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ABSTRACT

We study the prospects of detecting magnetic helicity in galaxies by observing the
dust polarization of the edge-on galaxy NGC 891. Our numerical results of mean-
field dynamo calculations show that there should be a large-scale component of the
rotationally invariant parity-odd B polarization that we predict to be negative in the
first and third quadrants, and positive in the second and fourth quadrants. The large-
scale parity-even E polarization is predicted to be negative near the axis and positive
further away in the outskirts. These properties are shown to be mostly a consequence
of the magnetic field being azimuthal and the polarized intensity being maximum at
the center of the galaxy and are not a signature of magnetic helicity.

Key words: dynamo — MHD — polarization — turbulence — galaxies: magnetic
fields — galaxies: individual: NGC 891

1 INTRODUCTION

The magnetic fields of spiral galaxies possess a clear large-
scale component along with a fluctuating component of com-
parable strength (Beck et al. 1996; Han 2017). Owing to
the presence of turbulence in the interstellar medium (ISM),
there is significant turbulent diffusion, which would destroy
the large scale magnetic field on a time scale of less than
a billion years (Shukurov 1998), unless there is a corre-
spondingly strong anti-diffusive mechanism. The best known
mechanism for explaining the origin and maintenance of
galactic large-scale magnetic fields is the α effect (Parker
1955; Steenbeck et al. 1966). In the context of galactic dy-
namo theory, it was first explored by Parker (1971) and
Vainshtein & Ruzmaikin (1971). The existence of the α effect
requires a violation of statistical mirror symmetry, which
implies the presence of magnetic helicity. It is important to
assess the validity of the dynamo models toward a more com-
prehensive understanding of how a galaxy forms its structure
and how magnetic fields regulate the cycle of the ISM by en-
hancing and suppressing star-formation activity in a galaxy.
However, there is no explicit evidence that the α effect really
does operate in galaxies.

Methods for measuring the helicity of the magnetic field
in our Galaxy and in distant galaxies have been proposed
on several occasions in recent years (Volegova & Stepanov
2010; Junklewitz & Enßlin 2011; Oppermann et al. 2011;
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Brandenburg & Stepanov 2014; Horellou & Fletcher 2014).
Measuring this for edge-on galaxies may be particularly ad-
vantageous, because we can then see both the upper and
lower disc planes simultaneously. However, to measure the
magnetic helicity, one needs the full magnetic field vector.
Unfortunately, the linear polarization parameters Stokes, Q
and U , only allow one to determine the magnetic field direc-
tion up to a 180◦ ambiguity. For this reason it is preferable
to work directly with the Stokes parameters and to deter-
mine from them a helicity proxy. The quantity of interest is
then the parity-odd contribution to the rotationally invari-
ant constituent of the linear polarization, or possibly the
correlation between the parity-even and parity-odd polar-
izations (Kamionkowski et al. 1997; Seljak & Zaldarriaga
1997). This is a relatively new and unexplored technique,
which has recently been applied to the Sun’s magnetic field
(Brandenburg et al. 2019, hereafter BBKMRPS); see also
Brandenburg (2019) and Prabhu et al. (2020) for subsequent
applications to the global solar magnetic field and to solar
active regions, respectively. The original motivation came
from Kahniashvili et al. (2014) in the cosmological context.

The attributes parity-even and parity-odd mean the
same as mirror-symmetric and mirror-antisymmetric—at
least in a statistical sense. For example, a cyclone on a
weather map is not statistically mirror-symmetric. In fact,
a cyclone in the Northern hemisphere looks like a mirror
image of a cyclone in the Southern hemisphere. A cyclone
is therefore statistically mirror antisymmetric. The underly-
ing physical quantity is the kinematic helicity. It is a pseu-
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2 Brandenburg & Furuya

doscalar, because it changes sign when the system is viewed
through a mirror or under parity transformation. The pres-
sure, by contrast, is a scalar; it behaves similarly in the
North and the South in that it decreases in a cyclone, for
example.

In dynamo theory, one distinguishes quadrupolar and
dipolar magnetic fields, whose symmetry about the equa-
tor is even and odd, respectively. As a continuous measure
of this, one defines the ratio of the difference of the ener-
gies contained in the symmetric and antisymmetric parts,
divided by their sum. This quantity is sometimes also called
parity (Brandenburg et al. 1989), but it is not a pseudoscalar
and is therefore, in this sense, a misnomer.

Before we define the parity-even and parity-odd con-
stituents of linear polarization, let us emphasize that these
quantities are, at best, a proxy of magnetic helicity. As
was already demonstrated in BBKMRPS and Bracco et al.
(2019a), there cannot be a detailed correspondence with he-
licity, because polarization is only defined with respect to a
plane. If the velocity or magnetic field are statistically iso-
topic, these fields can still be fully helical (Moffatt 1978),
but a planar image of a cyclone could, with equal probabil-
ity, also be seen from its back side, so it would appear like
its mirror image. Of course, turbulence in galaxies is inho-
mogeneous, i.e., its statistical properties are not the same
in different places. An observer can tell whether one is ob-
serving from the outside or the inside. Therefore, there is
a chance (but no guarantee) that a particular polarization
pattern is preferred over its mirror image. Rotating convec-
tion, inspected from the top surface, is such an example in
the context of solar turbulence. The magnetic field in our
Galaxy is another example (Brandenburg & Brüggen 2020,
hereafter BB20).

