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We analyze the magnetic energy and helicity spec-
tra for the simulations of Etienne of erupting and
nonerupting regions, as described by Leake et al.
(2014). The spectra are normalized such that
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2
〈B2〉 ≡ EM =

∫

EM(k) dk, (1)

〈AzBz〉 ≡ HM =

∫

HM(k) dk, (2)

and ∇2Az = −Jz in the Coulomb gauge. We de-
termine these spectra on the lower boundary of
the simulation domain at the three times provided
(t = 140, 280, and 320). We see that the mag-
netic helicity has positive values at all wavenum-
bers below kL0 = 1. At later times, the peak of the
fractional magnetic helicity moves to progressively
smaller wavenumbers, down to about 0.3–0.4, and
the fractional magnetic helicity decreases. It is use-
ful to define

r(k) = kHM(k)/2EM(k), (3)

Figure 1: xy slice and spectra for the erupting case.

which is in the range −1 ≤ r(k) ≤ 1. This quan-
tity characterizes the fractional magnetic helicity at
each wavenumber. At early times, the scale where
r(k) is maximum is at somewhat smaller scales, re-
flecting perhaps the gradual separation of the initial
bipoles of the emerging structure.
In is interesting to note that the two-dimensional

magnetic energy spectra shown here do not possess
a sub-inertial range, i.e., the spectrum for small k
is approximately flat and not rising. This is a gen-
eral feature of two-dimensional spectra that has also
been seen in other spectra (to provide details, e.g.,
classes paper).

Table 1:

case EM HM HC LM rM
E-140 4.47 22.1 0.68 9.99 0.25
E-280 2.91 13.6 0.35 9.30 0.25
E-320 2.53 10.8 0.27 8.91 0.24
N-140 4.42 37.0 0.72 9.54 0.44
N-280 3.51 36.0 0.44 9.70 0.53
N-320 3.23 33.6 0.37 9.48 0.55

In both cases with and without eruption, the

Figure 2: xy slice and spectra for nonerupting case.



Figure 3: Fractional magnetic helicity spectra.

Figure 4: Time dependence.

magnetic energy density, the magnetic helicity den-
sity, the current helicity density, and the integral
scale are monotonically decrease with time. How-
ever, the fractional helicity evolves differently in the

erupting and non-erupting cases: it increases in the
non-erupting case (from 0.44 to 0.55), but it de-
creases by a small amount (from 0.25 to 0.24) in

the erupting case.
The initial values of magnetic energy are about

similar in the two cases, but it drops faster in the
erupting case. The magnetic helicity is, even at
early times, weaker in the erupting case. This com-
bination implies that the fractional magnetic helic-
ity is about constant in the erupting case, but in-
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Figure 5: The different spectra for the full volume at the 10 times.

creasing in the non-erupting case. The correlation
length, on the other hand, is nearly constant in the
non-erupting case, but decreases by about 10% in
the erupting case.

Decomposition into potential

and current carrying parts

We now consider the decomposition of the magnetic
field into potential and current carrying parts, i.e.,
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Figure 6: Same as Figure 5, but for the stable case.

we write
B = BP +BJ, (4)

and compute the associated magnetic vector poten-
tial A in the DeVore gauge, i.e., Az = 0, with

A = AP +AJ. (5)

Note that, for computing the magnetic helicity,
A · B = AxBx + AyBy, so the Bz component of
the field does not enter and all the information is
in Bx and By alone. The relevant IDL routines are
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Figure 7: Time dependence of the different spectral helicities for the full volume.

Figure 8: Same as Figure 7, but for the stable case.

publicly available1. We compute the magnetic he-
licity spectrum from the Fourier transforms2 of vec-

1https://www.nordita.org/~brandenb/projects/

issi19/etienne/
2The Fourier transforms for 311 points is slower than for

310 points, so I skipped the last point. This typically makes
an 0.7% difference. OK, I can use 311 next time.

tor potential and magnetic field, denoted by hat:
Â(k) and B̂(k),

H(k) = 1

2

∫

4π

Â · B̂∗ k2 dΩ + c.c. (6)
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Figure 9: Horizontal spectral helicities for k = 1 versus z.

where the factor 1/2 accounts for the two contri-
butions resulting from having added the complex
conjugate (c.c.). Note that

∫

H(k) dk = 〈A · B〉
is the mean magnetic helicity density computed in
real space.

We consider different combinations of potential

and current carrying parts, in particular

HP(k) =
1

2

∫

4π

ÂP · B̂∗

P k
2 dΩ + c.c. (7)
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Figure 10: Same as Figure 9, but for the stable case.

and

HJ(k) =
1

2

∫

4π

ÂJ · B̂
∗

J k
2 dΩ + c.c., (8)

respectively, and also the relative mean magnetic

helicity density,

Hrel(k) =
1

2

∫

4π

(

Â+ ÂP

)

·
(

B̂ − B̂P

)∗

k2 dΩ+c.c..

