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ABSTRACT

Context. Studies of solar and stellar convection often employ simple polytropic setupsusing the diffusion approximation instead of
solving the proper radiative transfer equation. This allows one to controlseparately the polytropic index of the hydrostatic reference
solution, the temperature contrast between top and bottom, and the Rayleighand Ṕeclet numbers.
Aims. Here we extend such studies by including radiative transfer in the gray approximation using a Kramers-like opacity with freely
adjustable coefficients. We study the properties of such models and compare them with results from the diffusion approximation.
Methods. We use the PENCIL CODE, which is a high-order finite difference code where radiation is treated using the method of long
characteristics. The source function is given by the Planck function. The opacity is written asκ = κ0ρ

aT b, wherea = 1 in most
cases,b is varied from−3.5 to +5, andκ0 is varied by four orders of magnitude. We adopt a perfect monatomic gas. We consider
sets of one-dimensional models and perform a comparison with the diffusion approximation in one- and two-dimensional models.
Results. Except for the case whereb = 5, we find one-dimensional hydrostatic equilibria with a nearly polytropic stratification and
a polytropic index close ton = (3 − b)/(1 + a), covering both convectively stable (n > 3/2) and unstable (n < 3/2) cases. For
b = 3 anda = −1, the value ofn is undefined a priori and the actual value ofn depends then on the depth of the domain. For large
values ofκ0, the thermal adjustment time becomes long, the Péclet and Rayleigh numbers become large, and the temperature contrast
increases and is thus no longer an independent input parameter, unless the Stefan–Boltzmann constant is considered adjustable.
Conclusions. Proper radiative transfer with Kramers-like opacities provides a useful tool for studying stratified layers with a radiative
surface in ways that are more physical than what is possible with polytropic models using the diffusion approximation.
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1. Introduction

Convection in stars and accretion disks is a consequence of ra-
diative cooling at the surface. Pioneering work by Nordlund
(1982, 1985) has shown that realistic simulations of solar gran-
ulation can be performed with not too much extra effort and the
required computing resources are comparable to the mandatory
costs for solving the hydrodynamics part. Yet, many studiesof
hydrodynamic and hydromagnetic convection today ignore the
effects of proper radiative transfer, sometimes even at theex-
pense of using compute-intensive implicit solvers to cope with a
computationally stiff problem in the upper layers where thera-
diative conductivity becomes large (e.g., Cattaneo et al.,1991;
Gastine & Dintrans, 2008). Therefore, the main reason for ig-
noring radiation cannot be just the extra effort, but it is more
likely a reduced flexibility in that one is confined to a single
physical realization of a system and the difficulty in varying pa-
rameters that are in principle fixed by the physics. With onlya
few exceptions (e.g., Edwards, 1990), radiation hydrodynamics
simulations of stratified convection also employ realisticopaci-
ties combined with a realistic equation of state. In the caseof the
Sun this means that one can only simulate for the duration of a
few days solar time (Stein & Nordlund, 1989, 1998, 2012).

There are other types of realistic simulations that are able
to cover longer time scales by simulating only deeper layers,
so they ignore radiation. However, these simulations stillneed
to pose an upper boundary condition, where the gas is cooled
(Miesch et al., 2000). This leads to a granulation-like pattern at
a depth where the flow topology is known to consist of indi-

vidual downdrafts rather than a connected network of intergran-
ular lanes. This compromises the realism of such simulations.
Other types of simulations give up the ambition for realism alto-
gether and try to model a “toy Sun” in which the broad range of
time and length scales is compressed to a much narrower range
(Käpyl̈a et al., 2013). This can be useful if one wants to under-
stand the physics of the solar dynamo, where we are not even
sure about the possible importance of the surface (Brandenburg,
2005), or the physics of sunspots, where so far only models of
a toy Sun have produced spontaneous magnetic flux concentra-
tions similar to those of sunspots (Brandenburg et al., 2013). It is
therefore important to know how to manipulate the parameters
to accommodate the relevant physics, given certain numerical
constraints such as the number of mesh points available.

In the present paper we include radiation, which introduces
the Stefan–Boltzmann constant,σSB, as a new characteristic
quantity into the problem. It characterizes the strength ofsurface
cooling, or, conversely, the temperature needed to radiatethe flux
that is transported through the rest of the domain. Earlier simu-
lations that ignored radiation have specified the surface temper-
ature in an ad hoc manner so as to achieve a certain temperature
contrast across the domain. An example are the simulations of
Brandenburg et al. (1996), who specified a parameterξ as the ra-
tio of pressure scale height at the surface, which is proportional
to the temperature at the top, and the thickness of the convec-
tively unstable layer. Alternatively, one can use a radiative sur-
face boundary condition. It involvesσSB and couples therefore
the surface temperatureTtop to the lower part of the system, so
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Ttop is then no longer a free parameter, unless one chooses an
effective value ofσSB so as to achieve the desired temperature
contrast. This was done in recent simulations by Käpyl̈a et al.
(2012), who kept the aforementioned parameterξ as the basic
control parameter, which then determines the effective value of
σSB in their simulations.