Let us emphasize at this point that the use of the parity-
odd constituent of linear polarization as a proxy of magnetic
helicity does not explicitly require information about the
line-of-sight component of the magnetic field. Faraday rota-
tion measurements are therefore not invoked in our study.
As was already discussed in Brandenburg (2019), it is not
clear at this point how this could even be done. This can
be regarded as a disadvantage, but we have to keep in mind
that our technique is not trying to reconstruct the magnetic
field. Instead, we use the appropriate and complete descrip-
tion of linear polarization to obtain a pseudoscalar without
the need for a questionable reconstruction. It is simply a new
diagnostic and it is then up to us to find out whether or not
it has anything to do with magnetic helicity. It might also
have to do with differential rotation, or with a combination
of helicity and differential rotation.

The purpose of the present work is to learn more about
the theoretically expected patterns for edge-on galaxies by
taking NGC 891 as a representative case. Here, we consider
a numerical solution of a simple galactic mean-field dynamo
of αΩ type. The magnetic field is generated by the α ef-
fect (Krause & Rädler 1980) and differential rotation. We
embed a flat dynamo in a Cartesian domain. We do this
by choosing a distribution of α that is concentrated about
the midplane and has opposite signs above and below it.
The magnetic diffusivity is taken to be constant. The ra-
dius of the disc is assumed to be 15 kpc. Some of our models
are similar to those of Brandenburg et al. (1993), who dis-
cussed the application to two particular edge-on galaxies,

NGC 891 and NGC 4631. Recent multi-wavelength contin-
uum emission studies between wavelengths of 3.6µm and
2.6mm clearly show that the properties of dust grains in
the ISM of NGC 891 are similar to those in the Milky Way
(Hughes et al. 2014). This makes this galaxy an ideal labo-
ratory for testing not only our model, but also for studying
the roles of magnetic fields in galaxies in general.

At this point, our goal is to identify characteristic and
distinguishing features in the polarization pattern rather
than to construct a detailed prediction for NGC 891, which
would include a detailed treatment of the wind, as was done
in Brandenburg et al. (1993), and more recently by Moss &
Sokoloff (2017). The wind can both enhance and suppresses
dynamo action (Chamandy et al. 2015). Most importantly,
however, it can make the polarization orientation more verti-
cal and thus closer to what is observed (Elstner et al. 1995).
There is also great interest in modeling the magnetic field in
the galactic halo (Sokoloff & Shukurov 1990; Brandenburg
et al. 1992), where significant magnetic field strengths are
observed (Howk & Savage 1999; Wiegert et al. 2015; Krause
2019; Krause et al. 2020).

2 PARITY-EVEN AND PARITY-ODD

POLARIZATIONS

In the context of polarimetry of the cosmic microwave back-
ground radiation, one commonly decomposes the linear po-
larization into the parity-even E and the parity-odd B po-
larizations. These E and B fields are defined as the real
and imaginary parts of a certain quantity R, which is given
in terms of a global expansion of linear polarization on the
full sphere of the sky. Here, however, we are only interested
in local Cartesian patches in the sky. We can then employ
standard Fourier transformation of the complex polarization
P = Q+ iU to compute the quantity

R̃(kx, kz) = (k̂x − ik̂z)
2

∫

e−ik·xP (x) d2
x, (1)

where the tilde indicates Fourier transformation of R over
the spatial coordinates in the projected plane in the sky,
which are here the x and z coordinates, so (x, z) is the plane
of the sky and y is the line of sight coordinate pointing
away from the observer. The real and imaginary parts of R
give the E and B polarizations, and k̂x and k̂z are the x
and z components of the planar unit vector k̂ = k/k, with
k = (kx, kz) and k = (k2

x + k2
z)

1/2 being the length of k.
Thus, we have

E(x) + iB(x) ≡ R =

∫

eik·xR̃(k) d2
k/(2π)2. (2)

The occurrence of the factor (k̂x − ik̂z)
2 in Eq. (1) is ex-

plained by the fact that it is the square of the complex con-
jugate of the generating function k̂x + ik̂z for pure E and
B modes. Multiplying this by a phase factor eiπn/4 sam-
ples E patterns for n = 0 and 2 and B patterns for n = 1
and 3 in a continuous fashion (Brandenburg 2020); see also
standard text books in the field (Durrer 2008) and reviews
Kamionkowski & Kovetz (2016).

