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We develop a mean-field theory of compressibility effects in turbulent magnetohydrody-
namics and passive scalar transport using the quasi-linear approximation and the spectral
τ -approach. We find that compressibility decreases the α effect and the turbulent mag-
netic diffusivity both at small and large magnetic Reynolds numbers, Rm. Similarly,
compressibility decreases the turbulent diffusivity for passive scalars both at small and
large Péclet numbers, Pe. On the other hand, compressibility does not affect the effective
pumping velocity of the magnetic field for large Rm, but it decreases it for small Rm.
Density stratification causes turbulent pumping of passive scalars, but it is found to be-
come weaker with increasing compressibility. No such pumping effect exists for magnetic
fields. However, compressibility results in a new passive scalar pumping effect from re-
gions of low to high turbulent intensity both for small and large Péclet numbers. It can
be interpreted as compressible turbophoresis of noninertial particles and gaseous admix-
tures, while the classical turbophoresis effect exists only for inertial particles and causes
them to be pumped to regions with lower turbulent intensity.

1. Introduction

The generation of magnetic fields by a turbulent flow of a conducting fluid is a fun-
damental problem which has a number of applications in astrophysics, geophysics, plan-
etary physics, and laboratory experiments (see, e.g., Moffatt 1978; Parker 1979; Krause
& Rädler 1980; Zeldovich et al. 1983; Ruzmaikin et al. 1988; Brandenburg & Subrama-
nian 2005; Rüdiger et al. 2013). Two types of turbulent dynamos are usually considered:
large-scale and small-scale dynamos. Magnetic field generation on scales much smaller
and much larger than the integral scale of turbulence are described as small-scale dynamo
and large-scale dynamo, respectively.

The theory of large-scale dynamos is based on a mean-field approach (Moffatt 1978;
Krause & Rädler 1980) in which the magnetic and velocity fields are divided into mean
and fluctuating parts. Assuming that the averages obey the Reynolds rules, it follows
that the fluctuating parts have zero mean values. Let us furthermore assume that there
exists a separation of scales, i.e., the maximum scale of turbulent motions (the turbulent
integral scale) is much smaller than the characteristic scale of inhomogeneity of the
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mean magnetic field. In the framework of the mean-field approach, turbulence effects
are described in terms of the mean electromotive force, E = u× b as a function of the
large-scale magnetic field B, where u and b are fluctuations of velocity and magnetic
field.

For a number of astrophysical applications, the nonlinear dependence of the function
E(B) has been determined analytically for flows that are incompressible, i.e., div U =
0 (see, e.g., Moffatt 1978; Krause & Rädler 1980; Rädler et al. 2003; Rüdiger et al.

2013; Rogachevskii & Kleeorin 2000, 2001, 2004; Rogachevskii et al. 2012, 2017), or for
low-Mach-number density-stratified flows in the anelastic approximation, div (ρU) = 0
(see, e.g., Kleeorin & Rogachevskii 2003; Rogachevskii & Kleeorin 2006), where ρ is the
fluid density. However, in many astrophysical flows, the Mach number is not small and
compressibility effects on the mean electromotive force can be important.

Similar questions associated with compressibility effects arise in turbulent transport
of passive scalars, where the mean-field approach allows us to determine the large-scale
dynamics of passive scalars in small-scale turbulence (McComb 1990; Zeldovich et al.

1990; Frisch 1995; Zaichik et al. 2008; Monin & Yaglom 2013). The effects of turbulence
on passive scalar transport are described by means of a turbulent flux of passive scalar
concentration or particle number density F = nu, where n is the fluctuation of the
particle number density (Csanady 1980; Crowe et al. 2011; Balachandar & Eaton 2010;
Piterbarg & Ostrovskii 2013). Compressibility effects play a crucial role in particle trans-
port, for example they can cause the formation of spatially inhomogeneous distributions
of particles, known as particle clusters. These effects are very important in a range of
astrophysical and planetary science applications, where turbulence can be temperature
stratified at finite Mach numbers (Armitage 2010; Ruzmaikin et al. 1988; Priest 1982).

For temperature-stratified turbulence, large-scale particle clusters (on scales much
larger than the integral scale of the turbulence) are formed due to turbulent thermal
diffusion (Elperin et al. 1996, 1997). The effects related to compressibility of the turbu-
lent flow or the particle velocity field, result in a pumping effect of particles in regions
of minimum mean fluid temperature. In particular, turbulent thermal diffusion causes
a turbulent non-diffusive flux of particles in the direction of the turbulent heat flux, so
that particles are accumulated in the vicinity of the mean temperature minimum. The
phenomenon of turbulent thermal diffusion has been studied theoretically (Elperin et al.

2000, 2001; Amir et al. 2017), detected in direct numerical simulations (Haugen et al.

2012), different laboratory experiments (Buchholz et al. 2004; Eidelman et al. 2006, 2010;
Amir et al. 2017), and atmospheric turbulence with temperature inversions (Sofiev et al.

2009). It was also shown to be important for concentrating dust in protoplanetary discs
(Hubbard 2015).

A suppression of turbulent magnetic diffusivity by the compressibility of a random
homogeneous flow using the quasi-linear approach (the second-order correlation approx-
imation) was demonstrated by Krause & Rädler (1980). In particular, Krause & Rädler
(1980) derived an equation for the turbulent magnetic diffusivity, ηt, for small magnetic

Reynolds numbers: ηt = (ψ2 − φ2)/3η, where η is the microscopic magnetic diffusivity
and the velocity fluctuations are represented as the sum of vortical and potential parts,
u = ∇×ψ+∇φ. Later, Rädler et al. (2011) determined mean-field diffusivities both for
passive scalars and magnetic fields for an irrotational homogeneous deterministic flow,
using the quasi-linear approach and the test-field method in direct numerical simulations.
They showed that the expression for the turbulent diffusivity of a passive scalar coincides
with that of ηt for small magnetic Reynolds and Péclet numbers after replacing η by the
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molecular diffusion coefficient for the passive scalar. They found that the total mean-field
diffusivity in irrotational flows may well be smaller than the molecular diffusivity.

In the present study, a mean-field theory of compressibility effects in turbulent mag-
netohydrodynamics (MHD) and passive scalar transport is developed for inhomogeneous
density-stratified turbulent flows at arbitrary Mach number. We also consider helical tur-
bulence with uniform kinetic helicity. We use the quasi-linear approach, which is valid
for small magnetic Reynolds and Péclet numbers, and the spectral tau approach, which
is applicable to large magnetic Reynolds and Péclet numbers in fully developed turbu-
lence. This allows us to determine the mean electromotive force and the turbulent flux
of particles in compressible density-stratified inhomogeneous turbulence.

2. Turbulent transport of magnetic field

In this section we study turbulent transport of a magnetic field in compressible helical
inhomogeneous turbulence for small and large magnetic Reynolds numbers.

2.1. Governing equations

The magnetic field B(x, t) is governed by the induction equation:

∂B

∂t
= ∇× (U×B − η∇×B), (2.1)

where η is the magnetic diffusivity due to the electrical conductivity of the fluid, and
fluid velocity U(x, t) is determined by the Navier-Stokes equation,

ρ

(

∂

∂t
+U ·∇

)

U −∇ ·
(

2νρS(U)
)

=
1

µ0
(∇×B)×B −∇P, (2.2)

where P (x, t) is the fluid pressure, S
(U)
ij = 1

2 (Ui,j +Uj,i)−
1
3δij∇ ·U are the components

of the traceless rate-of-strain-tensor S(U), commas denote partial differentiation, and ν
is the kinematic viscosity.

We apply a mean-field approach and use Reynolds averaging (Krause & Rädler 1980).
In the framework of this approach, velocity and magnetic fields, fluid density, and pres-
sure are decomposed into mean (denoted by overbars) and fluctuating parts (lowercase
symbols). Ensemble averaging of (2.1) yields an equation for the mean magnetic field
B(x, t):

∂B

∂t
= ∇× (U×B + E − η∇×B), (2.3)

where U(x, t) is the mean velocity and E = u× b is the mean electromotive force. For
simplicity, we consider in this study the case U = 0. We determine E for compressible
inhomogeneous and helical turbulence. The procedure of the derivation of the equation
for the mean electromotive force is as follows. The momentum and induction equations
for fluctuations are given by

ρ
∂u

∂t
−∇ ·

(

2νρS(u)
)

=
1

µ0
[(b·∇)B + (B·∇)b]−∇ptot + u

(N), (2.4)

∂b

∂t
− η∆b = (B·∇)u− (u·∇)B −B (∇·u) + b(N), (2.5)

where u(x, t) and b(x, t) are the fluctuations of velocity and magnetic fields, u(N) and
b(N) are terms that are nonlinear in the fluctuations, ptot = p + µ−1

0 (B·b) are the
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fluctuations of the total pressure, S(u) ≡ S
(u)
ij = 1

2 (ui,j+uj,i)−
1
3δij∇·u, and p(x, t) is the

fluctuation of the fluid pressure. We rewrite (2.4) and (2.5) in k space. In the following, we
derive equations for the mean electromotive force for small and large magnetic Reynolds
numbers.

