and setting
dates of MSH15-52, together with the age of the pulsar
PSR1509 — 58, form a compelling case for the identification of
MSH15—-52 with SN185, this identification is not conclusive.
Several observations are desired. The first are high-resolution
radio maps of both MSH15—52 and MSH14—-63 at several
epochs, to measure the proper expansion of both remnants. In
both cases, an age of 1,800 years suggests an expansion rate of
~1 arcsec per year, or a few times smaller if the remnant has
recently gone from free to adiabatic expansion. It is important
to measure the expansion of the low-luminosity radio shells,
rather than the higher-luminosity filaments which may arise in
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high-density clouds. Second is a measurement of the distance
to MSH14-63, by H1 absorption if possible. A firm distance
limit of more than ~2 kpc will rule it out as a candidate.

The identification of MSH15—52 with SN185 is interesting
history, but also important astronomy. MSH15-52 is a
thousand years older than the next-oldest supernova for which
a secure age exists; its study will provide insight into the evol-
ution of remnants in early middle-age. Published studies of
PSR1509 — 58 include less than 2 years of timing data'®; with a
decade now since its discovery it should be possible to refine
the ¥ measurement of PSR1509 — 58, and hence its ‘timing age’.
This will have implications for the early time evolution of pulsar
braking indices, or, possibly, the initial spin period of the
neutron star. O
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Numerical calculations of fast
dynamos in smooth velocity
fields with realistic diffusion
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MANY astrophysical magnetic fields are thought to arise by
dynamo action due to internal fluid motions, but the natural
timescale for magnetic field growth is the diffusion timescale,
which in realistic astrophysical applications is very large'. A fast
dynamo is one that operates on the much shorter turnover timescale
of the generating fluid flow, and the analytical intractability of
smooth flows with diffusion has prompted the use of many ingenious
models*~'°, differing from the true problem in having a modified
or time-dependent diffusion or singularities in the flow field. Here
we adopt a straightforward approach and present numerical com-
putations of linear kinematic dynamos associated with periodic
smooth flows, with diffusion explicitly included. Examples of time-
varying flows depending on two spatial coordinates give convincing
evidence of fast dynamo action for diffusion times up to 10,000
times greater than the turnover time. A three-dimensional steady
flow shows similar behaviour, although computations have not been
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carried out so far and the asymptotic behaviour is less clear. All
these flows have large regions where particle paths are chaotic.

As a simple model of the dynamo process, we prescribe a
velocity field u and seek exponentially growing solutions to the
induction equation for the magnetic field B

oB 1
—=Vx(uxB)+-—V?B

at R,

This is known as the kinematic dynamo problem'''?. The
equation has been scaled with a characteristic length L, velocity
U and time L/ U. The quantity R, = ULu,0 is a nondimensional
measure of the fluid conductivity o, and is enormous in astrophy-
sics (typically of order 10'®). With this scaling, the flow turnover
time is of order 1 and the electromagnetic diffusion time of
order R,;.

Although many flows are known that give a growing B (refs
11, 12), nearly all of these have the feature that the growth rate
tends to zero as R,,—> 0; such flows have been termed slow
dynamos'. These are supposedly ineffective in astrophysics: the
resulting fields would have grown insufficiently during the age
of the Universe', and short-term variations such as the solar
cycle are hard to explain with slow dynamos. Accordingly,
attention has now focused on the possibility of fast dynamos,
where the growth rate becomes independent of R,, as R~ .
Because analysis has proved exceptionally difficult in this (sin-
gular) limit, various adjustments have been made to the problem
to help in detecting the asymptotic behaviour. Singularities have
been allowed in the velocity* and the vorticity’; in these cases
the speed of the resulting dynamos is apparently due to the
singularities themselves. Velocity fields that are discontinuous
in time” and intermittent diffusion rates®® have also been used;
these are less controversial, although a formal proof that the
solutions merge with those of the induction equation in the large
R, limit remains elusive. Other work has focused on solutions
of the diffusionless equations’®; again, there is no formal con-
nection with the finite-diffusivity case. A more recent approach’®
uses a stochastic diffusion model, integrating along the particle
paths (for a review, see ref. 10). A numerical demonstration of
fast dynamo action for two pulsed Beltrami vortices was reported
by Otani'*, but no details have subsequently been published.
Thus there still seems to be scope for high-accuracy numerical
experiments with judiciously chosen velocity fields.

Motions that are chaotic are prime candidates for fast
dynamos. This is because in the perfectly conducting case,
magnetic field lines are advected like fluid line elements''"?,
Chaotic flows stretch these exponentially, providing a powerful
mechanism for growth of the field. Indeed, flows with no chaos
and no hyperbolic stagnation points always yield slow
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FIG. 1 Poincaré section for the CP flow at t=0 in the (y-z) plane (the
x-component of u is suppressed). Points are plotted at equal time intervals
27/w, and y and z values are plotted modulo 2.

dynamos®®. The ‘ABC” flows"’
u=(Asin z+ C cos y, Bsin x+ A cos z, C sin y + B cos x)

where A, B and C are constants, are known to possess chaotic
regions when ABC # 0 (refs 16, 17), and their dynamos have
been examined to see whether they are fast, with inconclusive
results'®'®. Research has mainly concentrated on the case A=
B = C, although unfortunately this special case has very small
chaotic regions.

