1 Propagation diagrams for
B16 models

The essence of the B16 envelope models is that the
enthalpy flux is not just given by a term propor-
tional to the super-adiabatic gradient, but there
is an additional term, —7(s?)gpT/c,, also called
the Deardorff term, which carries enthalpy outward,
even in layers that are (weakly) Schwarzschild-
stable.

The deeper layers of the convection zone can
indeed be weakly Schwarzschild-stable when the
Deardorff term is driven by mechanical stirring
through descending plumes. This phenomenon is
superficially reminiscent of overshoot, but, unlike
standard overshoot where the enthalpy flux is in-
ward, the Deardorff flux is always outward.

Given the presence of Schwarzschild-stable layers,
there is the possibility of trapping g-modes closer
to the surface. The question is therefore what their
properties are and whether they could be observ-
able. In the following, we compute wave propaga-
tion diagrams for such models. When comparing
with earlier propagation diagrams that employed
standard mixing length models, it should be noted
that the B16 envelope models employed simplis-
tic prescriptions for the opacity and ignored partial
ionization effects. They also ignored the spherical
geometry, i.e., gravity and total flux were constant,
instead of varying like r=2. (In reality, 4mr?Fo;
and 4mr?g, would be constant.) The depth of the
convection zone was in all cases less than 200 Mm,
so the bottom of the convection zone was at a frac-
tional radius /R that was larger than 0.7. Further-
more, the propagation diagrams will be unrealistic
in the deeper parts due to the neglect of spherical
effects, but they may still give an idea about the
anticipated effects.
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Figure 1: Case I, beta=tbeta=0, fs0=0.3, Fig.4,
green line, pmodels_nabD1_xilp5_kfHp0O
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Figure 2: Case II, beta=0, tbeta=1, fs0=0.1, Fig.5,
blue line, pmodels_nabD2_xilp5_kfHpO1
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Figure 3: Case III, beta=tbeta=1, fs0=0.1, Fig.6,
blue line, pmodels_nabD2_xilp5_kfHp

Figures 1-3 show propagation diagrams similar
to those in Appourchaux+10. The frequencies w™
are the zeros of the function

K(r) = {wz—wf— ?(1—2[22)} (1)

where w is the eigenfrequency, wc =

(cs/2H,)+/1 —2dHp,/dr is the acoustic cutoff
frequency, Sy = +/l({+1)cs/r is the Lamb
frequency, and N = /g(d(s/cp)/dr is the Brunt-
Viiséld frequency. The term K(r) enters in the

equation
0%

W + K(T)\If = 07 (2)

where ¥ is the eigenfunction, which is proportional
to the divergence of the displacement & of the rele-
vant mode.

We see that both w™ and w™ increase with £, but
w™T increases faster, so that the gap between them
increases with increasing /.