When comparing the signs of E and B with other work
in the literature, one should be aware of the possibility of dif-
ferent sign conventions; see Brandenburg (2019) and Prabhu
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Helicity proxy for edge-on galaxies 3

Table 1. Signs of E and B reported in the literature for charac-
teristic features in the Northern hemisphere for various cases and
viewing directions.

case E B view reference

rotating convection − − face-on BBKMRPS
solar active regions − + face-on Prabhu et al. (2020)
Galaxy − − Sun BB20
spherical dynamo − − edge-on Brandenburg (2019)

edge-on galaxies − − edge-on present work

et al. (2020) for a more detailed discussion. We refer to Ap-
pendix A for a comparison relevant to the present work.

The E polarization corresponds to cross-like magnetic
field patterns if E > 0 and to ring-like magnetic field pat-
terns if E < 0; see Figure 2 of BBKMRPS. Positive (neg-
ative) B polarizations, on the other hand, correspond to
clockwise (counterclockwise) inward spiraling patterns. The
two latter patterns are evidently parity-odd, because that
for B > 0 becomes the pattern for B < 0 under parity
transformation. By contrast, the E patterns do not change
under parity transformation. In this paper, we consider an
edge-on galaxy, so we are not concerned with the grand spi-
ral design of galaxies. This, too, could in principle lead to
B polarization (BB20), but this would require the galaxy to
be viewed face-on.

Even when the system is inhomogenous and a finite B
emerges, it is not yet clear what its sign is. This uncertainty
may be mainly due to the fact that the B polarization has
not yet been studied under sufficiently many circumstances.
It does depend on the spatial magnetic field pattern pro-
duced by the system. The experience gathered so far is some-
what sketchy; see Table 1 for a summary. The results depend
not only on the nature of the physical system under consid-
eration, but also on the viewing direction. Viewing a disk
galaxy from the outside, for example edge-on, will produce
the opposite result for the B polarization as viewing from
the inside, for example when viewing our Galaxy from the
position of the Sun, as was done by BB20.

Looking at Table 1, there seems to be agreement re-
garding a negative sign for E, but B can have either sign,
depending on circumstances. In rotating convection, E < 0
and B < 0; see Fig. 10 of BBKMRPS. In solar active regions;
E < 0 but B > 0; see Fig. 5 of Prabhu et al. (2020). Also,
within ±10◦ near the Galactic midplane, E < 0 and B < 0
(B > 0) for the azimuthally averaged polarization in the
Northern (Southern) hemisphere; see BB20. For a spherical
mean-field dynamo, Fig. 1 of Brandenburg (2019) shows pos-
itive E and B in the North, but this corresponds to E < 0
and B < 0. This would agree with the present paper if we
took E near the axis and B in the first and third quadrants
in an edge-on view. We emphasize again that these prop-
erties with respect to North and South are independent of
the question of whether the magnetic field is even or odd
about the equatorial plane. Determining this with Faraday
rotation measurements is certainly of interest, but it is not
explicitly connected with our helicity proxy.

Figure 1. Three-dimensional visualization of B2 for Model II.
The nearly edge-on observer sees the xz plane and is located in
the negative y direction.

3 THE MODEL

We adopt the galactic dynamo model of Brandenburg
(2015). It is fully three-dimensional, but when computing an
edge-on view, we consider a specific xz cross-section through
y = −10 kpc with the observer being located in the direction
y → −∞; see Fig. 1. Except for one case, where we investi-
gate the magnetic field in the central slice through y = 0, we
chose the slice y = −10 kpc as a compromise that is well in
front of the central slice and already sufficiently far into the
galaxy to be representative of its field near the periphery.
We compute the complex polarization, P = Q+ iU , as

P = −ǫ (bx + ibz)
2/b2⊥, (3)

where b⊥ ≡ (bx, bz) is the magnetic field vector in the (x, z)
plane and ǫ is the emissivity (Alton et al. 2004; Planck Col-
laboration Int. XIX 2015), which is here assumed to be con-
stant. The observer is at y → −∞, which is equivalent with
the definition of BBKMRPS, where the observer of (bx, by)
was at z → ∞, corresponding to the vertical direction in
their rotating convection simulations and their view toward
the Sun. Next, we compute R = E + iB using Eq. (2). We
then show E(x, z) and B(x, z) at a given position y; see
Figs. 2–4. We indicate the polarization angle

χ = 1
2
atan(ImP/ReP ), (4)

which we also calculate for the pure E and B modes by com-
puting P̃E/B(kx, kz) = (k̂x + ik̂z)

2R̃E/B(kx, kz) in Fourier

space, where R̃E = Ẽ and R̃B = iB̃.
We adopt a mean-field model where all dependent vari-

ables are defined as azimuthal averages indicated by an over-
bar. The mean magnetic field b is expressed in terms of the
mean magnetic vector potential a as b = ∇ × a. We solve
the αΩ dynamo equation in its simplest form,