2.2. Small magnetic Reynolds numbers

We use a quasi-linear approach (also known in the literature as “first-order smoothing”
or “second-order correlation approximation”), which is valid for small hydrodynamic

and magnetic Reynolds numbers, Re = ℓ0
√

u2/ν ≪ 1 and Rm = ℓ0
√

u2/η ≪ 1,

respectively. Here
√

u2 is the characteristic turbulent velocity in the integral turbulent
scale ℓ0. In the high conductivity limit (very small microscopic magnetic diffusivity η),
the quasi-linear approach is only valid for small Strouhal numbers, which is defined as

the ratio of turbulent correlation time, τ0, to turnover time, ℓ0/
√

u2. This implies that
the quasi-linear approach in this limit is only valid for very short turbulent correlation
times.

2.2.1. Multi-scale approach

In the framework of the mean-field approach, we assume that there is a separation of
spatial and temporal scales, i.e., ℓ0 ≪ LB and τ0 ≪ tB , where LB and tB are the char-
acteristic spatial and temporal scales characterizing the variations of the mean magnetic
field. The mean fields depend on “slow” variables, while fluctuations depend on “fast”
variables. Separation into slow and fast variables is widely used in theoretical physics, and
all calculations are reduced to Taylor expansions of all functions using small parameters
ℓ0/LB and τ0/tB . The findings are further truncated to leading order terms.

Separation to slow and fast variables is performed by means of a standard multi-
scale approach (Roberts & Soward 1975). In the framework of this approach, the non-
instantaneous two-point second-order correlation function of b and u is written as follows:

bi(x, t1)uj(y, t2) =

∫

dω1 dω2 dk1 dk2 bi(k1, ω1)uj(k2, ω2) exp
[

i(k1·x+ k2·y)

+i(ω1t1 + ω2t2)
]

=

∫

gij(k, ω, t,R) exp[ik·r + iω τ̃ ] dω dk, (2.6)

where

gij(k, ω,R, t) =

∫

bi(k1, ω1)uj(k2, ω2) exp[iΩt+ iK·R] dΩ dK. (2.7)

Here we introduced large-scale variables: R = (x+ y)/2, K = k1 + k2, t = (t1 + t2)/2,
Ω = ω1 + ω2, and small-scale variables: r = x − y, k = (k1 − k2)/2, τ̃ = t1 − t2,
ω = (ω1 − ω2)/2. This implies that ω1 = ω + Ω/2, ω2 = −ω + Ω/2, k1 = k +K/2,
and k2 = −k+K/2. Mean-fields depend on the large-scale variables, while fluctuations
depend on the small-scale variables. We have used here the Fourier transformation:

Φ(x, t) =

∫

Φ(k, ω) exp
[

i(k·x+ ωt)
]

dω dk. (2.8)

Similarly to (2.6)-(2.7), we obtain

fij(k, ω,R, t) =

∫

ui(k1, ω1)uj(k2, ω2) exp[iΩt+ iK·R] dΩ dK. (2.9)

After separation into slow and fast variables and calculating the function gij(k, ω,R, t),
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expression (2.6) allows us to determine the cross-helicity tensor in physical space and to
calculate the limit of r → 0 and τ̃ → 0, which yields

bi(x, t)uj(x, t) =

∫

gij(k, ω,R, t) dω dk. (2.10)

For brevity of notations we omit below the large-scale variables t andR in the correlation
functions fij(k, ω,R, t) and gij(k, ω,R, t).

To determine the mean electromotive force, which is a one-point correlation function,
and to take into account small-scale properties of the turbulence, e.g., the turbulent spec-
trum, one need to use two-point correlation functions. For fully developed turbulence,
scalings for the turbulent correlation time and energy spectrum are related via the Kol-
mogorov scalings (McComb 1990; Frisch 1995; Monin & Yaglom 2013). This is the reason
why for calculations of the mean electromotive force in fully developed turbulence, we
use instantaneous two-point correlation functions. On the other hand, for a random flow
with small Re and Rm, there are no universal scalings for the correlation time and energy
spectrum. This is the reason why we have to use non-instantaneous two-point correlation
functions in this case.

2.2.2. Cross-helicity tensor

In the framework of the quasi-linear approach, we neglect nonlinear terms, but keep
molecular dissipative terms in (2.5) for the magnetic fluctuations. This allows us to obtain
the solution of (2.5) in the limit of small magnetic Reynolds number. Using this solution,
we derive the equation for the correlation function gij(k, ω):

gij(k, ω) = Gη

{

Bp

[

ikpfij +
1

2
∇pfij − ηk2Gη ksp∇sfij

]

−Bi

[

ikpfpj

+
1

2
∇pfpj − ηk2Gη ksp∇sfpj

]

− (∇sBp)

[

1

2
kp
∂fij
∂ks

+ ηk2Gη kspfij

]

+
1

2
(∇sBi)

[

−fsj + kp
∂fpj
∂ks

+ 2ηk2Gη kspfpj

]}

, (2.11)

where kij = ki kj/k
2 and Gη ≡ Gη(k, ω) = (ηk2+iω)−1. The derivation of (2.11) is given

in Appendix A. Here, for brevity of notations, we omit the large-scale variablesR and t in
the mean magnetic field Bp and correlation functions gij and fij . When B2/4π ≪ ρu2,
the correlation function fij(k, ω) in (2.11) should be replaced by the correlation function

f
(0)
ij (k, ω) given below by (2.12) for the random flow with a zero mean magnetic field,
called background flow.

2.2.3. A model for the background random flow for Re ≪ 1

In the next step of the derivation, we need a model for the background random flow
with a zero mean magnetic field. We consider a random, statistically stationary, density-
stratified, inhomogeneous, compressible and helical background flow, which is determined
by the following correlation function in Fourier space:

f
(0)
ij (k, ω,R) =

Φu(ω)E(k)

8π k2 (1 + σc)

{

[

δij − kij +
i

k2
(

kjλi − kiλj
)

+ 2σc kij

+(1 + 2σc)
i

2k2
(

ki∇j − kj∇i

)

]

u2 −
i

k2
εijp kpχ

}

. (2.12)

Here λ = −∇ ln ρ characterizes the fluid density stratification, δij is the Kronecker

tensor, εijn is the fully antisymmetric Levi-Civita tensor, χ = u · (∇×u) is the kinetic
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helicity, and the parameter

σc =
(∇ · u)2

(∇× u)2
(2.13)

is the degree of compressibility of the turbulent velocity field. In (2.12), we neglect small
effects ∼O(λ2 u2,∇2 u2, λi∇iu2), i.e., we assume that ℓ0 ≪ Hρ and ℓ0 ≪ LB , where ℓ0
is the maximum scale of random motions, Hρ = |λ|−1 is the mean density variation scale,
which is assumed to be constant. This means that in (2.12) we take into account leading
linear effects in stratification (∝ ℓ0/Hρ) and inhomogeneity of turbulence (∝ ℓ0/LB).
Generally, stratification also contributes to div u, and therefore it contributes to the
parameter σc. However, this contribution is small [∼O(λ2 u2)], and neglected in (2.12).
This implies that we separate effects of the arbitrary Mach number, characterized by
the parameter σc, and density stratification, described by λ. Note that the degree of
compressibility, σc, depends on the Mach number, but this dependence is not known for
arbitrary Mach numbers and have to be determined in direct numerical simulations.
We also do not consider here effects related to the non-uniformity of kinetic helicity

(∝ ∇χ) or a combined effect of stratification and kinetic helicity (∝ λχ), because their
contributions to the mean electromotive force are much smaller in comparison with the
standard contributions to the mean electromotive force caused by the turbulent motions
(they are of the order of the terms we neglected in the present study). The non-uniformity
of kinetic helicity or a combined effect of stratification and kinetic helicity contribute to
the generation of large-scale vorticity or large-scale shear motions (Yokoi & Yoshizawa
1993; Yokoi & Brandenburg 2016; Kleeorin & Rogachevskii 2018).

