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1 Introduction

Ideal magnetohydrodynamics (MHD) describes the
magnetic field evolution in a perfectly conducting
fluid and is given by the induction equation of the
form

∂B

∂t
= ∇× (u×B), (1)

where B is the magnetic field, u is the velocity, and
t is time. This equation is routinely stated in the
astrophysical literature, especially in the context of
numerical simulations of the MHD equations, where
some sort of magnetic diffusion and the correspond-
ing dissipation are usually implied by the particu-
lar numerical scheme under consideration (Stone &
Norman, 1992; Pen et al., 2003; Derigs et al., 2016).
In many cases, the corresponding operator cannot
easily be expressed in terms of explicit mathemati-
cal operations. This is one reason for omitting the
diffusion and dissipation terms in the astrophysical
literature. Another reason is the fact that the mag-
netic diffusivity is very small in most astrophysical
settings. This does not generally imply that the
magnetic dissipation is small (Hendrix et al., 1996;
Galsgaard & Nordlund, 1996), although it can be
small if the magnetic Prandtl number is large, i.e.,
the kinematic viscosity is much larger than the mag-
netic diffusivity (Bra14,BR19).
We now know that magnetic field generation by

dynamo action is a generic process in most astro-
physical flows, because they tend to be turbulent,
so a certain fraction of the kinetic energy will be
diverted into magnetic energy (BL13). Thus, the
process of dynamo action is a typical ingredient of
astrophysical turbulence simulations. This raises
the question whether dynamo action of any type is
possible at all when Equation (1) is solved and the
magnetic diffusivity is thus strictly zero. Early work
of Moffatt & Proctor (1985) demonstrated that, in
the special case of steady flows, the eigenvalue of
Equation (1) must be zero in the strictly ideal case.
The result of Moffatt & Proctor (1985) is some-

what counterintuitive, because one expects the
magnetic field always to grow when there is no mag-
netic diffusivity. What happens, however, at least

for a steady flow, is that the magnetic field develops
progressively smaller structures, so the magnetic
field increases—potentially even exponentially—by
concentrating on itself into ever tinier instructions.
Because the field structure changes all the time, this
field does not correspond to an eigenfunction.

The situation may be different in a turbulent and
thus time-dependent flow, where the velocity is con-
stantly changing before the field has a chance to
concentrate itself too much. This may lead to a
field that has statistically always the same typical
size. Whether or not this really happens is unclear
and needs to be investigated. Studying this in more
detail is the main purpose of the present work.

2 Models

2.1 Analysis tools

A and EP methods, resetting B to ∇α×∇β, com-
pare BEP

rms/B
A
rms versus time, compare Jrms/Brms

versus time (smaller structures), kurtosis and pdfs
of Bi, magnetic helicity spectra HM(k, t).

The present experiment also allows us to address
the question what happens with magnetic helicity.
Even when writing the magnetic vector potential in
the more general form as

A = qα∇β − (1− q)β∇α, (2)

where 0 ≤ q ≤ 1 is some weighting factor, the mag-
netic field is still always independent of q, i.e., the
local magnetic helicity density is always zero. On
the other hand, it is still possible to have a non-
vanishing magnetic helicity spectrum, which is de-
fined as (cf. ?)

HM(k) = 1
2

∑

k
−
<|k|≤k+

(Ã · B̃
∗ + Ã

∗
· B̃), (3)

where k± = k ± δk/2 and δk = 2π/L is
the wavenumber increment and also the smallest
wavenumber in the domain L3.
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2.2 ABC flows

To understand the nature of dynamo action in the
steady ABC flow (with A = B = C = 1), we com-
pare solutions with the A and EP methods at pro-
gressively smaller diffusivity.
The initial magnetic field is expressed in terms

of Euler potentials and is given by α = cos y and
β = cos z. Figure 1 shows that there is an initial
windup phase during which the magnetic field in-
creases approximately exponentially or even super-
exponentially. Later, a truly exponential growth
commences, although the growth is then less rapid
than during the windup phase.

Figure 1: Dynamo action for η = 10−3 at 2563 with
the A method (solid line) and magnetic field decay
with the EP method (dotted line).