∂a

∂t
= u× b+α · b− ηTµ0j, (5)

where u is the mean flow, j = ∇×b/µ0 is the mean current
density, µ0 is the vacuum permeability, α = diag (α⊥, α⊥, 0)
is the α tensor in the limit of rapid rotation (Rüdiger 1978),
and ηT is the total (microphysical and turbulent) mag-
netic diffusivity. The mean flow is composed of toroidal and
poloidal components, ut and up, respectively, describing
the galactic rotation profile and a galactic wind. We use
up = Wr [1− exp(−z2/2H2

W )] r/R from Brandenburg et al.
(1993) in one case where we include a galactic wind. The
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4 Brandenburg & Furuya

Figure 2. E and B polarizations as well as polarized intensity |P | in an edge-on view of Model I, which is the galactic dynamo model

of Brandenburg (2015). The short lines show the corresponding angles. The color scale shows the values of E, B, and |P | in units where
ǫ = 1 in Eq. (3); see BBKMRPS.

value of Wr determines its strength and HW is the height
above which the wind commences.

In the following we assume the galactic rotation to be
represented by a modified Brandt rotation profile of the form
ut = ̟Ω(̟), where ̟ = (x, y, 0) with ̟ = |̟| being the
cylindrical radius, and

Ω = Ω0/[1 + (̟/̟Ω)
n]1/n (6)

is the angular velocity with Ω0 = const characterizing the
rigid rotation law for ̟ < ̟Ω, and ̟Ω = 3kpc is the radius
where the rotation law attains constant linear velocity V0 =
Ω0̟Ω. The exponent n allows one to make the transition
from rigid to constant rotation sharper, but in the models
presented below we used the rather moderate value n = 2
for Model I and n = 3/2 for Models II–IV (see below).

For the α effect we assume a nonlinear (α-quenched)
formulation (Ivanova & Ruzmaikin 2008) for the horizontal
components of the α tensor and choose

α⊥ =
α0

1 +Qαb
2
/b2eq

z

Hα
exp

(

− z2

H2
α

)

fα(̟) gα(̟), (7)

where Hα is the disc height for the α effect, α0 quantifies its
strength, and fα(̟) and gα(̟) are radial profiles that we
apply in Models II–IV. In those cases, we use

fα(̟) = [1− erf(̟/̟α)]/2 (8)

to introduce a radial cutoff at ̟ = ̟α = 15 kpc, and

gα(̟) = [1 + (̟/̟αΩ)
n]−1/n (9)

to allow for an additional radial modulation with ̟αΩ = ̟Ω

in Models II–IV, such that α⊥ is proportional to the local
angular velocity, as was assumed in the model of Branden-
burg et al. (1993), who assumed α0 = Ω0ℓ, with ℓ = 0.3 kpc
being the correlation length. In Model I, on the other hand,
α⊥ is independent of ̟ and therefore we put ̟αΩ = ∞.
Note that in both cases, owing to the z/Hα factor in front
of the exponential function, α⊥ changes sign about the mid-
plane. This reflects the opposite orientation of the Coriolis
force on the two sides of the midplane. For comparison, we
also present a more complicated case with Wr = 10 km s−1

using Hα = HW = 0.5 kpc (Model III).
We define the equipartition field strength based on the

root-mean-square value of the turbulent velocity, urms, as
beq =

√
µ0ρ urms; see also Eq. (1) of Beck et al. (2019). Us-
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Helicity proxy for edge-on galaxies 5

Figure 3. Same as Fig. 2, but for Model II with parameters relevant to NGC 891. Note the pixel resolution of about 650 pc, which
corresponds to the 14 arcsecond beam of the JCMT at 850µm wavelength.

ing urms = 10 km s−1 and ρ = 2 × 10−24 g cm−3, we have
beq = 5µG (Brandenburg et al. 1993), which is the value we
use in all of our models. For orientation we note that the
line-of-sight and plane-of-sky components of the magnetic
field toward galactic molecular clouds are on the order of 1–
100µG, estimated from Zeeman effect measurements (e.g.,
Crutcher 2012) and dust polarization studies (e.g., Pattle &
Fissel 2019), respectively. The mean magnetic field is typi-
cally below 10µG (Beck et al. 2019). The parameter Qα is a
nondimensional constant that determines the strength of α-
quenching, and thereby the overall magnetic field strength.
We choose Qα = 25, so the resulting mean magnetic field
strength attains plausible values of somewhat below 10µG.

On the periphery of the computational domain, we as-
sume normal-field conditions, i.e., n̂ · a = (n̂ ·∇) × a = 0,
where n̂ is the unit vector normal to the boundary. The
initial condition for a(x, 0) is Gaussian distributed white

noise of low amplitude. In this paper, we measure lengths
in kpc and speeds in km s−1, so time is measured in units
of 0.98Gyr. For simplicity, we drop the factor 0.98 when
specifying times or inverse times.

