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Abstract. We use direct numerical simulations of decaying primordial hydromagnetic tur-
bulence with helicity to compute the resulting production of gravitational waves (GWs) and
their degree of polarization. The turbulence sourcing field, which can be magnetic or kinetic,
is either given initially, or it is produced by driving it with an electromotive force applied
during a short initial time interval. In both types of simulations, we find a clear dependence
of the degree of circular polarization of the resulting GWs on the fractional magnetic/kinetic
helicity. Furthermore, the spectral peak is higher in the helical case, which facilitates its ob-
servational detection with the planned Laser Interferometer Space Antenna (LISA). In both
cases, the low frequency tail is shallower than what was expected based on earlier analytical
work. For frequencies above the peak, the two types of simulations show opposite trends in
that the spectral energy is higher (lower) in the helical case than in the nonhelical one if an
initial spectrum is given (driven). The degree of polarization approaches zero at frequencies
below the peak, but stays finite at higher frequencies if the initial magnetic field is given to
be fully helical all wavenumbers, and it approaches zero if the initial field is driven by a fully
helical monochromatic forcing function.
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1 Introduction

Primordial magnetic fields produced during phase transitions can drive stochastic background
gravitational waves (GWs) in a broad range of frequencies, from nHz to Hz, depending on
the energy scale of the phase transition (T ∼ 100GeV for the electroweak, and T ∼ 100MeV
for the QCD phase transition), and the characteristic scale of the magnetic field k∗, which
is taken to be a fraction of the Hubble scale at the time of magnetic field generation. These
signals could in future be observable with gravitational wave detectors, e.g., pulsar timing
arrays (PTA), or the planned Laser Interferometer Space Antenna (LISA). These magnetic
fields could have survived until the present time [14] and are thus a leading candidate for
explaining the lower limits on the strength of intergalactic magnetic fields inferred from the
non-observation of cascade photos from TeV photons of blazars interacting with the cosmic
background light [1]. Such fields are expected to be turbulent and partially helical.

Helical magnetic fields produce circularly polarized GWs [16]. However, the degree of
polarization of GWs has been a matter of uncertainty owing to the approximations made in
the analytical calculations available to date. The work of Ref. [11] suggested that the circular
polarization of GWs would be about 80% for a maximally helical magnetic field, by assuming
Kolmogorov-type turbulence, with spectral index of −11/3 for the magnetic power spectrum
and −14/3 for the helicity power spectrum, following Ref. [12]. The peak is observed at
twice the magnetic spectral peak. For smaller values of the fractional magnetic helicity, the
maximum degree of polarization also diminishes. Ref. [16] showed that the maximum circular
polarization depends on the relation between the magnetic field and magnetic helicity power
spectra, and it can actually reach nearly 100% in the case when the spectral indices for both
are equal, which we call a Moiseev-type spectrum, following Ref. [17]. On the other hand,
this type of spectrum generates a degree of polarization that does not decay to zero for large
wave numbers, but it stays constant and is approximately equal to the fractional helicity.
More recently, the two types of spectra mentioned above have been studied in Ref. [13] in
the context of detectability with LISA. We show that the circular degree of polarization
computed from direct numerical simulations does not follow any of the previous analytical
models, even though it retains some similarities, depending on the how the magnetic field is
generated/driven at the initial time.
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In two recent papers [3, 4], the authors have described the implementation of a GW
solver into the Pencil Code [5] and have presented numerical computations for primordial
hydrodynamic and hydromagnetic turbulence from phase transitions, and their subsequent
generation of a stochastic gravitational wave background, also computed numerically. Some
of those solutions were fully helical, but helicity was not a focus of their studies. In Ref. [6]
the degree of circular polarization for kinetically and magnetically forced turbulence was
presented. We extend the study in the present work by including the effect of fractional he-
licity to the magnetic field power spectrum, and the variation of the polarization for different
assumptions of magnetic field production.