In (2.12), we assume that helical and non-helical parts of random flow have the same
power-law spectrum E(k) = k−1

0 (q−1) (k/k0)
−q for the wave number range k0 < k < kν ,

where kν = 1/ℓν is the wave number based on the viscous scale ℓν , and k0 = 1/ℓ0 ≪ kν .
We assume that there are no random motions for k < k0. This implies that ℓ0 is the
maximum scale of random motions, and E(k) = 0 for k < k0. For simplicity we also
assume that compressible and incompressible parts of the random flow have the same
spectra. We consider the frequency function Φu(ω) in the form of a Lorentz profile:

Φu(ω) = [πτ0 (ω
2 + τ−2

0 )]−1, where τ0 = ℓ0/
√

u2 is the correlation time and
√

u2 is
the characteristic turbulent velocity at scale ℓ0. This model for the frequency function
corresponds to the correlation function

ui(t)uj(t+ τ) ∝ exp(−τ/τ0). (2.14)

We take into account that for small magnetic Reynolds numbers, τ0 ≫ (ηk2)−1 for all
turbulent scales.
In spite of the large-scale effects caused by stratification λ and inhomogeneous turbu-

lence ∇u2, (2.12) describes a weakly anisotropic approximation. Indeed, the contribu-

tions of these effects to f
(0)
ij are small because ℓ0 ≪ Hρ and ℓ0 ≪ LB . Since we consider

only linear effects in λ and ∇u2, the second rank tensor f
(0)
ij is constructed as a linear

combination of symmetric tensors with respect to the indexes i and j, δij , kij , non-

symmetric tensors: kiλj , kjλi, ki∇ju2, kj∇iu2, and fully antisymmetric tensor εijp kp.
To determine unknown coefficients multiplying by these tensors, we use the following
conditions in derivation of (2.12):

(i)
∫

f
(0)
ii (k, ω,K) exp(iK·R) dk dω dK = u2;

(ii) iεipj
∫

(−kp +Kp/2) f
(0)
ij (k, ω,K) exp(iK·R) dk dω dK = χ;

(iii) f
(0)
ij (k, ω,K) = f

∗(0)
ji (k, ω,K) = f

(0)
ji (−k, ω,K).
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(iv)
∫

(ki +Ki/2) (kj −Kj/2) f
(0)
ij (k, ω,K) exp(iK·R) dk dω dK = (divu)

2
;

(v) for very low Mach number and when the parameter σc is very small, the continuity
equation can be written in the anelastic approximation, div (ρu) = 0, which implies

that (iki + iKi − λi)f
(0)
ij (k, ω,K) = 0 and (−ikj + iKj − λj)f

(0)
ij (k, ω,K) = 0.

Different contributions to (2.12) have been discussed by Batchelor (1953); Elperin et al.

(1995); Rädler et al. (2003); Rogachevskii & Kleeorin (2018); Kleeorin & Rogachevskii
(2018). Note that for a purely potential flow, Eq. (2.12) for the background turbulence
is used in the limit σc → ∞, which yields

f
(0)
ij (k, ω,R) =

Φu(ω)E(k)

4π k2

[

kij +
i

2k2
(

ki∇j − kj∇i

)

]

u2. (2.15)

2.2.4. Mean electromotive force for Rm ≪ 1

The mean electromotive force is given by

E i = εinm

∫

bm(k, ω)un(−k,−ω) dk dω = εinm

∫

gmn(k, ω) dk dω. (2.16)

Integrating in ω space and k space in (2.16), we arrive at an equation for the mean
electromotive force, E = u× b, for compressible, density-stratified, inhomogeneous and
helical background turbulence:

E = αB + γ ×B − ηt ∇×B, (2.17)

where the α effect, the turbulent magnetic diffusivity ηt, and the pumping velocity γ for
Rm ≪ 1 are given by

α = −
(q − 1)

3(q + 1)

τ0 u · (∇×u)

1 + σc
Rm, (2.18)

ηt =
(q − 1)

3(q + 1)
τ0 u2

(

1−
2σc

1 + σc

)

Rm≡
(q − 1)

3(q + 1)

(

1− σc
1 + σc

)

Rm2 η, (2.19)

γ = −
1

2
∇ηt, (2.20)

and τ0 = ℓ0/
√

u2. Let us analyze the obtained results. Since τ0 Rm = ℓ20/η, the turbulent
transport coefficients given by (2.18)–(2.20) are determined only by the resistive time
scale, ℓ20/η. The effective pumping velocity is independent of λ (see detailed derivation
of (2.20) and discussion in Appendix B).

Equations (2.18)–(2.20) imply that for small magnetic Reynolds numbers, compressibil-
ity effects characterised by the parameter σc decrease the α effect, turbulent magnetic
diffusion, and the effective pumping velocity. However, the total magnetic diffusivity,
η + ηt, cannot be negative, because for Rm ≪ 1 the magnetic diffusivity, η, is much
larger than the turbulent value, i.e., η ≫ |ηt|. The decrease of turbulent magnetic diffu-
sivity by compressible flows is consistent with the results obtained by Krause & Rädler
(1980) and Rädler et al. (2011) for homogeneous random flow at small magnetic Reynolds
numbers. Detailed comparison with these results is discussed in section 4.

As follows from (2.17)–(2.19), the resulting mean electromotive force E i is determined
by the isotropic α effect and turbulent diffusivity. The reason for that is as follows. (i) We
consider the case of weak mean magnetic field, i.e., the energy of the mean magnetic field
is much smaller than the turbulent kinetic energy. For large mean magnetic field, when
the energy of the mean magnetic field is of the order of the turbulent kinetic energy,
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the α tensor and turbulent diffusivity are anisotropic (Rogachevskii & Kleeorin 2000,
2001). (ii) We do not consider the effects of uniform rotation or large-scale shear. In
the case of rotating turbulence (Rädler et al. 2003; Kleeorin & Rogachevskii 2003) or
turbulence with large-scale shear (Rogachevskii & Kleeorin 2003, 2004), the α tensor
and turbulent diffusivity are anisotropic. (iii) For anisotropic background turbulence,
e.g., for turbulent convection (Kleeorin & Rogachevskii 2003), or for magnetically driven
turbulence with relativistic particles (Rogachevskii et al. 2012, 2017), the α tensor and
turbulent diffusivity are also anisotropic. (iv) The model (2.12) of background random
flow is weakly anisotropic, because ℓ0 ≪ Hρ and ℓ0 ≪ LB .

2.3. Large fluid and magnetic Reynolds numbers

In this section we consider the case of large fluid and magnetic Reynolds numbers, so
that turbulence is fully developed, the Strouhal number is of the order of unity, and the
turbulent correlation time is scale-dependent, like in Kolmogorov type turbulence (see,
e.g., Monin & Yaglom 2013; McComb 1990; Frisch 1995). In this case, we perform the
Fourier transformation only in k space (but not in ω space), as is usually done in studies
of turbulent transport in a fully developed Kolmogorov-type turbulence. We take into
account the nonlinear terms in (2.4) and (2.5) for velocity and magnetic fluctuations and
apply the τ approach.

The τ approach is an universal tool in turbulent transport for strongly nonlinear sys-
tems that allows to obtain closed results and compare them with the results of lab-
oratory experiments, observations and numerical simulations (see, e.g., Orszag 1970;
Pouquet et al. 1976; Kleeorin et al. 1990; Rogachevskii & Kleeorin 2004; Brandenburg
& Subramanian 2005; Rogachevskii & Kleeorin 2007; Rogachevskii et al. 2011). The τ
approximation reproduces many well-known phenomena found by other methods in tur-
bulent transport of particles (see, e.g., Elperin et al. 1996, 1997; Pandya & Mashayek
2002; Blackman & Field 2003; Reeks 2005; Sofiev et al. 2009) and magnetic fields, in
turbulent convection (see, e.g., Elperin et al. 2002, 2006) and stably stratified turbulent
flows (see, e.g., Elperin et al. 2002; Zilitinkevich et al. 2009, 2013) for large fluid and
magnetic Reynolds and Péclet numbers. This approach is different from the quasi-linear
approach applied in the high-conductivity limit. The latter approach is only valid for
small Strouhal numbers, i.e., for very short correlation time. Therefore, the final results
found with this approach are different from those obtained using the τ approach.

Using (2.5) for the magnetic fluctuations b and the Navier-Stokes equation (2.4) for
the velocity fluctuations u in Fourier space, we derive an evolution equation for the
cross-helicity tensor,

gij(k,R, t) =

∫

bi(k +K/2, t)uj(−k +K/2, t) exp[iK·R] dK,

which depends on the velocity correlation function:

fij(k,R, t) =

∫

ui(k +K/2, t)uj(−k +K/2, t) exp[iK·R] dK.

