Drag reduction by a turbulent dynamo?
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1

In pipe flows, drag reduction, for example by the
addition of polymers, allows the mass flow to be in-
creased while keeping the pressure drop unchanged.
To address this problem numerically, we consider a
turbulent flow between non-slip boundaries. We be-
gin by considering a situation where the flow is pe-
riodic in one of the two cross-stream directions (x)
and also periodic in the streamwise direction (y).
Boundary conditions are therefore applied only in
the z direction at z = +L /2, which are chosen to be
at z = +m. Turbulence is produced by forcing the
flow in the volume through a forcing function that
consists of random plane waves that can be helical
or nonhelical. A magnetic field can emerge solely
from dynamo action if the magnetic Reynolds num-
ber is large enough. We apply insulating boundary
conditions, i.e., the magnetic field on the boundary
vanishes, n x B = 0, and there for no electric field
into the boundary, n - E = 0.

2 The model

We solve the forced isothermal MHD equations for
the velocity U, the logarithmic density In p, and the
magnetic vector potential A,
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where ¢ = const is the sound speed, f and F
are forcing functions, B = V x A is the mag-
netic field, J = V x B/ug is the current density,
1o is the vacuum permeability, v is the viscosity,
Sij = (0;U;+0;U;)/2+06;;V-U are the components
of the rate of strain tensor S, and 7 is the magnetic

diffusivity. Turbulence is driven by stochastic ran-
dom waves f that have a different direction at each
time step and a mean wavenumber k¢, and the mean
flow is driven by the function F' = gF.

In the absence of turbulence, the flow profile is
parabolic.

U=A(r—2z2)(r+2) (4)

with maxU = An? and U” = 2A. Use F = vU" =
2vA. Want maxU =~ 0.5, so choose A = 0.05, so,
for v = 0.01, we have F = 2 x 0.01 x 0.05 = 1073.
The mean work done against the laminar viscous
force is given by W, = (7F)?/3v.
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Figure 1: Blue shows the profile for the non-

magnetic run, and red is the a magnetic run with
Pras = 1 and no helicity. The green line is also a
magnetic run, but with Prp; = 2. The red dashed
line is a magnetic run scaled up by a factor 1.082,
to show that the profile has also a different shape.
Likewise, the dashed green line is scaled up by a
factor 1.936. pcomp_prof

Table 1 gives a summary of runs. The fluid
Reynolds number is in the range 200-300; the
smaller values are a result of the suppression of tur-
bulence by the dynamo. The turbulent suppression
of the mean flow can be seen by the smallness of the



Table 1:

Run Ia v Pryy Re Wgp/W, er/W, en/W, comment

A 5x107* 2x107* 1 317  0.075 0.325 — non-magnetic
B 5x107* 2x107* 1 291 0.069 0.311 0.134  small-scale dynamo
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Figure 2: Evolution of ek for the non-magnetic run
(black) and the magnetic run (blue), showing also
ey (red) and e = ex +€)p for this run. Run C with
Prys = 2 (dotted lines) has been restarted from
Run B at ¢t = 6000. peps_512b_nomag_cont_nof3_
nohel

Figure 3: Mean flow profiles for nonmagnetic (up-
per line) and dynamo-generated magnetic turbu-
lence (lower line).

values of Wg /W, In the absence of turbulence they
would be unity, but at the Reynolds numbers con-
sidered here, turbulence suppresses the flow speed
to between 3% and 8% of the laminar value.

Figure 4: Profile of rms velocity.
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