We present here two types of simulations, similar to the two types of hydromagnetic
simulations presented in Ref. [4]: one where a primordial magnetic field was assumed given
as initial condition, and one where a magnetic field was generated by an electromotive force
E(x, t) that depends on time t and position x. This driving was then applied during a short
time interval, and then switched off, i.e, set to zero, E = 0, such that turbulence decays for
later times. By using suitably scaled variables and conformal time, the governing equations
describing the evolution of GWs and turbulent magnetic fields in an expanding universe in
the radiation era can be brought into a form that is best suited for numerical simulations [3].

We begin by summarizing our approach and the equations solved. We then present
the magnetic and GW energy spectra, the degree of polarization in relation to the magnetic
helicity, and compare with the sensitivity limits for LISA. We conclude by highlighting unique
properties of the GW spectra and their polarization properties.

Throughout this work, electromagnetic quantities are expressed in Lorentz–Heaviside
units where the vacuum permeability is unity. Einstein index notation is used so summation
is assumed over repeated indices. Latin indices i and j refer to spatial coordinates 1 to 3.
The linear polarization modes are indicated by λ = +,×.

2 The model

We use the linear polarization modes +,× to describe the two gauge independent compo-
nents of the tensor-mode perturbations, h̃ij(k) = h̃+(k)e

+
ij(k) + h̃×(k)e

×

ij(k), where the tilde
indicates that this decomposition is performed in Fourier space. The linear polarization basis
tensors are

e+ij(k) = e1i e
1
j − e2i e

2
j , e×ij(k) = e1i e

2
j + e2i e

1
j , (2.1)

where e1 and e2 form a basis with the units vectors k/|k| [3]. We solve the non-dimensional
GW equation in the radiation era for the scaled strains h̃λ, where λ = +,×, using conformal
time, normalized to unity at the initial time of magnetic energy generation t∗, and comoving
wave vector, normalized by the corresponding scale 1/(ct∗) [3, 4]

(

∂2
t + k2

)

h̃λ(k, t) =
6

t
T̃TT
λ (k, t), (2.2)

where T̃TT
λ is the comoving stress tensor, projected into the traceless and transverse (TT)

gauge, described by the linear polarization modes, and normalized by the energy density at t∗.
The scaled strains are tensor-mode perturbations over the Friedmann-Lemâıtre-Robertson-
Walker metric tensor. Hence, the metric tensor is such that the line element is ds2 =
a2(−dt2 + δij + hij/a) [3, 4]. During radiation-dominated epoch, the equation of state is
p = 4

3ρ, which leads to a linear evolution of the scale factor a with t.
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The stress is composed of magnetic and kinetic contributions. In physical space it is

Tij(x) =
4

3

ρuiuj
1− u2

−BiBj +

(

ρ

3
+

B2

2

)

δij , (2.3)

where u is the plasma velocity, ρ is the energy density, and B is the magnetic field. The
total enthalpy is w = p+ ρ = 4

3ρ. Since Tij refers to comoving and normalized stress tensor,
the MHD fields ρ,u,B are accordingly normalized and comoving.

The non-dimensional and comoving MHD equations for an ultrarelativistic gas in a flat
expanding universe in the radiation-dominated era after the electroweak phase transition are
given by [3, 4, 7, 8, 14]

∂ ln ρ

∂t
= −4

3
(∇ · u+ u ·∇ ln ρ) +

1

ρ

[

u · (J ×B) + ηJ2
]

,

∂u

∂t
= −u ·∇u+

u

3
(∇ · u+ u ·∇ ln ρ) +

2

ρ
∇ · (ρνS)

−1

4
∇ ln ρ− u

ρ

[

u · (J ×B) + ηJ2
]

+
3

4ρ
J ×B,

∂B

∂t
= ∇× (u×B − ηJ + E), J = ∇×B,

where Sij = 1
2(ui,j + uj,i) − 1

3δij∇ · u are the components of the rate-of-strain tensor with
commas denoting partial derivatives, J is the current density, ν is the kinematic viscosity,
and η is the magnetic diffusivity.