The evolution equation for the cross-helicity tensor reads:

∂gij(k)

∂t
= i(k·B) fij(k)− ikmBi fmj(k) + Iij(k) + g

(N)
ij (k), (2.21)

where, for brevity of notation, we omit the large-scale variables t and R in the functions
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fij(k,R, t), gij(k,R, t), g
(N)
ij (k,R, t) and B(R, t). Here the term g

(N)
ij

g
(N)
ij (k) =

∫
[

bi(k1)
∂uj(k2)

∂t
+ b

(N)
i (k1)uj(k2)

]

exp[iK·R] dK (2.22)

is determined by the third-order moments appearing due to the nonlinear terms. Note
that since the Navier-Stokes equation is nonlinear, it appears only in the third-order

moments g
(N)
ij . For large magnetic and fluid Reynolds numbers, the dissipative terms

caused by the kinematic viscosity ν and magnetic diffusivity η in (2.21) are negligibly
small in comparison with the nonlinear terms. The term, Iij , which contains the large-
scale spatial derivatives of both, the mean magnetic field and the turbulent intensity, is
given by

Iij(k) =
1

2

[

(B·∇) fij − kn

(

∂fij
∂ks

∇sBn −
∂fnj
∂ks

∇sBi

)

−∇n

(

Bifnj
)

]

. (2.23)

This term determines the turbulent magnetic diffusivity and effects of inhomogeneous
turbulence. The derivation of (2.21) is given in Appendix C. We consider the case of
weak mean magnetic fields, i.e., the energy of the mean magnetic field is much less than
the turbulent kinetic energy. This implies that in the present study we do not investigate
quenching of the turbulent transport coefficients. Therefore, we do not need evolution
equations for the second moments of velocity, 〈uiuj〉, and magnetic field, 〈bibj〉 (see, e.g.,
Rogachevskii & Kleeorin 2000, 2001, 2004). This implies that we consider linear effects
in the mean magnetic field. The nonlinear mean-field theory for the mean electromotive
force in a turbulent compressible fluid flow is the subject of a separate ongoing study.

2.3.1. τ approach

Equation (2.21) for the second moment includes first-order spatial differential operators
M̂ applied to the third-order moments F (III). The problem arises how to close (2.21), i.e.,
how to express the third-order term M̂F (III) through the lower moments F (II) (Monin &
Yaglom 2013; McComb 1990). We use the spectral τ approximation which postulates that
the deviations of the third-moment terms, M̂F (III)(k), from the contributions to these
terms afforded by the background turbulence, M̂F (III,0)(k), can be expressed through
similar deviations of the second moments, F (II)(k)− F (II,0)(k):

M̂F (III)(k)− M̂F (III,0)(k) = −
1

τr(k)

[

F (II)(k)− F (II,0)(k)
]

, (2.24)

where τr(k) is the scale-dependent relaxation time, which can be identified with the cor-
relation time τ(k) of the turbulent velocity field for large fluid and magnetic Reynolds
numbers (Orszag 1970; Pouquet et al. 1976; Kleeorin et al. 1990; Rogachevskii & Kleeorin
2004). The functions with the superscript (0) correspond to the background turbulence

with zero mean magnetic field. We take into account that g
(0)
ij = 0, because when the

mean magnetic field is zero, the electromotive force vanishes. We do not take into ac-
count magnetic fluctuations caused by a small-scale dynamo (i.e., a dynamo with zero

mean magnetic field). Therefore, (2.24) for gij(k) reduces to M̂F
(III)
i (k) = −Fi(k)/τ(k).

Validation of the τ approximation for different situations has been performed in various
numerical simulations and analytical studies (Brandenburg & Subramanian 2005; Ro-
gachevskii & Kleeorin 2007; Rogachevskii et al. 2011, 2012; Brandenburg et al. 2012a;
Käpylä et al. 2012).
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2.3.2. Model of background turbulence for Re ≫ 1

In the next step of the derivation we need a model for the background turbulence. We
use a statistically stationary, density-stratified, inhomogeneous, compressible and helical
background turbulence, which is determined by the following correlation function in k
space:

f
(0)
ij (k) =

E(k)

8π k2 (1 + σc)

{

[

δij − kij +
i

k2
(

kjλi − kiλj
)

+ 2σc kij

+(1 + 2σc)
i

2k2
(

ki∇j − kj∇i

)

]

u2 −
i

k2
εijp kpχ

}

. (2.25)

Note that most statements and conditions used for the derivation of the tensorial struc-
ture of (2.12) are also valid for (2.25). We assume here that the background turbulence
is of Kolmogorov type with constant fluxes of energy and kinetic helicity over the spec-
trum, i.e., the kinetic energy spectrum for the range of wave numbers k0 < k < kν is
E(k) = −dτ̄(k)/dk, the function τ̄(k) = (k/k0)

1−q with 1 < q < 3 being the exponent of
the kinetic energy spectrum (q = 5/3 for a Kolmogorov spectrum). The condition q > 1
corresponds to finite kinetic energy for very large fluid Reynolds numbers, while q < 3
corresponds to finite dissipation of the turbulent kinetic energy at the viscous scale (see,
e.g., Monin & Yaglom 2013; McComb 1990; Frisch 1995). The turbulent correlation time

in k space is τ(k) = 2τ0 τ̄(k), where τ0 = ℓ0/
√

u2 is the turbulent correlation time in

physical space, and
√

u2 is the characteristic turbulent velocity at scale ℓ0. Note that
for fully developed Kolmogorov like turbulence, σc < 1 (Chassaing et al. 2013).

2.3.3. Mean electromotive force for Rm ≫ 1

We use the spectral τ approach and assume that the characteristic time of variation
of the mean magnetic field B is substantially larger than the correlation time τ(k) for
all turbulence scales. This allows us to get a stationary solution of (2.21). We consider
linear effects in the mean magnetic field, so that the function fij(k) in (2.21) and (2.23)

should be replaced by f
(0)
ij (k). The mean electromotive force is determined by E i =

εinm
∫

gmn(k) dk. We take into account that the terms with symmetric tensors with
respect to the indexes m and n in gmn(k) do not contribute to the mean electromotive
force. Therefore, the equation for the mean electromotive force is given by

Em = εmji

∫

τ(k)

{

i(k·B) f
(0)
ij −Bi

(

ikn f
(0)
nj +

1

2
∇nf

(0)
nj

)

−

[

f
(0)
nj +

k

2

(

d ln τ

dk

)

knp f
(0)
pj

]

∇nBi

}

dk. (2.26)

Using the model of background turbulence given by (2.25) and integrating in k-space
(2.26), we arrive at equation for the mean electromotive force (2.17), where the α effect,
the turbulent magnetic diffusivity ηt and the pumping velocity γ for large magnetic
Reynolds numbers (Rm ≫ 1) are given by

α = −
1

3

τ0 u · (∇×u)

1 + σc
, (2.27)

ηt =
τ0 u2

3

[

1−
(q − 1)σc
2(1 + σc)

]

, (2.28)

γ = −
1

6
∇

(

τ0 u2
)

. (2.29)
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Equations (2.27) and (2.28) imply that for large magnetic Reynolds numbers, compress-
ibility decrease both the α effect and turbulent magnetic diffusivity. Since 1 < q < 3, the
turbulent magnetic diffusivity is always positive for Rm ≫ 1, even for very large com-
pressibility, σc ≫ 1 (e.g., for irrotational flows). Note that for an incompressible flow the
turbulent magnetic diffusivity is independent of q. On the other hand, compressibility of
fluid flow does not affect the pumping velocity γ of the mean magnetic field for Rm ≫ 1,
similarly to the case of Rm ≪ 1.

In the framework of mean-field dynamo theory, the threshold for the generation of a
mean magnetic field is formulated in terms of the dynamo number. In the case of an α2

dynamo, the dynamo number is given by Rα = αLB/ηt. Using (2.27) and (2.28), we find
that, for a compressible flow, Rα is given by

Rα = R(in)
α

(

1 +
3− q

2
σc

)

−1

, (2.30)

where R
(in)
α applies to the corresponding incompressible flow. This implies that compress-

ibility decreases the dynamo number.