We consider several models. First, we take the one of
Brandenburg (2015), which was designed to reflect typical
spiral galaxies (Model I). Second, we modify the param-
eters (rotation curve and α effect) such that they match
those of the model of Brandenburg et al. (1993) of NGC 891
(Model II). In both cases, we use 642×16 mesh points, which
proved sufficient to resolve the spatial structure of the mag-
netic field. Calculations with 1282×32 mesh points produced
virtually identical polarization maps. Next, we use a model
with a wind and a thinner disk, where the polarization pat-
tern resembles more closely the observed ones (Model III).
Finally, to study the properties of our diagnostic as a proxy
for magnetic helicity in terms of the B polarization, we also
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6 Brandenburg & Furuya

Figure 4. Same as Fig. 2, but for Model III with Wr = 10 km s−1 and Hα = HW = 0.5 kpc.

present a model with a negative α0, where we expect the
sign of the magnetic helicity to be reversed relative to what
it is otherwise (Model IV). However, the nature of the αΩ
dynamo also changes and the most easily excited field is
then an oscillatory one, so no direct comparison is possible.

The computations are performed with the Pencil

Code (Brandenburg & Dobler 2010) using either Cartesian
coordinates (Models I, II, and IV) or cylindrical coordinates
(Model III). We emphasize in this connection that we are
dealing here with a mean field model, so no sharp struc-
tures are expected to occur in such a case. In Table 2 we
summarize the various parameters used here. We also give
the maximum field strength Bmax.

Table 2. Parameters of the dynamo models discussed.

Ω0 Wr α0 Hα ̟α ̟αΩ Bmax

[Gyr−1] [km s−1] [km s−1] [kpc] [kpc] [µG]

I 100 0 16 0.2 — ∞ 8.7
II 75 0 22 1.5 15 ̟Ω 15.6
III 75 10 22 0.5 15 ̟Ω 0.72

IV 75 0 −15 1.5 15 ̟Ω 0.82

4 RESULTS

4.1 E and B polarizations

Our models lead to an early exponential growth of the mag-
netic field and reach saturation after about 10Gyr. Here
we consider only the saturated phase of the models. As a
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Figure 5. Visualization of the magnetic field for Model II showing vectors of b⊥ superimposed on a color representation of the line-of-

sight component in the same slice for which E and B are shown in Fig. 3. Here, bz has been scaled by a factor of 20 relative to bx, but
the vertical field still seems almost completely negligible.

first step, we show in Fig. 2 the E and B polarizations to-
gether with the polarized intensity and polarization orien-
tations for Model I from the xz plane near y = −10 kpc. In
Fig. 3 we again show the E and B polarizations, but now for
Model II. The polarized intensity and polarization orienta-
tions show just a horizontal pattern. It is therefore amazing
that the decomposition into its rotationally invariant con-
stituents appears so much richer. The primary reason for
this is connected just with the spatial variation of the polar-
ized intensity. This is demonstrated in Appendix A, where
we show the E and B polarizations for a polarization sig-
nal where Stokes U = 0 and Stokes Q consists of just a
Gaussian.

There are remarkable similarities between the polariza-
tion patterns obtained from a Gaussian and those obtained
from our dynamo model. This suggests that the information
content in the overall pattern seen in Figs. 2 and 3 is not very
profound, although more physically meaningful information
may still be hidden within the more subtle departures from
this overall pattern.

The pixel resolution in Fig. 3 is about 650 pc, which is
the spatial resolution when NGC 891 is observed at a dis-
tance of 9.6Mpc (Strickland et al. 2004) with the 14 arcsec-
ond beam of the JCMT at 850µm wavelength. We see that,
in both cases, E is symmetric about the midplane z = 0,
and B is antisymmetric. Moreover, E is negative in the halo
near the axis (x = 0) and positive near the midplane further
away from the axis. In Model I, however, E is positive at the
center (x = z = 0), while in Model II it is negative. As ex-
pected, B changes sign about the equator. It also changes
sign between the two sides of the rotation axis. In the first
and third quadrants, the sign is negative, while in the second
and fourth, it is positive. The arrow-less vectors associated
with the B polarization show a clockwise inward swirl in the
first and third quadrants and an anti-clockwise inward swirl
in the second and fourth quadrants. This signature seems to
be surprisingly independent of the differences between Mod-
els I and II. The patterns of E and B are also rather smooth;
the typical scale would be the scale height of the magnetic
field, which is about 2 kpc. In this context, we must recall
that our model can only deliver the mean magnetic field,
and that the actual magnetic field must also contain a fluc-
tuating component of smaller scales below 100 pc.

To get a sense of the range of E and B polarization
patterns, we show in Fig. 4 the results for a model with
a wind of just 10 km s−1 and a thinner disk; see Model III
in Table 2. Here we inspect the plane y = 0, where the
polarization orientations best resembles those observed in
synchrotron emission (Howk & Savage 1999; Wiegert et al.
2015; Krause 2019; Krause et al. 2020). The maximum field
strength is here much weaker. This can be explained by the
wind advecting the magnetic field away from the disk. In our
models, this suppression of the magnetic field might be more
effective because of the anisotropic α effect. Interestingly, the
E polarization is now strongly negative along the midplane.
This is similar to what is seen for our Galaxy viewed from the
position of the Sun (BB20). Furthermore, the polarization is
now more complicated. The patches with negative (positive)
B values in the first and third (second and fourth) quadrants
are now closer to the axis, and there is an additional such
pattern with opposite signs further out.