The electromotive force, E , is used to model the magnetic field generation with fractional
magnetic helicity. In some of our runs we will omit this term, and we will start with a fully
developed turbulent spectrum of the magnetic field as our initial condition. On the other
hand, we also consider magnetic fields generated dynamically using E . Specifically, in the
latter case, we write

E(x, t) = Re{N f̃(k(t)) exp[ik · x+ iϕ]}, (2.4)

where the wave vector k(t) and the phase ϕ(t) change randomly from one time step to the
next. This forcing function is therefore white noise in time and consists of plane waves with
average wavenumber k∗ such that |k| lies in an interval k∗ − δk/2 ≤ |k| < k∗ + δk/2 of width
δk. Here, N is a normalization factor. The Fourier amplitudes of the forcing are

f̃i = (δij − iσǫijlkl/k) f̃
(0)
j /

√

1 + σ2, (2.5)

where f̃
(0)

(k) = (k × e)/[k2 − (k · e)2]1/2 is a nonhelical forcing function. Here, e is an
arbitrary unit vector that is not aligned with k. Note that |f |2 = 1. The values σ = 0 and
σ = 1 correspond to nonhelical and maximally helical cases, but we also consider intermediate
values, which correspond to fractional helicities. The forcing is only enabled during an
arbitrarily short time interval 1 ≤ t ≤ tmax. We chose tmax = 1.1. The resulting fractional
magnetic helicity k∗〈A·B〉/〈B2〉 is given approximately by 2σ/(1+σ2), beingA the magnetic
vector potential, and angle brackets denoting ensemble average over stochastic realizations.

When the magnetic field is given as initial condition, we generate a random three-
dimensional vector field in Fourier space,

Bi(k) = B0 (Pij(k)− iσǫijlkl/k) gj(k) g0(k), (2.6)
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where gj(k) is the Fourier transform of a δ-correlated vector field in three dimensions with
Gaussian fluctuations, i.e., gi(x)gj(x

′) = δijδ
3(x − x′), k∗ is now identified with the initial

wavenumber of the energy-carrying eddies, and g0(k) determines the spectral shape [14].

g0(k) =
k
−3/2
∗ (k/k∗)

α/2−1

[1 + (k/k∗)2(α+5/3)]1/4
. (2.7)

The power spectrum of magnetic fields is computed from 1
2〈B2〉. Hence, it is proportional

to k2g20(k) in Fourier space, which correspond to a spectral index α in the low wave number
limit (subinertial range) and Kolmogorov-type spectral slope −5/3 in the high wave number

range. Here, the k
−3/2
∗ prefactor ensures that the resulting magnetic energy is independent

of the value of k∗.
The equal time correlation function of the magnetic field, assuming statistical homo-

geneity and isotropy, and a Gaussian-distribution in space, is

〈B∗

i (k, t)Bj(k
′, t)〉 = (2π)6δ3(k − k′)

[

Pij
EM(k, t)

4πk2
+ iǫijlkl

HM(k, t)

8πk2

]

, (2.8)

where Pij = δij−kikj/k
2, and EM(k, t), HM(k, t) are the magnetic and helical power spectra,

respectively. We work here with magnetic energy spectra per linear wave number interval.
The GW energy density (in physical units) is

EGW(t) =
c2

32πG
〈ḣphysij ḣphysij 〉, (2.9)

where hphysij = hij/a are the physical strains, and a dot represents derivative with respect to
physical time. In terms of the normalized and comoving units used in Eq. (2.2), the ratio of
comoving GW energy density to critical energy density ΩGW = EGW/E0

crit is

a4ΩGW(t) =
1

12

(

H∗

H0

)2〈∂hij
∂t

∂hij
∂t

+
1

t2
hijhij −

2

t
hij

∂hij
∂t

〉

, (2.10)

where E0
crit = 3H2

0c
2/(8πG), with H0 = 100h0 km s−1Mpc−1 ≈ 3.241 × 10−18 h0 s

−1 being
the Hubble rate at the present time, and h0 takes into account the uncertainties in its exact
value. To simplify the notation, we will use prime to denote derivative with respect to t.