3. Turbulent transport of particles

In this section we consider non-inertial particles or gaseous admixtures in a compress-
ible fluid flow. Equation for the particle number density, n(p)(x, t), reads (Chandrasekhar
1943; Akhiezer & Peletminskii 1981):

∂n(p)

∂t
+∇· (n(p)U −D∇n(p)) = 0, (3.1)

where D is the microphysical diffusivity describing Brownian diffusion of particles and
U is a fluid velocity. Equation (3.1) implies conservation of the total number of particles
in a closed volume. We consider one way coupling, i.e., we take into account the effect
of turbulence on particle transport, but neglect the effect of particles on the turbulence.
This corresponds to turbulent transport of a passive scalar.
To determine the turbulent flux of particles, we use a mean-field approach in which

the number density of particles and fluid velocity are decomposed into mean and fluctu-
ating parts, where the fluctuating parts have zero mean values. Averaging (3.1) over an

ensemble, we arrive at an equation for the mean number density, N(x, t) ≡ n(p):

∂N

∂t
+∇· (nu−D∇N) = 0, (3.2)

where F = n(x, t)u(x, t) is the turbulent flux of particles and we consider the case of a
zero mean fluid velocity, U = 0.
To determine the turbulent flux of particles we use the equation for the fluctuations

of the particle number density, n(x, t) = n(p) −N , which follows from (3.1) and (3.2):

∂n

∂t
+∇· (nu− nu−D∇n) = −N∇·u− (u·∇)N, (3.3)

where Q = ∇· (nu− nu) are nonlinear terms and I = −N∇·u− (u·∇)N is the source
term of particle number density fluctuations. The ratio of the nonlinear terms to the
diffusion term is the Péclet number, that is estimated as Pe = u0 ℓ0/D. In the next
subsections we derive equations for the turbulent transport coefficients of particles for
small and large Péclet numbers.
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3.1. Turbulent transport coefficients for Pe ≪ 1

We derive an equation for the turbulent flux of particles,

n(x, t)uj(x, t) =

∫

Fj(k, ω,R, t) dω dk, (3.4)

for small Péclet numbers using a quasi-linear approach, where

Fj(k, ω,R, t) =

∫

n(k1, ω1)uj(k2, ω2) exp[iΩt+ iK·R] dΩ dK. (3.5)

For brevity of notations we omit below the large-scale variables t and R in Fj(k, ω,R, t)
and N(R, t). We neglect the nonlinear term Q, but keep the molecular diffusion term in
(3.3). We rewrite (3.3) in Fourier space and find the solution of this equation (see (A 20)
in Appendix A). Here we apply the same approach that was used in section 2.2, i.e., we
assume that there is a separation of spatial and time scales, ℓ0 ≪ LN and τ0 ≪ tN , where
LN and tN are the characteristic spatial and time scales of the mean particle number
density variations. We perform calculations presented in Appendix A, so that equation
for the turbulent flux of particles is given by

Fj = −

∫

GD

[

N

(

ikifij +
1

2
∇ifij −Dk2GD kim∇mfij

)

+
1

2

(

fmj − ki
∂fij
∂km

−2Dk2GD kimfij

)

∇mN

]

dk dω, (3.6)

where GD ≡ GD(k, ω) = (Dk2 + iω)−1 and fij = fij(k, ω,R, t). Since we consider

one way coupling, the correlation function fij in (3.6) should be replaced by f
(0)
ij for

the background random flow with zero turbulent flux of particles. Using the model of
background random flow given by (2.12) with zero kinetic helicity, and integrating in ω
and k-space, we arrive at an equation for the turbulent flux of particles:

F = N V eff −Dt ∇N, (3.7)

where for small Péclet numbers (Pe ≪ 1), the turbulent diffusivity Dt and the effective
pumping velocity V eff are given by

Dt =
(q − 1)

3(q + 1)
τ0 u2

(

1−
2σc

1 + σc

)

Pe≡
(q − 1)

3(q + 1)

(

1− σc
1 + σc

)

Pe2D, (3.8)

V eff =
(q − 1)

3(q + 1)
τ0 u2

[

1

(1 + σc)
∇ ln ρ+

3σc
2(1 + σc)

∇ lnu2

]

Pe. (3.9)

Since τ0 Pe = ℓ20/D, the turbulent transport coefficients given by (3.8) and (3.9) are deter-
mined only by the microphysical diffusion time scale, ℓ20/D. Remarkably, equation (3.8)
for the turbulent diffusivity of passive scalars Dt coincides with (2.19) for the turbulent
magnetic diffusivity ηt after replacing Pe by Rm.

Equation (3.8) implies that for small Péclet numbers, compressibility effects decrease
the turbulent diffusivity. However, the total (effective) diffusivity, D + Dt, cannot be
negative, because for Pe ≪ 1, the molecular diffusivity is much larger than the turbulent
one, D ≫ |Dt|. This result is consistent with that of Rädler et al. (2011), where it has
been demonstrated that the total mean-field diffusivity for passive scalar transport in
irrotational flows is smaller than the molecular diffusivity (see section 4 for a detailed
comparison).
The physics related to different terms in (3.9) will be discussed in the next section. In

the present study of turbulent transport of passive scalar and non-inertial particles, we
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consider a nonhelical turbulence, because there is no any effect of the kinetic helicity on
the particle flux at least in the system investigated here [without rotation, the large-scale
shear, and neglecting effects ∼O(λ2 u2,∇2 u2, λi∇iu2)].

By means of the equation of state for a perfect gas, ∇ ln p = ∇ ln ρ+∇ lnT , we rewrite
(3.9) for the effective pumping velocity as:

V eff =
(q − 1)

3(q + 1)
τ0 u2

[

1

(1 + σc)

(

∇ ln p−∇ lnT

)

+
3σc

2(1 + σc)
∇ lnu2

]

Pe, (3.10)

where T and p are the mean temperature and the mean pressure, respectively. Note that,
since the density-temperature correlation ρ′ϑ is much smaller than ρ T (Chassaing et al.

2013), the equation of state for perfect gas is also valid for the mean quantities, where
ρ′ and ϑ are fluctuations of the fluid density and temperature.

3.2. Turbulent transport coefficients for Pe ≫ 1

In this section we determine the turbulent flux of particles for large Péclet and Reynolds
numbers. Similar to the study performed in section 2.3, we consider fully developed tur-
bulence, where the Strouhal number is of the order of unity and the turbulent correlation
time is scale-dependent, so we apply the Fourier transformation only in k space. Using
(3.3) for the fluctuations n and the Navier-Stokes equation for the velocity u written in
Fourier space, we derive an equation for the instantaneous two-point correlation function

Fj(k) =

∫

n(k +K/2)uj(−k +K/2) exp[iK·R] dK.

For brevity of notations we omit the large-scale variables t and R in the function
Fj(k,R, t) and the mean number density N(R, t). To derive an evolution equation for
Fj(k), we perform calculations presented in Appendix C, which yield

∂Fj

∂t
= −N

(

ikifij +
1

2
∇ifij

)

−
1

2

(

fij − km
∂fmj

∂ki

)

∇iN + M̂F
(III)
i (k), (3.11)

where

M̂F
(III)
j (k) =

∫
[

n(k1)
∂uj(k2)

∂t
−Q(k1)uj(k2)

]

exp[iK·R] dK (3.12)

are the third-order moment terms in k space appearing due to the nonlinear terms.
We use the spectral τ approximation (2.24), where functions with superscript (0)

correspond to background turbulence with zero turbulent particle flux. Therefore, (2.24)

reduces to M̂F
(III)
i (k) = −Fi(k)/τ(k). We also assume that the characteristic time of

variation of the second moment Fi(k) is substantially larger than the correlation time
τ(k) on all turbulence scales. Therefore, the particle flux is given by

Fj(k) = −τ(k)

{(

ikif
(0)
ij +

1

2
∇if

(0)
ij

)

N +

[

f
(0)
mj +

k

2

(

d ln τ

dk

)

kim f
(0)
ij

]

∇mN

}

.

(3.13)

Using the model of background turbulence for f
(0)
ij given by (2.25) with a zero kinetic

helicity, and integrating (3.13) in k-space, we obtain the turbulent flux of particles (3.7),
where the turbulent diffusivity Dt and the effective pumping velocity V eff of non-inertial
particles for Pe ≫ 1 are given by

Dt =
τ0 u2

3

[

1−
(q − 1)σc
2(1 + σc)

]

, (3.14)
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[t!]

Figure 1. Dependence of V eff and γ (here in the z direction) as a function of the inverse
scale height H, and normalized by the wavenumber kf of the energy-carrying eddies. The upper
solid line denotes the diagonal, which corresponds to the result for turbulent pumping though
a similar nonuniformity of the turbulent rms velocity.

V eff =
τ0 u2

3

[

1

(1 + σc)
∇ ln ρ+

σc
2(1 + σc)

∇ lnu2

]

. (3.15)

Equation (3.14) for the turbulent diffusivity of particles Dt coincides with (2.28) for the
turbulent magnetic diffusivity ηt after replacing Pe by Rm. Equation (3.14) implies that
for large Péclet numbers, compressibility decreases the turbulent diffusivity of particles.
Since 1 < q < 3, the turbulent diffusivity is always positive when Pe ≫ 1, even for very
strong compressibility, σc ≫ 1.
Equation (3.15) determines effective pumping velocity, V eff , of passive scalars and

non-inertial particles. The first term in (3.15), and likewise in (3.9) for Pe ≪ 1, describes
pumping of passive scalars caused by density stratification. This effect for low Mach
numbers has been studied theoretically using various analytical approaches (Elperin et al.