4.2 Magnetic field and helicity

It is important to realize that neither the helicity of the
magnetic field nor any proxy of it can straightforwardly be
extracted from just a simple inspection of the morphology
of the magnetic field. This is mostly because of the strong
dominance of the azimuthal magnetic field over the vertical
(z) field in galactic latitude. This becomes clear once again
from Fig. 5, where we show vectors of b⊥ superimposed on a
color scale representation of by. Here, bz has been scaled by
a factor of 20 relative to bx, but the vertical field still seems
almost completely negligible.

It is long known that the magnetic field in galaxies tends
to have even symmetry about the equatorial plane (Beck et
al. 1996, 2019). This is also the case for all of our models.
This means that the azimuthal magnetic field is symmetric
about the midplane and the vertical magnetic field is anti-
symmetric about in the midplane, just as seen from Fig. 5.
Note, also, that the strongest magnetic field is found at a dis-
tance of about 7 kpc from the center. The results for Model I
are similar, except that here the strongest magnetic field oc-
curs at a distance of about 5 kpc from the center.

To make contact with the helicity of the magnetic field
in our model, we plot in Fig. 6 a vertical slice of the current
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8 Brandenburg & Furuya

Figure 6. Visualization of the normalized current helicity den-
sity, µ0j · b, for Model II at y = −10 kpc.

Figure 7. Visualization of the magnetic field showing vectors
of b⊥ superimposed on a color representation of the line-of-sight
component, similar to Fig. 5, but for Model IV, at y = −10 kpc,
and bz has been scaled by a factor of 5 relative to bx. The plot

range in the x direction has been clipped to ±10 kpc.

helicity density j · b. We can see that j · b is mostly positive
(negative) in the upper (lower) disc plane. This agrees with
the sign of α⊥, which is also positive (negative) in the upper
(lower) disc plane. For Qα = 25, the normalized current
helicity density, µ0j · b, would be in units of µG2 kpc−1.

4.3 Negative α and reversed helicity

To give a sense of the range of possibilities for the E and
B patterns in models of edge-on galaxies, we now consider
Model IV with a negative α0. Physically, negative values of
α0 can be caused in several different ways. One such possi-
bility is given when magnetic driving dominates over kinetic
driving, in particular when magnetic buoyancy dominates

Figure 8. µ0j · b, similar to Fig. 6, but for Model IV, and again
at y = −10 kpc.

Figure 9. Same as Fig. 2, but for Model IV with negative α0 at

an arbitrarily chosen time. The plot range in the x direction has
been clipped to ±10 kpc.

over thermal buoyancy, it has been found that α0 may be
negative (Brandenburg et al. 1995; Rüdiger & Pipin 2000).
This is the case when the magneto-rotational instability is
driving turbulence, which can play a role also in galaxies
(Machida et al. 2013).

As mentioned in Sect. 3, a model with a negative value
of α0 is not simply a mirror image of a model with a positive
value of α0, because the nature of the dynamo also changes.
In the present case, the field becomes oscillatory, but retains
its even symmetry with respect to the midplane; see Fig. 7
for a visualization of the magnetic field in a cross-section
through y = −10 kpc. Note that the magnetic field is fairly
much confined within a cylindrical radius of 10 kpc. This
is why we have clipped in Fig. 7 (and the following two
figures) the x range beyond±10 kpc. However, the numerical
calculations have been carried out, just as before, in the
larger domain with |x|, |y| ≤ 20 kpc.

To verify that the magnetic helicity has indeed changed
sign, we show in Fig. 8 the current helicity, again through
the plane y = −10 kpc. We see that j · b is now indeed
negative in the upper disc plane, but there is an additional
sign change close to large heights from the plane of a galaxy.
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Finally, the resulting E and B polarizations at y =
−10 kpc are shown in Fig. 9. Note that B has changed sign
with respect to Figs. 2 and 3, at least sufficiently close to the
midplane. Closer to the boundaries at z = ±5 kpc, this sign
has changed again, somewhat similarly to what was seen in
Fig. 8 for j ·b. The E polarization is somewhat different than
before, although the basic features are unchanged: it is neg-
ative near the axis and positive further away from it, except
right at the midplane. Within the midplane, the negative
sign of E near the axis extends now also to larger radii.

Unlike Fig. 3, the polarized intensity now shows con-
centrations a certain distance away from the midplane. The
polarization orientations are still mostly horizontal, so the
basic phenomenology explained in Appendix A still applies.
This explains then why the E and B polarizations in Fig. 8
show a doubling of the features seen in Fig. 3.