The equal time correlation function for the strains and their derivatives (again assuming
the statistical fields to be homogeneous, isotropic and Gaussian) can be expressed as

〈h′ij(k, t)h′ij(k′, t)〉 = 1

4

[

MijlmSh′(k, t) + iAijlmAh′(k, t)
]

,

〈hij(k, t)hij(k′, t)〉 = 1

4

[

MijlmSh(k, t) + iAijlmAh(k, t)
]

,

〈hij(k, t)h′ij(k′, t)〉 = 〈h′ij(k, t)hij(k′, t)〉 = 1

4

[

MijlmSmix(k, t) + iAijlmAmix(k, t)
]

, (2.11)

3 Results

We have computed solutions for a range of values of σ, using both given and driven initial
fields. In Fig. 1 we compare energy and helicity spectra of the magnetic field and the resulting
GWs for σ = ±1 and ±0.01. The spectra are averaged over the time interval 1.1 ≤ t ≤ 1.2,
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Figure 1. Magnetic and GW energy and helicity spectra.

which is just after the maximum magnetic energy has been reached and the GW energy
begins to fluctuate around an approximately statistically steady state.

We see that in all cases, the causal k4 magnetic energy spectrum [9] is established. This
implies a flat spectrum for the GW energy [4, 15]. For k > k∗, the slope of the magnetic
energy spectrum is a little steeper This is because of the finite time driving during the rather
short time interval, 1 ≤ t ≤ 1.1. The k−5/3 Kolmogorov-type spectrum would emerge if the
driving was continued over a longer time interval. than the expected k−5/3 spectrum.

In Fig. 1, the magnetic helicity spectra are multiplied by k/2, which allows us to see
that the spectral realizability condition [10],

|kHM(k, t)/2| ≤ EM(k, t), (3.1)

is nearly saturated at k = k∗, so the magnetic energy is here nearly fully helical for σ = ±1;
see the upper two panels of Fig. 1. For σ = ±0.01 (lower two panels) there is a clear
separation between EM(k, t) and kHM(k, t)/2 and the sign of the magnetic helicity tends to
fluctuate noticeably. We also see a systematic sign flip at higher k both in HM and in HGW.
Such sign flips are typical of decaying helical turbulence are a consequence of the fact that
the fractional magnetic helicity is there already extremely small.

In Fig. 2 we plot the GW polarizations

P(k) =
ΞGW(k)

ΩGW(k)
, (3.2)
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Figure 2. (a) given initial field with different fractional helicity. (b) driven initial field with different
fractional helicity. + analytical formula.

where

ΞGW(k) =
k

3H2
∗

∫

4π
Im

(

˙̃
hphys+

˙̃
hphys,∗
×

)

k2 dΩk , (3.3)

with
∫

ΞGW(k) d ln k = ΞGW being the total normalized helical energy density. We also define
the fractional magnetic helicity PM(k) = kHM(k)/2EM(k).

We see that PGW(k) reaches ±1 at k ≈ 2k∗ ≈ 1200 when σ = ±1. This is more than
what was found in Ref. [11]. This discrepancy can probably be explained by the use of the
approximations made in the analytic calculations. Toward smaller k, there are systematic
fluctuations around PGW(k) = 0, especially for k = 200.

We also plot the total polarization integrated over all wave numbers, i.e.,

P̃GW =
ΞGW

ΩGW
, P̃M =

HM

2ξMEM
. (3.4)

The result is shown in Fig. 3. We see that the numerical data can well be fitted with the
curve

P̃GW ≈ P̃0 tan P̃M, (3.5)
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Figure 3. GW polarization versus magnetic polarization.

where P̃0 ≈ 0.6 for the driven case and P̃0 ≈ 0.76 for the case with an initial magnetic field.
This relation between P̃GW and P̃M is unexpected and the agreement with the actual data
points is remarkable. On the other hand, for a Beltrami field, which is monochromatic and
defined only for a single value of k, we have an exact analytical solution for both P̃GW and
P̃M; see Appendix A. The resulting dependence of P̃GW on P̃M has a rather different shape;
compare with the dotted line for the Beltrami field. This is surprising, but it may be related
to the smaller fractional polarization away from the peak near k∗; see Fig. 2. This feature
becomes more pronounced for smaller values of σ. On the other hand, close to the maximally
helical fields, P̃GW shows a much more dramatic increase with P̃M.