1995, 1996, 1997, 2000, 2001; Pandya & Mashayek 2002; Reeks 2005; Amir et al. 2017). It
has also been detected in the direct numerical simulations of Brandenburg et al. (2012b),
where the density stratification was caused by gravity. Their result is reproduced in Fig. 1
and compared with the corresponding turbulent pumping velocities of mean magnetic
field, which is close to zero. This demonstrates very clearly the different natures of pump-
ing pumping of particles and magnetic fields in one and the same simulation. Here, the
relevant components of V eff and γ have been determined using the test-field method for
axisymmetric turbulence described in Brandenburg et al. (2012b). The simulations have
been carried out for about 200 turnover times. Error bars have been determined using
any one third of the full time series of the instantaneous, but spatially averaged mean
values of V eff and γ. Within error bars, the result for γ is not quite compatible with
zero, but this could be a consequence of a small gradient in the rms velocity.

Let us discuss the physics related to the first term in the right hand side of (3.15)
caused by the fluid density stratification, considering a density stratified homogeneous
turbulence. Substituting (3.7) into (3.2), we obtain the equation for the mean number
density, N :

∂N

∂t
+∇·

[

N V eff − (D +Dt)∇N
]

= 0. (3.16)
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The steady-state solution of Eqs. (3.16) for the mean number density of non-inertial
particles is given by N/N0 = [ρ/ρ0]

Dt/(D+Dt), where the subscripts 0 represent the
values far from the inhomogeneous fluid density zone. This solution implies that small
particles are accumulated in the vicinity of the maximum of the fluid density, because
the non-diffusive flux of particles, N V eff , is directed toward the maximum of the fluid
density.

The accumulation of non-inertial particles in the vicinity of the maximum of the mean
fluid density can be explained as follows (Elperin et al. 1995, 1997; Brandenburg et al.

2012b). Let us assume that the mean fluid density is inhomogeneous along the x axis, and
the mean density ρ2 at point 2 is larger than the mean density ρ1 at point 1. Consider
two small control volumes “a” and “b” located between these two points, and let the
direction of the local turbulent velocity in volume “a” at some instant be the same as
the direction of the mean fluid density gradient ∇ ρ (e.g., along the x axis toward point
2). Let the local turbulent velocity in volume “b” at this instant be directed opposite to
the mean fluid density gradient (i.e., toward point 1). In a fluid flow with an imposed
mean fluid density gradient, one of the sources of particle number density fluctuations,
n ∝ −τ0N (∇·u), is caused by a non-zero ∇ · u ≈ −u · ∇ ln ρ 6= 0 [see the first term
on the right hand side of Eq. (3.3)]. Since fluctuations of the fluid velocity u are positive
in volume “a” and negative in volume “b”, ∇·u < 0 in volume “a”, and ∇·u > 0 in
volume “b”. Therefore, the fluctuations of the particle number density n ∝ −τ0N (∇·u)
are positive in volume “a” and negative in volume “b”. However, the flux of particles
nux is positive in volume “a” (i.e., it is directed toward point 2), and it is also positive in
volume “b” (because both fluctuations of fluid velocity and number density of particles
are negative in volume “b”). Therefore, the mean flux of particles nu is directed, as is the
mean fluid density gradient ∇ ρ, toward point 2. This forms large-scale heterogeneous
structures of non-inertial particles in regions with a mean fluid density maximum.

Indirect manifestations of the pumping effect caused by the density stratification
through an observed increase of small-scale clustering of particles can be identified in
the direct numerical simulations of van Aartrijk & Clercx (2008), who studied the evolu-
tion of inertial particles in stably stratified turbulence. This pumping effect increases the
small-scale clustering of inertial particles by forming inhomogeneous distributions of the
mean particle number density. Note also that tangling of the mean particle number den-
sity, N , by compressible velocity fluctuations (described by the source term −Ndivu in
(3.3)), can increase the level of particle number density fluctuations, n, when the source
term −Ndivu > 0. In this case ∂n/∂t > 0, see (3.3). This can amplify the particle
clustering (Eidelman et al. 2010; Elperin et al. 2013).

Using the equation of state for a perfect gas, we rewrite (3.15) for the pumping effective
velocity in the form

V eff =
τ0 u2

3

[

1

(1 + σc)

(

∇ ln p−∇ lnT

)

+
σc

2(1 + σc)
∇ lnu2

]

. (3.17)

The first term in the right hand side of (3.17) describes turbulent barodiffusion (Elperin
et al. 1997), while the second term characterizes the phenomenon of turbulent thermal
diffusion (Elperin et al. 1996, 2000; Amir et al. 2017). The last term in (3.17), ∝ σc∇u2,
describes the compressible turbophoresis for noninertial particles.

The classical turbophoresis (Caporaloni et al. 1975; Reeks 1983, 1992; Elperin et al.

1998; Mitra et al. 2018) exists only for inertial particles and causes an additional mean
particle velocity that is proportional to −τs∇u2, where τs = mp/6πρ νap is the particle
Stokes time, i.e., the characteristic time of coupling between small spherical particles (of
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radius ap and mass mp) and surrounding fluid. To illustrate the classical turbophoresis
effect, let us consider small inertial particles in an isotropic incompressible turbulence
and use equation of motion for a particle: dv(p)/dt = −(v(p) − u)/τs, where v

(p) is the
particle velocity. This equation represents a balance of particle inertia with the fluid drag
force produced by the motion of the particle relative to the surrounding fluid. Solution of
this equation for small Stokes time is given by: v(p) = u− τs[∂u/∂t+ (u ·∇)u] +O(τ2s )
(Maxey 1987). Averaging this equation over statistics of fluid velocity fluctuations, we

determine the mean particle velocity: v
(p)
j = −τs∇juiuj . We take into account that for

isotropic turbulence uiuj = (1/3)u2δij . Therefore, the mean particle velocity is v(p) =

−(τs/3)∇u2 (for details, see Elperin et al. 1998). This turbophoresis effect results in the
formation of large-scale clusters of inertial particles at local minima of the mean-squared
turbulent velocity. Note that the compressible turbophoresis for noninertial particles
originates from the turbulent particle flux nu, i.e., it describes a collective statistical
phenomenon, while classical turbophoresis is not related to the correlations between
velocity and number density fluctuations and is obtained from the expression for the
mean velocity of inertial particles.

4. Comparison with Krause & Rädler (1980) and Rädler et al. (2011)

In this section we compare our results with those obtained previously by Krause &
Rädler (1980) and Rädler et al. (2011). Let us consider a non-stratified, isotropic, homo-
geneous and non-helical random flow. In this case (2.12) reads:

f
(0)
ij (k, ω,R) =

u2 Φu(ω)E(k)

8π k2 (1 + σc)

[

δij − kij + 2σc kij

]

, (4.1)

where the first two terms, δij − kij , in the squared brackets describes the vertical part of
turbulent flow, while the last term, 2σc kij determines the potential part of the flow.

Representing the velocity fluctuations as the sum of vortical and potential parts,

u = ∇×ψ +∇φ, (4.2)

we can construct the correlation function, f
(0)
ij (k) = ui(k)uj(−k), of the velocity field in

k space for non-stratified, isotropic, homogeneous and non-helical random background
flow as

f
(0)
ij (k) =

u2E(k)

8πk2
(

ψ2 + φ2
)

[

ψ2 (δij − kij) + 2φ2 kij

]

, (4.3)

where ∇·ψ = 0, and we also assumed that compressible and incompressible parts of
the random velocity field have the same spectra, E(k). It follows from (4.1) and (4.3)

that the degree of compressibility is σc = φ2/ψ2. For simplicity, we consider here the
instantaneous correlation function.

To derive (4.3), we rewrite (4.2) in k space: ui(k) = ikmεimnψn(k) + ikiφ(k), which

allows us to determine f
(0)
ij (k) as

f
(0)
ij (k) = k2

[

εimnεjpq kmp ψn(k)ψq(−k) + kij φ(k)φ(−k)
]

, (4.4)

where

ψ2 =

∫

ψn(k)ψn(−k) dk, φ2 =

∫

φ(k)φ(−k) dk. (4.5)
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Taking into account that for the vortical field∇·ψ = 0, the correlation function ψi(k)ψj(−k) ∝
δij − kij , and using (4.5) we obtain

ψi(k)ψj(−k) =
u2E(k)

8πk4
(

1 + φ2/ψ2
) (δij − kij) , (4.6)

φ(k)φ(−k) =
u2E(k)

4πk4
(

1 +ψ2/φ2
) . (4.7)

Substituting (4.6)-(4.7) into (4.4), we arrive at (4.3).

