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ABSTRACT

...
Subject headings: dynamo — magnetic fields — MHD — turbulence — methods: numerical

1. INTRODUCTION

Magnetic helicity is conserved by the magnetohydro-
dynamic (MHD) equations in the limit of large magnetic
Reynolds numbers. This is a remarkable property of
MHD, because something analogous does not exist for
the kinetic helicity, which does change—even when the
Reynolds number is very large. When the flow is forced
with a helical forcing function, it leads to an efficient
dynamo process. Since magnetic helicity is conserved,
the magnetic field tends to become bihelical with oppo-
site signs of magnetic helicity at large and small length
scales, whose contributions cancel.
Numerical codes tend to obey magnetic helicity conser-

vation reasonably well when magnetic energy and heli-
city dissipation is accomplished through Ohm’s law by
microphysical resistivity (Brandenburg & Scannapieco
2020). Magnetic energy dissipation through purely nu-
merical means, on the other hand, yields a magnetic he-
licity evolution that strongly depends on the details of
the numerical scheme. With the eight-wave solver of the
FLASH code, for example, spurious magnetic helicity is
generated both over long and short time scales (Branden-
burg & Scannapieco 2020). By contrast, the SPARK solver
in FLASH produces much less spurious magnetic helicity,
as will be demonstrated here in detail.
At finite magnetic Reynolds numbers, some level of

magnetic helicity is always generated. There has been
significant progress in characterizing magnetic helicity
production during the late evolution of the dynamo pro-
cess in its saturation phase (Brandenburg 2001; Field &
Blackman 2002; Blackman & Brandenburg 2002), but
not much is known about the early evolution before non-
linear effects have played a role. An exception is the
work of Brandenburg et al. (2002), who found that for
the ABC flow, the normalized magnetic helicity decreases

with magnetic Reynolds number ReM like Re
−1/2
M ; see

their Figure 5. Assuming ReM to be proportional to
the number of mesh points N , this suggests a relatively
slow convergence with increasing resolution. It turns out,
however, that the actual magnetic helicity produced de-
creases faster—approximately like N−3/2. Investigating
and understanding this in detail is the purpose of the
present work.

2. DEFINITION OF THE MODEL

The evolution of the magnetic field B is governed by
the induction equation,

dB

dt
= ∇× (U ×B − ηJ) , (1)

where U(x, t) is the velocity field, which is in general
time-dependent, J = ∇ × B/µ0 is the current density,
with µ0 being the vacuum permeability, and η is the
magnetic diffusivity. The mean magnetic energy density
is given by 〈B2〉/2µ0, where angle brackets denote vol-
ume averaging. A more convenient quantity is the mean
squared magnetic field,

M = 〈B2〉, (2)

as well as the magnetic and normalized current helicities

H = 〈A ·B〉 and C = ν0〈J ·B〉. (3)

We consider a periodic domain of size L3, so the small-
est wavenumber is k1 = 2π/L. Because of periodicity,
there are no magnetic helicity fluxes and the mean mag-
netic helicity density 〈A ·B〉 is governed by the equation

d

dt
〈A ·B〉 = −2η〈J ·B〉 (4)

During the kinematic dynamo phase of interest, the rms
magnetic field increases exponentially with the growth
rate λ and the mean squared magnetic field 〈B2〉 grows
at a rate 2λ. It is then useful to introduce normalized
quantities

ǫM = k1〈A ·B〉/〈B2〉, kC = 〈J ·B〉/〈B2〉, (5)

where ǫM is non-dimensional and characterizes the net
magnetic helicity in the system, and kC has the units
of a wavenumber that characterizes the magnetic energy
spectrum. We then have

2λǫM = −2ηkCk1 (kinematic phase). (6)

Thus, we see that ǫM < 0, when the magnetic field grows
(λ > 0). It is conceivable that kC increases with ReM
to some power n, so we write kC = k1Re

n
M, where n is

an empirically determined parameter. For Kolmogorov
turbulence, for example, one expects n = 1/4 (Blackman
& Brandenburg 2002). In general, however, we have

ǫM = −ηkCk
2
1/λ = −λ̃−1k̃−2

f Re
−(1−n)
M , (7)
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Fig. 1.— FLASH .

where λ̃ = λ/urmskf is the nondimensional growth rate

and k̃f = kf/k1 is the nondimensional forcing wavenum-
ber. The findings of Brandenburg et al. (2002) are repro-
duced when n = 1/2. In an ideal code, we expect there to
be an effective magnetic Reynolds number proportional
to N , so we define

Reff = R0N, (8)

where R0 is the mesh Reynolds number. We have
dropped here the specification to the magnetic Reynolds
number, because for ideal codes one expects the fluid
and magnetic Reynolds numbers to be the same. The
empirical finding ǫM ∝ N−3/2 then implies then for n a
negative value, n = −1/2, and thus

ǫM = −λ̃−1R
−3/2
eff . (9)

This allows us to compute the effective grid Reynolds
number as

R0 = −N−1 (λ̃ k̃2f ǫM)−2/3. (10)

Figure 1 shows magnetic helicity production with the
SPARK solver in FLASH. The early exponential growth
phase of the dynamo corresponds to the time interval
from 20 to 140 (in code units). In the following, we av-
erage the instantaneous growth rate, λ(t) = d lnBrms/dt
and various other normalized quantities such as ǫM and
kC, as well as urms, over this time interval. Figure 2
shows that the magnetic helicity production decreases
with increasing resolution N like N−1.5. (Not clear why.)
In Figure 3 we show the magnetic helicity evolution in

DNS for different values of ReM; see also Table 1 for a
summary of quantities averaged over the linear growth
phase. The data of the DNS correspond to an inhomo-
geneous dataset because both PrM and ReM vary. We
also note that in the DNS, urms is only about half the
value used in the FLASH code results. Figure 4 shows that
the magnetic helicity production decreases with ReM like
Re−0.7

M , at least for the range of values shown here.
In Figure 5 we combine the FLASH and Pencil Code

results. For each value of ReM, we show here separate
lines with different resolutions.
Using Equation (10), we compute R0, which is shown

in Figure 7 as a function of N .