5 DISCUSSION AND FUTURE PROSPECTS

Edge-on galaxies provide an opportunity to study some basic
aspects of magnetic fields in galaxies. This can have implica-
tions for the dynamo interpretation of their generation. Our
preliminary investigation based on simple models suggests
that the E polarization is positive near the disc midplane
and away from the axis, where it tends to outline star-like
patterns in the magnetic field, while in the halo near the axis
it is negative, corresponding to ring-like patterns in the mag-
netic field; see the top panel of Fig. 2. The B polarization is
negative in the first and third quadrants and outlines coun-
terclockwise inward spiraling patterns, while in the second
and fourth quadrants, we have positive values, correspond-
ing to clockwise inward spiraling patterns; see the bottom
panel of Fig. 2. Again, we emphasize here that our discus-
sion of spiraling polarization patterns concerns the edge-on
view of the B polarization and is not connected with the
spiraling appearance of galaxies viewed face-on.

Our hope is that the predictions for the signs of the
E and B polarizations could soon be verified observation-
ally. In addition to utilizing already existing synchrotron
polarimetry data, we discuss here the possibility of using
observations of dust polarization. Dust polarization obser-
vations have proven to be an excellent tool to measure the
orientation of the magnetic field in star-forming regions and
to assess the relative magnitudes of the mean and turbu-
lent components of the field (Hildebrand et al. 2009). Linear
polarization imaging provide the orientation of the plane-of-
sky magnetic field lines, as non-spherical dust grains tend to
align with their short axis perpendicular to the direction of
the magnetic field, giving rise to linear polarization of the
emission. As discussed by Andersson et al. (2015), the ra-
diative alignment torque (RAT) theory is the most widely
accepted mechanism for interstellar dust grains to align in
a realistic environment; see also Bracco et al. (2019b). All-
sky dust polarization imaging by Planck at 850µm have al-
ready revealed well-defined magnetic field patterns in the
ISM from Galactic scales down to molecular cloud scales of
>∼ 10 pc. Because there are no observational studies to test
such a mechanism toward a galaxy with a spatial resolution
of 102–103 pc, it is important to assess the validity of such
a mechanism.

Although a size of >∼ 10 pc is still one or two orders of

magnitude larger than that of dense cloud cores where stars
and stellar cluster form, it is worth attempting to investigate
the magnetic-field structure to study the physical conditions
of <∼ 10 pc-scale molecular cloud formation. Submillimeter
(submm) emission polarimetry is sensitive to tracing the
column density of the cold (T <∼ a few times 10K) ISM,
whereas near-infrared (NIR) absorption polarimetry may
have suffered from scattering, while cm-wavelength radio
polarimetry may already begin to be affected by Faraday ro-
tation. Indeed, recent polarization observations with SOFIA
HAWC+ toward the archetypical starburst galaxy M82 at
53 and 154µm (Jones et al. 2019) have clearly demonstrated
that submm/FIR emission polarimetry offers another way of
probing the magnetic field structure by observing entrained
dust grains by the super galactic wind. The authors did not
identify any component expected from the large-scale dy-
namo field. Nevertheless, as the next step, it is worth con-
sidering longer wavelength polarimetry at 850µm for large
heights from the plane of a galaxy to unveil the magnetic-
field structure in the cold ISM of that galaxy. This would
give us a more specific hint at how the magnetic field in a
galaxy is maintained against diffusion by turbulence. More-
over, we point out that previous Herschel PACS and SPIRE
imaging at 100, 160, and 250µm revealed that NGC 891 is
rich in dust grains—even toward its halo; the scale height
of the dusty halo is 1.44 ± 0.12 kpc (Bocchio et al. 2016).
These authors showed that ∼ 2–3% of the mass of the dust
is present further than 2 kpc from the midplane. This agrees
with the analysis from the 450 and 850µm emission taken
with SCUBA (Alton et al. 1998). We therefore argue that the
method proposed in this work may be feasible; it is comple-
mentary to the conventional two methods (radio synchrotron
and NIR polarimetry).

At wavelengths of 850µm, the emission is optically thin
as shown by the graybody-fitting at the submm/FIR spec-
tral energy distribution (SED); see Fig. 3 in Alton et al.
(1998). Their SED analysis clearly favors a frequency index
of grain emissivity, β, of 2 rather than 1.5, suggesting that
grains’ properties are ISM-like, i.e., not evolved like those
seen in protoplanetary disks. These results were later con-
firmed by multi-wavelength imaging studies adding Spitzer,
WISE, and Herschel data (Whaley et al. 2009; Hughes et al.
2014). The grain emissivity, its frequency index, and the dust
temperature are similar to those measured in >∼ 10 pc-scale
galactic molecular clouds where submm polarization imag-
ing were performed (Matthews et al. 2009; Ward-Thompson
et al. 2017). However, caution must be exercised because
polarization properties of grains on galaxy scales are poorly
known. Nevertheless, given the highly-enhanced sensitivity
of the current instrument, SCUBA-2 plus the POL-2 po-
larimeter system of ∼ 4mJy beam−1 in polarization inten-
sity for a typical observation, we do believe that 850µm
polarimetric observations toward NGC891 could help to as-
sess signs of handedness. As of today, no polarization data
in FIR or submm are yet available for NGC 891. However,
intensity maps of NGC 891 at 850µm show two “blobs”
or “knots” at a distance of about 4–5 kpc from the center
(Haas et al. 2002; Whaley et al. 2009). This could also be
suggestive of a ring-like magnetic field, similarly to what
is seen in Fig. 5. This would be analogous to the ring-like
magnetic field of M 31 (Beck et al. 2020). Interestingly, the
ring-like concentration cannot easily be explained with kine-
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matic theory (Ruzmaikin et al. 1988), unless one invokes a
similar variation of the gas density and thereby of beq (Beck
et al. 1996). Such details have been ignored in our present
modeling.