Table 1:

Run N η kATay kEP
Tay

A 256 10−3 20.8 20.2
B 256 5× 10−4 29.8 28.5
C 512 2× 10−4 46.0 45.7
D 1024 10−4 65.9 67.1
E 1024 5× 10−5 95.0 103.6
F 1024 2× 10−5 158.6 262.4

Figure 2 shows that the windup phase is pro-
longed as one decreases the magnetic diffusivity.
This phase can also be described with the EP
method at finite magnetic diffusivity.
Figure 4 shows that at t = 10, the A and

EP methods agree reasonably well, although both
methods suffer from poor resolution at the lowest
magnetic diffusivity.

Figure 2: Similar to Fig. 1 but for η = 10−3 (low-
ermost lines), 5× 10−4 (both at 2563), 2× 10−4 (at
5123), 10−4, 5×10−5, and 2×10−5 (at 10243). Note
that the EP method agrees with the A method only
during the initial wind-up phase, and never during
the later dynamo phase.

Figure 3: The ratio BEP
rms/B

A
rms during early times.

At a given resolution, here 10243, the EP method
reproduces the initial windup phase until a certain
time. At higher resolution, the time over which
the EP method agrees with the A method will be
longer. In the early phase, however, the magnetic
field evolution appears to be similar to the windup
in 2-D, when there is no dynamo.

Figure 5 shows the pdf of the 3 components of
B at t = 7 with the EP and A methods, respec-
tively, and compares in a log-log plot. With the EP
method, the pdf is more extended, but the mag-
netic field decays and at later times, only the pdf
obtained with the A method has extended tails; see
Fig. 6 for t = 30. In all cases, the PDF has power-
law tails proportional to 1/B2

i .
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Figure 4: Bz(x, y) in a given plane z = const for
η =1e-4, 5e-5, and 2e-5. In all cases, the resolution
is 10243.

3 Galloway–Proctor flow

The Galloway–Proctor flow is time dependent. We
use here the circular polarized version in the defini-
tion of GP92. Figure 7 shows Bx for t = 10 (title
says incorrectly t = 1), and t = 60 (second row)
for η = 10−3, and then the same for η = 10−4 and
η = 10−5 in rows 3 and 4. Figure 8 shows the time
evolution for all 3 cases. The EP solution departs
from the correct solution for t >∼ 4. The A solution
with η = 10−5 is under-resolved.

4 Delta-correlated turbulence

In mean-field electrodynamics (Krause & Rädler,
1980), it is shown that there is an α effect even
in the absence of magnetic diffusion. This is done
by using the high connectivity limit, in which the

Figure 5: Histograms for the ABC flow at t = 7 for
the run with η = 2× 10−5.

magnetic diffusion operator is neglected. This ap-
proximation is only valid when the Strouhal num-
ber St = urmskfτ is small, i.e., when the correlation
time τ of the flow is zero. To realize such a flow, we
now XX

Instead of using a delta-correlated forcing func-
tion with plane waves in the momentum equation,
as one usually does, we now use this function for the
velocity. Figure 9 shows the time evolution. Fig-
ure 10 compares Bx(y, z) at x = 0 and t = 200.
Figure 11 compares magnetic energy and helicity
spectra for four times. In Figure 11, we compare
magnetic energy and helicity spectra from the EP
and A methods at four times. We see that HM(k, t)
shows positive and negative contributions of small
and large wavenumbers, respectively. This agrees
with early studies on the properties of α2 dynamos
(Seehafer, 1996; ?) and was also seen in the early
phase of resistive turbulent α2 dynamos (Branden-
burg, 2001). Interestingly, both the EP and the
A methods reproduce this behavior correctly, and
even at late times, the EP method recovers this be-
havior qualitatively.
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Figure 6: Histograms for the ABC flow at t = 30
for the run with η = 2× 10−5.
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Figure 7: Bx(y, z) at x = 0 for η =1e-3, 1e-4, and
1e-5. In all cases, the resolution is 5123.
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Figure 8: Time evolution for GP flow.

Figure 9: Time evolution for a delta-correlated fully
helical flow.

Figure 10: Bx(y, z) at x = 0 for the delta-correlated
fully helical flow.
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Figure 11: Magnetic energy and helicity spectra for the delta-correlated fully helical flow.
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