4 Possibility of detection with LISA

To assess the observational prospects of detecting GWs for different values of σ, we now plot
ΩGW for σ = 1, 0.7, 0.5, 0.3, and 0.1; see Fig. 4. The result for σ = 1 was already shown
in the top left panel of Fig. 1. The spectra are similar, but we now also see that for smaller
values of σ, the jump in ΩGW(f) near the peak is less pronounced, so for larger frequencies,
i.e., to the right of the peak, ΩGW(f) increases (decreases) for smaller (larger) values of σ.

For smaller frequencies, to the left of the peak, which corresponds to the subinertial
range, we have the aforementioned shallow spectrum with ΩGW(f) ∝ f , which is approxi-
mately independent of the value of σ. Again, positive (negative) values are indicated by a
red (blue) symbols.

Finally, we plot in Fig. 5 the energy spectra together with the helicity spectra ΣGW. In
this logarithmic representation, the fractional GW polarization appears still rather noticeable
for σ = ±0.1. We see that for fractional magnetic helicity, the GW power decreases and
the values of ΞGW(f) are now close to the LISA sensitivity limit, ΞLISA

GW (f). On the other
hand, the polarization signal is still rather clean in the sense that the amount of statistical
fluctuations in the sign of ΞLISA

GW (f) is weak.

5 Conclusions

Our numerical simulations have confirmed that there is a direct correspondence between
the sign of magnetic helicity and the sign of circular polarization of the GWs produced
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Figure 4. Diagnostic diagram of h2
0ΩGW(f) for σ = 1 (red), 0.7 (orange), 0.5 (green), 0.3 (blue),

0.1 (black) for the driven case (left) and the case with initial condition (right). The LISA sensitivity
curve is shown as a green dash-dotted line and slopes proportional to f−4 and f−5, as well as f−8/3

are shown for orientation.

Figure 5. Diagnostic diagram of h2
0ΩGW(f) and h2

0ΞGW(f) for given initial magnetic fields with (a)
σ = ±1 and (b) ±0.1, and initially driven magnetic fields with (c) σ = ±1 and (d) ±0.1.

from the resulting magnetic stress. Our work has also revealed a new functional form of
the dependence of circular polarization of GWs on the fractional magnetic helicity. The
dependence is shallower for weakly helical magnetic fields and steeper for nearly fully helical
fields. The precise form of this curve can be important if one wants to infer the magnetic
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helicity from circular polarization measurements of GWs. Cosmological magnetic fields may
well be close to fully helical, because the magnetic helicity is a conserved quantity while the
magnetic energy decays, so the ratio always increases until it reaches nearly 100%.

The subinertial range of the GW spectrum is hardly affected by the presence or absence
of magnetic helicity. However, the peak of the GW spectrum is higher in the case with
magnetic helicity. This is another reason why magnetic helicity is beneficial for enhancing
the detection prospects of GWs, provided LISA is indeed able to measure the GW energy at
the peak frequency. On the other hand, at larger wave numbers, corresponding to the inertial
range of the underlying turbulence, the trend is the other way around, i.e., the spectral GW
energy is lower in the presence of helicity and the slope steeper.

A Analytical model for polarization

B Beltrami field

Simple magnetic field with partial helicity

B(x, t) = B0Θ(t)





0
σ sin k0x
cos k0x



 , (B.1)

where σ ∈ [0, 1] is a parameter to modify the helicity of the magnetic field, k0 ∈ R is a
characteristic wavenumber, and ΩM = B2

0/2 is the amplitude. The Heaviside function Θ(t)
is included to indicate that this field is zero for t ≤ 0.