Fig. 2.— Results with FLASH .

Fig. 3.— Results with Pencil Code.

Fig. 4.— Results with Pencil Code.

Looking at Table 1, we see that kC/kf converges with
N more slowly than ǫM.

3. TWO-SCALE APPROACH

In a closed or periodic domain, magnetic helicity can
only be produced by the 〈J ·B〉 term, even if 〈A ·B〉 = 0
initially. To understand this, we now compute 〈J · B〉



3

TABLE 1
FLASH (first three rows) and Pencil Code results.

Run N kf urms ν η PrM Re ReM −ǫM kC/k1 λ

O 16 16.5 0.405 0 0 – – – 2.4e-02 -2.5e-01 7.8e-02
O 32 16.5 0.427 0 0 – – – 8.7e-03 4.8e-02 1.2e-01
O 64 16.5 0.408 0 0 – – – 2.8e-03 5.4e-02 1.3e-01

I 128 16.5 0.211 5.0e-05 5.0e-05 1 255.3 255.3 3.5e-04 9.4e-01 2.0e-01
I 256 16.5 0.212 5.0e-05 5.0e-05 1 256.5 256.5 3.1e-04 1.1e+00 1.9e-01
I 512 16.5 0.211 5.0e-05 5.0e-05 1 255.8 255.8 3.0e-04 1.1e+00 1.9e-01

P 256 16.5 0.206 2.0e-04 5.0e-06 40 62.5 2501.7 5.8e-05 6.2e-01 3.5e-01
P 512 16.5 0.206 2.0e-04 5.0e-06 40 62.3 2493.6 6.3e-05 4.2e+00 3.5e-01

X 64 28.3 0.085 2.0e-03 5.0e-05 40 1.5 59.8 4.3e-03 1.2e+01 1.5e-01
X 128 28.3 0.085 2.0e-03 5.0e-05 40 1.5 60.1 4.1e-03 1.3e+01 1.6e-01
X 256 28.3 0.084 2.0e-03 5.0e-05 40 1.5 59.6 4.3e-03 1.3e+01 1.5e-01

Y 128 28.3 0.178 4.0e-04 1.0e-05 40 15.7 629.0 1.3e-04 -2.7e+00 4.0e-01
Y 256 28.3 0.180 4.0e-04 1.0e-05 40 15.9 635.6 2.8e-04 9.5e+00 3.8e-01
Y 512 28.3 0.180 4.0e-04 1.0e-05 40 15.8 634.0 2.7e-04 1.0e+01 3.8e-01

Z 128 28.3 0.194 2.0e-04 5.0e-06 40 34.3 1372.4 8.1e-05 -7.7e+00 1.4e+00
Z 256 28.3 0.199 2.0e-04 5.0e-06 40 35.2 1407.5 8.0e-05 5.1e-01 4.9e-01
Z 512 28.3 0.199 2.0e-04 5.0e-06 40 35.2 1407.7 9.3e-05 8.6e+00 4.9e-01
Z 1024 28.3 0.196 2.0e-04 5.0e-06 40 34.5 1380.9 9.5e-05 9.3e+00 4.9e-01

Fig. 5.— Combined presentation of the results both with
FLASH and the Pencil Code.

Fig. 6.— Combined presentation of the results both with
FLASH and the Pencil Code versus ReM. For the FLASH results,
we have assumed ReM = N7/3/2000.

under the two-scale approximation, i.e.,

〈J ·B〉 = 〈J ·B〉+ 〈j · b〉 (11)

〈J ·B〉 = k21〈A ·B〉+ k2f 〈a · b〉 (12)

Fig. 7.— Effective grid Reynolds number. (Dubious?)

Fig. 8.— Dependence of kC on N .

Making use of HM = 〈A ·B〉+ 〈a ·b〉, we have 〈A ·B〉 =
HM − 〈a · b〉, so

〈J ·B〉 = k21(HM − 〈a · b〉) + k2f 〈a · b〉 (13)

〈J ·B〉 = k21HM + (k2f − k21)〈a · b〉 (14)

d

dt
〈A ·B〉 = −2η〈J ·B〉 (15)
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Fig. 9.— Dependence of kC on ReM.

dHM

dt
= −2ηHM − 2η(k2f − k21)〈a · b〉 (16)

Using k2f 〈a · b〉 ≈ 〈j · b〉 ≈ µ0ρ0〈ω · u〉, we have

dHM

dt
= −2ηHM − 2η(1− k21/k

2
f )µ0ρ0〈ω · u〉 (17)

4. CONCLUSIONS SO FAR

The magnetic helicity produced during the early kine-
matic phase of a dynamo is being reduced with increasing
resolution. Both SPARK and the Pencil Code reduce the
magnetic helicity production approximately like N−1.5.
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