4.1. Small magnetic Reynolds numbers

Substituting (4.3) into (2.16) and using (2.11), we find that the turbulent magnetic
diffusivity for small magnetic Reynolds numbers reads:

ηt =
1

3η

(

ψ2 − φ2
)

. (4.8)

This result agrees with that of Krause & Rädler (1980). Substituting (4.3) into (3.6), we
find that the turbulent diffusion coefficient for passive scalars at small Péclet numbers is
given by:

Dt =
1

3D

(

ψ2 − φ2
)

. (4.9)

This result agrees with that of Rädler et al. (2011).

4.2. Large magnetic Reynolds numbers

In the case of large magnetic Reynolds numbers, substituting (4.3) into (2.26), we find
for the turbulent magnetic diffusivity

ηt =
τ0 u2

3

[

1−
(q − 1)

2

(

φ2

ψ2 + φ2

)]

. (4.10)

This result is in good agreement with (2.28) for ηt and with (3.14) for Dt.

5. Conclusions

A mean-field theory for the compressibility effects in the mean electromotive force in
turbulent magnetohydrodynamics and in the turbulent flux of passive scalars or particles
has been developed. This study is based on the quasi-linear approach applied for small
magnetic Reynolds and Péclet numbers, and on the spectral τ -approach for large fluid
(Re) and magnetic (Rm) Reynolds numbers and large Péclet numbers (Pe). Compress-
ibility is found to cause a depletion of the α effect and turbulent magnetic diffusion for
small and large Rm. It also decreases the turbulent diffusivity of passive scalars for small
and large Pe. Indeed, the expressions for the turbulent magnetic diffusivity and the tur-
bulent diffusivity of passive scalars coincide after replacing Rm by Pe, and vise versa.
Compressibility does not change the effective pumping velocity of the magnetic field for
Rm ≫ 1, but decreases it for Rm ≪ 1. In addition, compressibility causes a pumping of
particles in regions with higher turbulent intensity for small and large Péclet numbers.
This new effect is interpreted in terms of compressible turbophoresis for noninertial par-
ticles. This effect is completely different from classical turbophoresis, which only affects
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inertial particles and results in pumping of inertial particles to regions of lower turbulent
intensity. Compressible turbophoresis for noninertial particles is a collective statistical
phenomenon originating from the turbulent particle flux. On the other hand, classical
turbophoresis originates directly from the expression for the mean velocity of inertial
particles. For small Mach numbers, compressibility effects are only determined by the
density stratification through the λ terms in (2.12) and (2.25). We find that the density
stratification does not affect the magnetic field, although it causes a turbulent pumping
of particles to regions of maximum mean fluid density.

The mean-field theory developed for compressibility effects in turbulent magnetohy-
drodynamics and turbulent transport of passive scalars and particles needs to be verified
in direct numerical simulations and large-eddy simulations using the test-field and test-
scalar methods (see, e.g., Schrinner et al. 2005, 2007; Brandenburg et al. 2008, 2012b),
which is the subject of a separate study. Furthermore, in view of astrophysical and
geophysical applications, it is important to consider the additional effects of rotation,
turbulent convection, and the presence of stably stratified turbulence with large-scale
temperature gradients (see, e.g., Kleeorin & Rogachevskii 2003; Rogachevskii & Kleeorin
2006, 2007; Brandenburg et al. 2012b).
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Appendix A. Derivation of (2.11) for Rm ≪ 1, and (3.6) for Pe ≪ 1

In the limit of small magnetic Reynolds number, we neglect in (2.5) nonlinear terms,
but keep molecular dissipative terms of the magnetic fluctuations. The solution of (2.5)
reads:

bi(k, ω) = ikpGη(k, ω)

[
∫

Bp(Q)ui(k −Q, ω) dQ−

∫

Bi(Q)up(k −Q, ω) dQ

]

,

(A 1)

where Gη(k, ω) = (ηk2 + iω)−1. To derive (A 1), we consider the source term in the
induction equation for the magnetic fluctuations, (B·∇)u, which can be rewritten using
Fourier transformation as

(B·∇)ui =

∫

Bp(Q) exp(iQ·x) dQ

∫

ik′p ui(k
′) exp(ik′·x) dk′. (A 2)

For brevity of notations we omit below the variable t in the functions Bp(Q, t) and
ui(k, t). We introduce a new variable k = k′+Q and take into account that QpBp(Q) =
0, which yields

(B·∇)ui =

∫
(

ikp

∫

Bp(Q)ui(k −Q) dQ

)

exp(ik·x) dk

≡

∫

[

(B·∇)ui
]

k
exp(ik·x) dk, (A 3)
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where [...]k denotes the Fourier transform. Therefore,

[

(B·∇)ui
]

k
= ikp

∫

Bp(Q)ui(k −Q) dQ. (A 4)

Similar derivations are made for the other terms in the induction equation:

[

(u·∇)Bi

]

k
= i

∫

QpBi(Q)up(k −Q) dQ, (A 5)

[

Bi (∇·u)
]

k
= i

∫

(kp −Qp) Bi(Q)up(k −Q) dQ, (A 6)

which yield (A 1).
To derive (2.11), we use (2.7) and (A 1) which yield

gij(k,R) = J
(2)
ij (k,R)− J

(1)
ij (k,R), (A 7)

where

J
(1)
ij (k,R) = i

∫

(kp +Kp/2)Gη(k +K/2)up(k +K/2−Q)uj(−k +K/2)

×Bi(Q) exp(iK·R) dK dQ, (A 8)

J
(2)
ij (k,R) = i

∫

(kp +Kp/2)Gη(k +K/2)ui(k +K/2−Q)uj(−k +K/2)

×Bp(Q) exp(iK·R) dK dQ. (A 9)

and the functions J
(1)
ij , J

(2)
ij , Gη and ui depend also on ω. To simplify the notation, we do

not show this dependence in the following calculations. First we determine the function

J
(1)
ij , using new variables:

k̃1 = k +K/2−Q , k̃2 = −k +K/2, (A 10)

k̃ = (k̃1 − k̃2)/2 = k −Q/2 , K̃ = k̃1 + k̃2 =K −Q.

Therefore,

J
(1)
ij (k,R) = i

∫

(kp +Kp/2) fpj(k −Q/2,K −Q)Gη(k +K/2)Bi(Q)

× exp(iK·R) dK dQ. (A 11)

Since |Q| ≪ |k| and |K| ≪ |k|, we use the Taylor expansion

fpj(k −Q/2,K −Q) = fpj(k,K −Q)−
1

2

∂fpj
∂ks

Qs +O(Q2), (A 12)

Gη(k +K/2) = Gη(k) [1− η(k ·K)Gη(k)] +O(K2). (A 13)

Substituting (A 12) and (A 13) into (A 11), we get

J
(1)
ij (k,R) = iGη(k)

∫
[(

kp − ηGη(k)kpksKs +
1

2
Kp

)(
∫

fpj(k,K −Q)Bi(Q) dQ

)

−
1

2
kp

(
∫

QsBi(Q)
∂

∂ks
fpj(k,K −Q) dQ

)]

exp(iK·R) dK +O(K2,Q2,KpQs).

(A 14)

We use the following identity:

∇p[fpj(k,R)Bi(R)] =

∫

iKp [fpj(k,K)Bi(K)]
K
exp (iK·R) dK, (A 15)
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where

[fpj(k,K)Bi(K)]
K

=

∫

fpj(k,K −Q)Bi(Q) dQ. (A 16)

Similarly,

fpj(k,R)∇pBi(R) =

∫
[
∫

fpj(k,K −Q) iQpBi(Q) dQ

]

K

exp(iK·R) dK.(A 17)

Therefore, (A 14)–(A 17) yield

J
(1)
ij (k,R) = Gη

{[

ikp (1 + iη Gηks∇s)
(

Bi fpj
)

+Bi
1

2
∇pfpj

]

+
1

2

(

fpj − km
∂fmj

∂kp

)

(∇pBi)

}

+O(∇2). (A 18)

A similar derivation is also performed for J
(2)
ij , which yields

J
(2)
ij (k,R) = Gη

{

Bp

[

ikpfij +
1

2
∇pfij − ηk2Gη ksp∇sfij

]

−(∇sBp)

[

1

2
kp
∂fij
∂ks

+ ηk2Gη kspfij

]}

+O(∇2). (A 19)

Therefore, (A 18) and (A 19) yield (2.11).
To determine the turbulent flux of particles for small Péclet numbers, we rewrite (3.3)

in Fourier space using an equation similar to (A 4), and find the solution of (3.3) as

n(k, ω) = −GD(k, ω) ikp

∫

N(Q)up(k −Q, ω) dQ, (A 20)

where GD(k, ω) = (Dk2 + iω)−1. The function Fj(k,R), defined by (3.5), is

Fj(k,R) = −i

∫

(kp +Kp/2)up(k +K/2−Q)uj(−k +K/2)

×GD(k +K/2)N(Q) exp(iK·R) dK dQ, (A 21)

where the functions Fj , GD and ui depend also on ω, and N depend on t as well. To
simplify the notation, we do not show this dependence here. We perform calculations
similar to those in (A 8)–(A 18). In particular, after the Taylor expansion for |Q| ≪ |k|
and |K| ≪ |k|, we arrive at expression (3.6) for the turbulent flux of particles in Fourier
space for small Péclet numbers.