The goal of the present work is to explore the physics of
models that introduce radiation without being confined to just
one realization. We do this by using a Kramers-like opacity law,
but with freely adjustable parameters. It turns out that it is possi-
ble in some cases to imitate polytropic models with any desired
polytropic index and Rayleigh number. This then eliminatesany
restrictions to a single setup, allowing one to perform parame-
ter surveys, just like with earlier polytropic models. To compare
radiative transfer models with those in the diffusion approxima-
tion, we consider two-dimensional convection simulations. An
ultimate application of this work is to study the formation of sur-
face magnetic flux concentrations through the negative effective
magnetic pressure instability (Brandenburg et al., 2013) which
has been able to produce already bipolar region (Warnecke et
al., 2013; Mitra et al., 2014) and to investigate the relation to
the magnetic cooling instability of Kitchatinov & Mazur (2000)
that could favor sunspot formation in the presence of radiative
cooling. This will be discussed again at the end of the paper.

We would like to point out that, in view of more general
applications, we cannot assume the effective temperature to be
given or fixed. Thus, unlike the case usually considered in the
theory of stellar atmospheres, the dependence of temperature on
optical depth is not known a priori. Therefore, it is more conve-
nient to fix instead the temperature at the bottom of the domain
and obtain the effective temperature, and thus the flux, as a result
of the calculation.

We begin by presenting first the governing equations and
then describe the basic setup of our model. Next we compare
a set of one-dimensional simulations with the associated poly-
tropic indices that correspond to Schwarzschild stable or unsta-
ble solutions. Finally, we explore the effect of including radiative
transfer instead of using the diffusion approximation combined
with a radiative boundary condition by comparing one- and two-
dimensional simulations.

2. The model

2.1. Governing equations

We solve the hydrodynamics equations for logarithmic density
ln ρ, velocityu, and specific entropys, in the form

D ln ρ

Dt
= −∇ · u, (1)

ρ
Du

Dt
= −∇p+ ρg +∇ · (2ρνS), (2)

ρT
Ds

Dt
= −∇ · F rad + 2ρνS2, (3)

wherep is the gas pressure,g is the gravitational acceleration,ν
is the viscosity,S = 1

2 [∇u+(∇u)T ]− 1
3 I∇ ·u is the traceless

rate-of-strain tensor,I is the unit tensor,T is the temperature,
andF rad is the radiative flux. For the equation of state, we as-
sume a perfect gas withp = (R/µ)Tρ, whereR is the universal
gas constant andµ is the mean molecular weight. The pressure
is related tos via p = ργ exp(s/cv), where the adiabatic in-
dexγ = cp/cv is the ratio of specific heats at constant pressure
and constant volume, respectively, andcp − cv = R/µ. To ob-
tain the radiative flux, we adopt the gray approximation, ignore

scattering, and assume that the source functionS (not to be con-
fused with the rate-of-strain tensorS) is given by the frequency-
integrated Planck function, soS = (σSB/π)T

4, whereσSB is
the Stefan–Boltzmann constant. The divergence of the radiative
flux is then given by

∇ · F rad = −κρ

∮

4π

(I − S) dΩ, (4)

whereκ is the opacity per unit mass (assumed independent of
frequency) andI(x, t, n̂) is the frequency-integrated specific in-
tensity corresponding to the energy that is carried by radiation
per unit area, per unit time, in the direction̂n, through a solid
angledΩ. We obtainI(x, t, n̂) by solving the radiative transfer
equation,

n̂ ·∇I = −κρ (I − S), (5)

along a set of rays in different directionŝn using the method of
long characteristics.

2.2. Opacity

For our work it is essential that we can control the value and
functional form of the opacity. We therefore choose a Kramers-
like opacity given by

κ = κ0ρ
aT b, (6)

wherea andb are free parameters that characterize the relevant
radiative processes. It is useful to consider the radiativeconduc-
tivity K(ρ, T ), which is given by

K(ρ, T ) =
16σSBT

3

3κρ
=

16σSBT
3−b

3κ0ρa+1
. (7)

We note that, in a plane-parallel polytropic atmosphere,T (z)
varies linearly with heightz and in the stationary state,K(ρ, T )
is constant in the optically thick part. This implies thatρ is pro-
portional toTn, where

n =
3− b

1 + a
(8)

is the polytropic index (not to be confused with the direction
of the rayn̂). This relation was also used by Edwards (1990),
but the author regarded those solutions as ‘a little contrived’.
This is perhaps the case if such solutions are applied throughout
the entire domain. It should also be noted that Edwards (1990)
included thermal conduction along with radiative transfer. This
meant that one had to pose a boundary condition for the tem-
perature at the top also, which will not be necessary in our case,
where, unless stated otherwise, no thermal conductivity isin-
cluded. Indeed, as we shall show, with a Kramers-like opacity,
nearly polytropic solutions are a natural outcome in the lower
optically thick part of the domain, while in the upper optically
thin part of the domain the stratification tends to become approx-
imately isothermal.

