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In pipe flows, drag reduction, for example by the
addition of polymers, allows the mass flow to be in-
creased while keeping the pressure drop unchanged.
To address this problem numerically, we consider a
turbulent flow between non-slip boundaries. We be-
gin by considering a situation where the flow is pe-
riodic in one of the two cross-stream directions (x)
and also periodic in the streamwise direction (y).
Boundary conditions are therefore applied only in
the z direction at z = ±L/2, which are chosen to be
at z = ±π. Turbulence is produced by forcing the
flow in the volume through a forcing function that
consists of random plane waves that can be helical
or nonhelical. A magnetic field can emerge solely
from dynamo action if the magnetic Reynolds num-
ber is large enough. We apply insulating boundary
conditions, i.e., the magnetic field on the boundary
vanishes, n×B = 0, and there for no electric field
into the boundary, n ·E = 0.

2 The model

We solve the forced isothermal MHD equations for
the velocity U , the logarithmic density ln ρ, and the
magnetic vector potential A,

DU

Dt
= −c2s∇ ln ρ+f +F +

1

ρ
(J ×B +∇ · 2νρS) ,

(1)
D ln ρ

Dt
= −∇ ·U , (2)

∂A

∂t
= U ×B + η∇2A, (3)

where cs = const is the sound speed, f and F

are forcing functions, B = ∇ × A is the mag-
netic field, J = ∇ × B/µ0 is the current density,
µ0 is the vacuum permeability, ν is the viscosity,
Sij = (∂iUj+∂jUi)/2+δij∇·U are the components
of the rate of strain tensor S, and η is the magnetic

diffusivity. Turbulence is driven by stochastic ran-
dom waves f that have a different direction at each
time step and a mean wavenumber kf , and the mean
flow is driven by the function F = ŷF .

In the absence of turbulence, the flow profile is
parabolic.

U = A (π − z)(π + z) (4)

with maxU = Aπ2 and U ′′ = 2A. Use F = νU ′′ =
2νA. Want maxU ≈ 0.5, so choose A = 0.05, so,
for ν = 0.01, we have F = 2 × 0.01 × 0.05 = 10−3.
The mean work done against the laminar viscous
force is given by Wν = (πF )2/3ν.

Figure 1: Blue shows the profile for the non-
magnetic run, and red is the a magnetic run with
PrM = 1 and no helicity. The green line is also a
magnetic run, but with PrM = 2. The red dashed
line is a magnetic run scaled up by a factor 1.082,
to show that the profile has also a different shape.
Likewise, the dashed green line is scaled up by a
factor 1.936. pcomp_prof

Table 1 gives a summary of runs. The fluid
Reynolds number is in the range 200–300; the
smaller values are a result of the suppression of tur-
bulence by the dynamo. The turbulent suppression
of the mean flow can be seen by the smallness of the
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Table 1:

Run F ν PrM Re WF /Wν ǫT/Wν ǫM /Wν comment
A 5× 10−4 2× 10−4 1 317 0.075 0.325 — non-magnetic
B 5× 10−4 2× 10−4 1 291 0.069 0.311 0.134 small-scale dynamo

Figure 2: Evolution of ǫK for the non-magnetic run
(black) and the magnetic run (blue), showing also
ǫM (red) and ǫT = ǫK+ǫM for this run. Run C with
PrM = 2 (dotted lines) has been restarted from
Run B at t = 6000. peps_512b_nomag_cont_nof3_
nohel

Figure 3: Mean flow profiles for nonmagnetic (up-
per line) and dynamo-generated magnetic turbu-
lence (lower line).

values ofWF /Wν . In the absence of turbulence they
would be unity, but at the Reynolds numbers con-
sidered here, turbulence suppresses the flow speed
to between 3% and 8% of the laminar value.

Figure 4: Profile of rms velocity.
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