Appendix B. Derivation of (2.20) for Rm ≪ 1

The effective pumping velocity is independent of λ for Rm ≪ 1. Indeed, the contribu-
tion of λ to the effective pumping velocity γ can only arise from the term

g
(1)
ij (k, ω) = ikpGη(k, ω)[Bpfij(k, ω)−Bifpj(k, ω)]. (B 1)

Integration over solid angles in k space in g
(1)
ij =

∫

g
(1)
ij (k, ω) dk dω yields

g
(1)
ij = −

∫

dkE(k)
∫

dωΦu(ω)Gη(k, ω)

6 (1 + σc)

[

Biλj +Bjλi −

(

σc +
1

2

)

(Bi∇j +Bj∇i)u2

]

,

(B 2)
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which is a symmetric tensor with respect to the indexes i and j. Therefore, it cannot
contribute to the electromotive force nor to γ. For integration over solid angles in k space

in expression for g
(1)
ij , we take into account that

∫

kij sin θ dθ dϕ = (4π/3)δij , where we
use spherical coordinates (k, θ, ϕ) in k space.

The remaining contribution that is proportional to the mean magnetic field, is

g
(2)
ij (k, ω) = Gη

[

Bp

(

1

2
∇pfij − ηk2Gη ksp∇sfij

)

−Bi

(

1

2
∇s − ηk2Gη ksp∇p

)

fsj

]

.

(B 3)

Since we neglect effects ∼O(λi∇iu2, λ2 u2,∇2 u2), the term g
(2)
ij (k, ω) describes only

the contribution to γ caused by ∇u2, i.e., the effect of inhomogeneity of turbulence,

rather than the effect of stratification on γ. A non-zero contribution to g
(2)
ij (and to

the electromotive force) is only from last two terms in (B 3) which are proportional to
fsj , where fsj ∝ (δsj − ksj + 2σc ksj)u2. Indeed, the first two terms ∝ fij in (B 3)
(which is symmetric tensor with respect to the indexes i and j), cannot contribute to
the electromotive force. Here we also took into account that

∫

ki sin θ dθ dϕ = 0. After
integration in k and ω space we arrive at (2.20) for the effective pumping velocity γ for
Rm ≪ 1. For integration over ω, we use the following integrals τ0 ≫ (ηk2)−1:

∫

∞

−∞

dω

(±iω + ηk2) (ω2 + τ−2
0 )

=
π τ0

τ−1
0 + η k2

≈
π τ0
η k2

, (B 4)

∫

∞

−∞

dω

(iω + ηk2) (−iω + ηk2) (ω2 + τ−2
0 )

=
π τ0

η k2
(

τ−1
0 + η k2

) ≈
π τ0
η2 k4

. (B 5)

Appendix C. Derivation of (2.21) for Rm ≫ 1 and (3.11) for Pe ≫ 1

For the derivation of (2.21), we perform the following calculation. We use the identity:

∂

∂t
bi(k1, t)uj(k2, t) =

∂bi(k1, t)

∂t
uj(k2, t) + bi(k1, t)

∂uj(k2, t)

∂t
. (C 1)

We rewrite the induction equation (2.5) for magnetic fluctuations in k space:

∂bi(k)

∂t
= ikp

(
∫

Bp(Q)ui(k −Q) dQ−

∫

Bi(Q)up(k −Q) dQ

)

+ b
(N)
i (k), (C 2)

using (A 4)–(A 6). Here b
(N)
i (k) includes the nonlinear terms. For brevity of notations we

omit below the variable t in the functions Bi(Q, t), bi(k, t), b
(N)
i (k, t) and ui(k, t). To

derive (2.21), we use (C 1) and (C 2) which yield

∂gij(k,R)

∂t
= J̃

(1)
ij (k,R)− J̃

(2)
ij (k,R) + g

(N)
ij (k,R), (C 3)

where

J̃
(1)
ij (k,R) = i

∫

(kp +Kp/2)Bp(Q)ui(k +K/2−Q)uj(−k +K/2)

× exp(iK·R) dK dQ, (C 4)

J̃
(2)
ij (k,R) = i

∫

(kp +Kp/2)Bi(Q)up(k +K/2−Q)uj(−k +K/2)

× exp(iK·R) dK dQ. (C 5)
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Next, we perform calculations that are similar to (A 10)–(A 12) and (A 14)–(A 18). In
particular, we introduce new variables: k̃ = (k̃1 − k̃2)/2 = k −Q/2 and K̃ = k̃1 + k̃2 =
K −Q, and use the Taylor expansion for |Q| ≪ |k| and |K| ≪ |k|, which yield

J̃
(1)
ij (k,R) = Bp

(

ikpfij +
1

2
∇pfij

)

−
1

2
km

∂fij
∂kp

∇pBm +O(∇2), (C 6)

J̃
(2)
ij (k,R) = Bi

(

ikpfpj +
1

2
∇pfpj

)

+
1

2

(

fpj − km
∂fmj

∂kp

)

(∇pBi) +O(∇2). (C 7)

Therefore, (C 2)–(C 7) yield (2.21) for Rm ≫ 1.
For the derivation of (3.11), we perform the following calculation. We use the identity:

∂

∂t
n(k1, t)uj(k2, t) =

∂n(k1, t)

∂t
uj(k2, t) + n(k1, t)

∂uj(k2, t)

∂t
. (C 8)

We rewrite equation (3.3) for fluctuations of the particle number density, in k space:

∂n(k)

∂t
= −ikp

∫

N(Q)up(k −Q) dQ+ n(N)(k), (C 9)

using (A 4). Here n(N)(k) includes the nonlinear terms. For brevity of notations we omit
below the variable t in the functions N(Q, t), n(k, t), n(N)(k, t) and ui(k, t). To derive
(3.11), we use (C 8) and (C 9) which yield

∂Fj(k,R)

∂t
= J̃

(3)
j (k,R) + F

(N)
j (k,R), (C 10)

where

J̃
(3)
j (k,R) = −i

∫

(kp +Kp/2)N(Q)up(k +K/2−Q)uj(−k +K/2)

× exp(iK·R) dK dQ. (C 11)

We perform calculations that are similar to (A 10)–(A 12) and (A 14)–(A 18), which yield

J̃
(3)
j (k,R) = −N

(

ikpfpj +
1

2
∇pfpj

)

−
1

2

(

fpj − km
∂fmj

∂kp

)

∇pN. (C 12)

Therefore, (C 8)–(C 12) yield (3.11) for Pe ≫ 1.
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Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. R.
2007 Mean-field concept and direct numerical simulations of rotating magnetoconvection
and the geodynamo. Geophys. Astroph. Fluid Dyn. 101 (2), 81–116.

Sofiev, M., Sofieva, V., Elperin, T., Kleeorin, N., Rogachevskii, I. & Zilitinkevich,
S. S. 2009 Turbulent diffusion and turbulent thermal diffusion of aerosols in stratified
atmospheric flows. J. Geophys. Res. 114 (D18).

van Aartrijk, M. & Clercx, H. J. H. 2008 Preferential concentration of heavy particles in
stably stratified turbulence. Phys. Rev. Lett. 100 (25), 254501.

Yokoi, N. & Brandenburg, A. 2016 Large-scale flow generation by inhomogeneous helicity.
Phys. Rev. E 93 (3), 033125.

Yokoi, N. & Yoshizawa, A. 1993 Statistical analysis of the effects of helicity in inhomogeneous
turbulence. Phys. Fluids 5 (2), 464–477.

Zaichik, L. I., Alipchenkov, V. M. & Sinaiski, E. G. 2008 Particles in Turbulent Flows.
John Wiley & Sons.

Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. 1990 The Almighty Chance. World
Scientific.

Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokolov, D. D. 1983 Magnetic Fields in Astro-
physics. Gordon and Breach Science Publishers.

Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Lvov, V. & Rogachevskii, I. 2009 Energy-
and flux-budget turbulence closure model for stably stratified flows. part ii: the role of
internal gravity waves. Boundary-layer Meteorology 133 (2), 139–164.

Zilitinkevich, S. S., Elperin, T., Kleeorin, N., Rogachevskii, I. & Esau, I. 2013 A
hierarchy of energy-and flux-budget (efb) turbulence closure models for stably-stratified
geophysical flows. Boundary-layer Meteorol. 146 (3), 341–373.