In Fourier space this is

B̃(k, t) =
1

2
B0Θ(t)





0
iσ[δ3(k + k0)− δ3(k − k0)]
δ3(k + k0) + δ3(k − k0)



 , (B.2)

where k0 = (k0, 0, 0), and δ3(k) is the Dirac’s delta function in three dimensions. We have
used the convention

B̃(k, t) =

∫

B(x, t)e−ik·x dx, B(x, t) =
1

(2π)3

∫

B̃(k, t)e−ik·x dk. (B.3)

The magnetic spectrum is

EM(k, t) =
1

2

∫

Ω1

B̃(k, t) · B̃∗

(k, t) dΩ1 =
ΩM

2
Θ(t)(1 + σ2)δ(k − |k0|), (B.4)

where Ω1 = 2 is the one-dimensional solid angle, and δ(k) is the one-dimensional Dirac’s
delta function.

The total magnetic energy density is

EM(t) =

∫

∞

0
EM(k, t) dk =

ΩM

2
Θ(t)(1 + σ2). (B.5)

The magnetic helicity spectrum is

HM(k, t) =

∫

Ω1

B̃(k, t) · (ik × B̃(k, t))∗ dΩ1 = 2ΩMΘ(t)|k0|σδ(k − |k0|). (B.6)
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The total magnetic helicity density is

HM(t) =

∫

∞

0
HM(k, t) dk = 2ΩMΘ(t)|k0|σ. (B.7)

The magnetic spectral peak is

kM =
EM(t)

∫

∞

0 k−1EM(k, t) dk
= |k0|. (B.8)

The fractional magnetic helicity is

εh =
〈B(x, t) · (∇×B(x, t)〉

kM〈B2(x, t〉 =
HM(t)

2kMEM(t)
=

2σ

1 + σ2
, (B.9)

which reduces to +1, 0, and −1, for σ = +1, 0, and −1, respectively.
The stress tensor for magnetic fields is

Tij(x, t) = −BiBj +
1

2
δijB

2, (B.10)

where
B2(x, t) = ΩMΘ(t)

[

(1 + σ2) + cos 2k0x(1− σ2)
]

, (B.11)

and

−BiBj(x, t) = −ΩMΘ(t)





0 0 0
0 σ2(1− cos 2k0x) σ sin 2k0x
0 σ sin 2k0x 1 + cos 2k0x



 . (B.12)

Combining both we obtain the stress tensor

Tij(x, t) =
1

2
ΩMΘ(t)





T11(x) 0 0
0 T22(x) T12(x)
0 T12(x) −T22(x)



 , (B.13)

where

T11(x) = (1 + σ2) + (1− σ2) cos 2k0x,

T22(x) = (1− σ2) + (1 + σ2) cos 2k0x,

T12(x) = 2σ sin 2k0x. (B.14)

Since GWs are produced by linear perturbations over the metric tensor, and the stress
tensor components are also perturbations over background fields, constant modes (k = 0) do
not produce GWs. For this reason, we can neglect the terms that are homogeneous in space.
This can be done by computing T̃k

ij(k, t) = T̃ij(k, t)(1 − δ3(k)). The stress obtained is the
same as in Eq. (B.13), replacing T11(x) and T22(x) by

Tk

11(x) = (1− σ2) cos 2k0x, T
k

22(x) = (1 + σ2) cos 2k0x. (B.15)

In Fourier space, the resulting stress tensor is

T̃k

ij(k, t) =
1

2
ΩMΘ(t)





T̃k
11(k) 0 0

0 T̃k
22(k) T̃12(k)

0 T̃12(k) −T̃k
22(k)



 , (B.16)
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where

T̃k

11(k) =
1

2
(1− σ2)[δ3(k + 2k0) + δ3(k − 2k0)],

T̃k

22(k) =
1

2
(1 + σ2)[δ3(k + 2k0) + δ3(k − 2k0)],

T̃12(k) = iσ[δ3(k + 2k0)− δ3(k − 2k0)]. (B.17)

The transverse and traceless projection of the stress tensor is

T̃TT
ij (k, t) = (PilPjm − 1

2
PijPlm)T̃k

lm(k, t), (B.18)

where Pij = δij − k̂ik̂j is the projection operator being k̂ = k/
√
k2.

The only wave vectors that leads to non-zero stress in Fourier space are k = 2k0 =
(±2k0, 0, 0). The projection operator for these wave vectors is Pij(±2k0) = δij − δi1δj1.
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