(9)

Figure 5 shows that the relative spectral magnetic
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Figure 11: Same as Figure 9, but for k = 2.

helicity, Hrel(k), is governed by the contributions
from small values of k (1 to 4). At k > 2, it is
always positive, but at early times, it is negative at
k = 1 and 2.

Comparing with the stable case (Figure 6), we
see that now the spectral magnetic helicity is al-

ways positive, even at low k. It is also about 6
times bigger than in the unstable case. This sug-
gests that the negative sign in the unstable case
could be caused by the actual eruption.

The time evolution is shown in Figure 7, which
shows the sign change at snapshot 110 for k = 1
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Figure 12: Same as Figure 11, but for the stable case.

and at snapshot 80 for k = 2. In the non-erupting
case (Figure 8), the spectral magnetic helicity is,
again, always positive. This is quite striking even
at early times, where we see a mild decline from
strong positive values in the beginning. At k = 4
and 8, the spectral magnetic helicity is similar to

that in the erupting case, but it is now about 3
times smaller.

The evolution of HJ(k) is rather different: it is
mostly positive and growing for k = 2 and 4, but
decaying for k = 8. HP(k) is in all cases basically
vanishing. The behaviors of HJP(k) and H(k) are
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Figure 13: (a) mean magnetic helicity flux on the lower boundary (z = z1) versus time; (b) spectral
magnetic helicity flux versus k for early times; (c) spectral magnetic helicity flux versus k for intermediate
times; (d) spectral magnetic helicity flux versus k for late times. In each of panels (b)–(d), the last time
is shown as a fat line.

Table 2: Mean magnetic helicities for the different
snapshots (k integrals over the full volume spectra).

snap Hrel HJ H HJP

50 0.00004 0.00005 0.00000 −0.00001
70 0.00011 0.00013 −0.00002 −0.00002
90 0.00020 0.00024 −0.00001 −0.00004
110 0.00030 0.00028 −0.00003 0.00001
120 0.00033 0.00027 −0.00005 0.00006
130 0.00037 0.00022 −0.00005 0.00014
140 0.00040 0.00014 −0.00000 0.00026
150 0.00042 0.00011 0.00014 0.00031
160 0.00045 0.00014 0.00015 0.00031
180 0.00049 0.00015 0.00013 0.00034

broadly similar to those of Hrel(k), which are rather
different from those of HJ(k).

Table 3: Same as Table 2, but for the stable case.

snap Hrel HJ H HJP

50 0.00036 0.00002 0.00020 0.00034
70 0.00093 −0.00002 0.00039 0.00095
90 0.00141 0.00005 0.00058 0.00135
110 0.00182 0.00021 0.00078 0.00161
120 0.00200 0.00030 0.00087 0.00171
130 0.00217 0.00038 0.00095 0.00179
140 0.00232 0.00046 0.00103 0.00186
150 0.00245 0.00055 0.00110 0.00191
160 0.00258 0.00062 0.00117 0.00195
180 0.00279 0.00077 0.00128 0.00202

Height dependence of spectral

helicities

Next, we compute the various spectral mean rela-
tive magnetic helicities in two-dimensional horizon-
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Figure 14: Same as Figure 13, but for the stable case.

tal slices. The vertical average over the k integrals
of these spectra agrees with k integrals of the vol-
ume spectra. Those values are listed in Table 2. In
Figure 9 we show the z dependence at the 10 times
for k = 1 and in Figure 11 for k = 2.

Interestingly, we find a height reversal of the spec-
tral magnetic helicity at z ≈ 4 for k = 1. This sign
reversal is not seen in HJ(k), which stays mostly
positive.

In the stable case, no sign reversal is seen; see
Figure 10. However, both for k = 1 and for k = 2
(Figure 12), there is a local positive maximum at
z = 5, which is similar to the erupting case. The
main difference between stable and unstable cases is
that the spectral magnetic helicity is negative at the
bottom in the unstable case, but not in the stable
case. This is true also at later times. The values of
the various helicities for the stable case are listed in
Table 3.

Spectral magnetic helicity flux

We compute the spectral magnetic helicity flux on
the lower boundary as

F (k) =

∫

(Ẽ × Ã
∗

P)z k
2dΩ + c.c., (10)

where Ẽ and ÃP are the Fourier transforms of the
electric field E = −u × B and the vector poten-
tial of the reference field on the boundary, AP =
∇⊥ × (ψẑ), respectively. Here ∇

2

⊥
ψ = −Bz on the

lower boundary z = z1. Thus, in Fourier space, we
compute ÃP x = ikyB̃z/k

2 and ÃP y = −ikxB̃z/k
2.

The integral over F (k) gives
∫

F (k) dk = 2〈E ×
AP〉z. To get the flux across the boundary, we
would still need to multiply by the surface area.
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