A potential shortcoming of the present calculations is
that our predictions are based solely on mean-field dynamos.
This means that we only take the large-scale component of
the magnetic field into account. In reality, there is also a
small-scale component whose helicity is expected to have
the opposite sign (Blackman & Brandenburg 2003). How
this affects the detection prospects of systematic E and B
polarizations is currently unknown and should be a target of
future investigations. The typical scale of fluctuations would
not exceed 100 pc (Beck et al. 1996), which is well below the
resolution scale of the James Clerk Maxwell Telescope. It is
therefore possible that our present results may already give a
good hint at what can be observed in the near future. Higher
resolution observations would be of great interest for testing
the idea of a magnetic helicity reversal at smaller length
scales. In the meantime, however, it would be worthwhile
to explore this regime of smaller length scales with detailed
turbulence simulations without adopting mean-field theory.

Another opportunity for improvements is given by our
increased knowledge of the rotation curves of NGC 891 (Fra-
ternali et al. 2011). In particular, it is now known that the
rotation in the halo of NGC 891 is slower than that in the
galactic disc (Oosterloo et al. 2007). This implies the pres-
ence of vertical shear that could modify the vertical helicity
profile of the galaxy.
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APPENDIX A: E AND B FROM A PATCH IN Q

The purpose of this appendix is to compute the E and B po-
larization patterns for a signal with Stokes U = 0 and Stokes
Q originating from just a Gaussian patch of a projected hor-
izontal or a vertical magnetic field. To also illuminate the
question about different sign conventions, we use this op-
portunity to compare the local approach given by Eqs. (1)
and (2) with the global one, where the complex polarization
is expanded in terms of spin-2 spherical harmonic functions
(e.g., Durrer 2008). We therefore work with spherical coor-
dinates (θ, φ), where θ is colatitude and φ is longitude with
0 < θ < π and 0 < φ < 2π. We write the projected magnetic
field in the form

Bφ/θ = B0 exp
{

−
[

(θ − θ0)
2 + (φ− φ0)

2
]

/2σ2
}

, (A1)

where we choose θ0 = φ0 = π/2 to be a point on the equator
and σ = 10◦ is chosen for the size of the patch. (The un-
derlying three-dimensional magnetic field would be always

Figure A1. Local representations E and B together with their

global counterparts Eglob and Bglob for a Gaussian patch with
just a horizontal magnetic field, B = (0, Bφ).

solenoidal.) The global representations of E and B (indi-
cated by subscripts ‘glob’) are expressed through the com-
plex function

Eglob + iBglob ≡ R =

Nℓ
∑

ℓ=2

ℓ
∑

m=−ℓ

R̃ℓmYℓm(θ, φ), (A2)

where the coefficients R̃ℓm are given by

R̃ℓm =

∫

4π

(Q+ iU) 2Y
∗

ℓm(θ, φ) sin θ dθ dφ. (A3)

Here 2Y
∗

ℓm(θ, φ) are the spin-2 spherical harmonics of spher-
ical harmonic degree ℓ and order m and the asterisk de-
notes complex conjugation. In the cosmological context,
both Eglob and Bglob are defined with a minus sign; see,
e.g., Eq. (6) of Zaldarriaga & Seljak (1997). The results for
a Gaussian Bφ and a Bθ patch given by Eq. (A1) are shown
in Figs. A1 and A2, using Nℓ = 36 as the truncation level.
We compare Eglob and Bglob with E and B in the range
0 < φ < π, but the calculations have been done in the full
range 0 < φ < 2π.

Both E and Eglob as well as B and Bglob agree with each
other and are qualitatively similar to the overall appearance
of E and B seen in Fig. 3. The agreement between local and
global representations shows that for a single patch, the sign
convention used in Durrer (2008) and Brandenburg (2019)
for the global representation agrees with the local one used
in BBKMRPS and Prabhu et al. (2020).

Interestingly, the cloverleaf-shaped pattern of B in
Fig. A1 resembles a similar pattern found by BB20 for the
Galactic center. A difference, however, is the sign of both
E and B. In Fig. A2 we show that such a pattern can ex-
plained be by a case with a strong vertical magnetic field.
As expected, the signs of both E and B are now changed
and the resulting pattern matches that found BB20.
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Figure A2. Same as Fig. A1, but for a vertical magnetic field,

B = (Bθ, 0).
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