Chaotic flows and their induced fields are by their nature
highly resistant to analytical methods. On the other hand,
numerical methods cannot currently resolve values of R, higher
than a few hundred in three space dimensions'® and this is not
really high enough. It is known, however, that flows depending
on only two space dimensions can be chaotic if they are time-
dependent. Their dynamos can be investigated with a two-
dimensional code, thus enabling much higher values of R, to
be attained. Accordingly, let us consider modifying the
integrable ABC flow with B = 0 so that its phasing depends on
time in two possible ways:

u=(Asin (z+sin wt)+ C cos (y +cos wt),
A cos (z+5sin wt), C sin (y +cos ot))
u=(Asin (z+cos wt)+ C cos (y +cos wt),

A cos (z+cos wt), C sin (y+cos wt))
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FIG. 2 Real part of the growth rate S plotted against R, (log scale) for the
three flows discussed in the text. a, CP flow, k=0.57. b, LP flow, k=0.62.
¢, three-dimensional flow. The dotted portion of the latter is determined
with lower accuracy.
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These are now non-integrable and possess large chaotic regions
(see Fig. 1). The first is ‘circularly polarized’ (CP) and stirs the
basic A(B)C flow around, whereas the second is ‘linearly polar-
ized’ (LP), and shakes it back and forth parallel to the y=1z
diagonal. In what follows we treat only the case A= C =+/3/2,
w=1.

The induction equation is solved numerically by writing the
magnetic field as a triple Fourier series and timestepping the
Fourier amplitudes; the method is a straightforward adaptation
of that in ref. 19. Because B =0, each mode proportional to e'**
evolves independently of modes with different k. Thus we can
fix k and compute the resulting B with a two-dimensional code.
The y-z periodicity of the solution is taken for convenience to
be the same as that of the flow. As k is a free parameter, one
has to optimize over k to find the value k. giving the eigenvalue
with largest real part. The solution with zero k is known to
decay from the two-dimensional analogue of Cowling’s
theorem'; for large enough k we should find decay, although
k. may grow with R . This is seen in Soward’s’ infinite-vorticity
fast dynamo, which uses a very similar but steady velocity field,
and for which k_ =~ RY?. Surprisingly, k. is here of order 1 and
varies little if at all with R, being 0.57 (CP flow) and 0.62 (LP
flow): the behaviour of the real part of the growth rate as a
function of R, for the two flows is shown in Fig. 2. The CP
flow in particular provides convincing evidence for fast dynamo
action, the real part scarcely changing between R, =50 and
R, =10,000. The LP flow is only marginally less convincing.
The real parts of the growth rates for the magnetic energy tend
to 0.3 and 0.2 respectively; there are only very small fluctuations
in the energy due to the temporal variation of the velocity field.
For comparison, the largest Lyapunov exponents in the chaotic
regions are 1.43 and 1.17. All Fourier amplitudes are initially
filled equally, and as time ¢ advances, there is a period where
the energy falls as the high-order modes decay. For large enough
R..,the energy levels off at t = 10 and exponential growth begins
at 1= 25. Thus the form of the eigenfunction seems to be estab-
lished on the turnover timescale. This was confirmed by running
the case R, =400 for a whole diffusion time. The code itself
was checked against a multiple-timescale analysis at low
R..

The structure of the eigenfunction for the CP flow is shown
in Fig. 3 (the LP solution looks rather similar but without the
structures parallel to y =z). A detailed comparison with the
velocity field is difficult because of the three-dimensionality, but
broadly speaking the field structures line up along the unstable
directions of stagnation points of the y-z flow. The thickness
of the structures goes down as R, increases, presumably scal-
ing?' as R;!/?, the behaviour found in analogous, analytically
tractable situations*>** (although here the structure may be
fractally pleated in the limit of infinite R). As k is of order 1,
the structures are like curved sheets. As R, - 0 these eigenfunc-
tions must tend to generalized functions although, remarkably,
their growth rate tends to a finite limit.

z/2%
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FIG. 3 Contours of B, at x=0: CP flow, k=0.57, R.,=2,000.

Finally we give results for the three-dimensional steady flow
u = (sin z, sin x, sin y), which is the A= B= C =1 flow with the
cosines omitted, making it roughly twice as efficient to compute
(but still requiring a three-dimensional code). Poincaré sections
reveal that almost all the flow region is chaotic, but in contrast
to the ABC flow, the helicity density u- V Xu has zero spatial
average. This is supposedly unconducive to dynamo action but,
as shown in Fig. 2, the flow operates perfectly satisfactorily as
a dynamo, and in fact seems likely to be fast. The imaginary
part of the growth rate is zero. As yet we have only achieved
results for R, up to 800 (using (96)° resolution), with no
information on eigenfunction structure. Further computations
are planned, and we should be able to obtain resolved solutions
for values of R, up to 2,000.

These computations provide strong evidence for the existence
of fast dynamos, but no proof. For the astrophysicist such a
proof is probably academic: all his flows are likely to be highly
turbulent and chaotic, and the dynamos that they produce seem
likely to be fast. Calculating the fields directly seems possible
only by numerical simulation or by the use of theories that
parameterize fast dynamo generation (for example, the a-
effect’). A more practical challenge is to translate fast dynamo
ideas and models to more realistic geometries such as spheres
and discs surrounded by empty space. Another is to examine
the back reaction of the field on the motion. This is interesting
because there is a physical inconsistency inherent in kinematic
fast dynamos: elementary consideration of the effects of field
amplification suggests that however small the seed field, for
large R,, the Lorentz force becomes significant after a time much
shorter than the diffusion time, albeit over very small volumes.
In fact, intermittent fields seem to be common in astrophysics,
with strong fields concentrated in small regions; a sunspot is an
obvious example. O
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