For a perfect gas, the specific entropy gradient is related to
the gradients of the other thermodynamic variables via

∇s = cv∇ ln p− cp∇ ln ρ = (n+ 1− γn)cv∇ lnT, (9)

and vanishes whenn = 1/(γ − 1). For a monatomic gas where
γ = 5/3, the stratification is Schwarzschild-stable forn > 3/2.
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2.3. Boundary conditions

We consider a slab with boundary conditions in thez direction
atzbot andztop, where we assume the gas to be stress-free, i.e.,

∂ux/∂z = ∂uy/∂z = uz = 0 onz = zbot, ztop. (10)

We assume zero incoming intensity at the top, and compute the
incoming intensity at the bottom from a quadratic Taylor ex-
pansion of the source function, which implies that the diffusion
approximation is obeyed; see Appendix A of Heinemann et al.
(2006) for details. To ensure steady conditions, we fix tempera-
ture at the bottom,

T = Tbot onz = zbot, (11)

while the temperature at the top is allowed to evolve freely.There
is no boundary condition on the density, but since no mass is
flowing in or out, the volume-averaged density is automatically
constant. Since most of the mass resides near the bottom, the
density there will not change drastically and will be close to its
initial value at the bottom.

2.4. The radiation module

We use for all simulations the PENCIL CODE1, which solves
the hydrodynamic differential equations with a high-orderfinite-
difference scheme. The radiation module was implemented by
Heinemann et al. (2006). It solves the transfer equation in the
form

dI/dτ = I − S, (12)

wheredτ = κρdl is the differential of the optical depth along a
given ray andl is a coordinate along this ray.

The code is parallelized by splitting the calculation into parts
that are local and non-local with respect to each processor.There
are two local parts that are compute-intensive and one that is
non-local and fast, so it does not require any computation. Since
S is assumed independent ofI (scattering is ignored), we can
write the solution of Eq. (12) as an integral forI(τ), which is
thus split into two parts,

I(τ) =

∫ τ0

0

eτ
′
−τS(τ ′)dτ ′

︸ ︷︷ ︸
Iextr

+

∫ τ

τ0

eτ
′
−τS(τ ′)dτ ′

︸ ︷︷ ︸
Iintr

, (13)

where the subscripts ‘extr’ and ‘intr’ indicate respectively an
extrinsic, non-local contribution and an intrinsic, localone. An
analogous calculation is done for calculatingτ along the geo-
metric coordinate asτ(l) =

∫ l0
0

κρdl′ +
∫ l

l0
κρdl′, wherel0 is

the geometric end point on the previous processor. In the first
step, we calculateIintr(τ), which can be evaluated immediately
on all processors in parallel, while the first integral is written in
the formIextr(τ) = I0 e

τ0−τ , whereI0 andτ0 are already being
computed as part of theIintr calculation on neighboring proces-
sors and the results included in the last step of the computation.

In the second step, the values ofτ0 =
∫ l0
0

κρdl′ andI0 =
I(τ0) are communicated from the end point of each ray on the
previous processor, which cannot be done in parallel, but this
does not require any computational time. In the final step one
computes

Iextr(τ) = I0e
τ0−τ (14)

1 http://pencil-code.googlecode.com/

Table 1. Units used in this paper and conversion into cgs units.

quantities code units cgs units
length [z] Mm 108 cm
velocity [u] km s−1 105 cm s−1

density [ρ] g cm−3 1 g cm−3

temperature [T ] K 1K
time [t] ks 103 s
gravity [g] km2 s−2 Mm−1 102 cm s−2

opacity [κ] Mm−1 cm3 g−1 10−8 cm2 g−1

diffusivity [χ] Mmkms−1 1013 cm2 s−1

conductivity [K] g cm−3 km3 s−3 MmK−1 1023 g cm s−3 K−1

Stefan-B [σSB] g cm−3 km3 s−3 K−4 1015 g s−3 K−4

flux [F ] g cm−3 km3 s−3 1015 erg cm−2 s−1

and constructs the final intensity asI(τ) = Iextr(τ) + Iintr(τ).
Instead of solving the radiative transfer equation directly

for the intensity, the contribution to the cooling termQ(τ) =
I(τ)−S(τ) is calculated instead, as was done also by Nordlund
(1982). This avoids round-off errors in the optically thickpart.
For further details regarding the implementation we refer to
Heinemann et al. (2006). To avoid interpolation, the rays are
chosen such that they go through mesh points. The angular inte-
gration in Eq. (4) is discretized as

∇ · F rad = −4πκρ

N

D

3

N∑

i=1

[I(x, t, n̂i)− S], (15)

wherei enumerates theN rays with directionŝni andD/3 is
a correction factor that is relevant when the number of dimen-
sions,D, of the calculation is less than three. It does not affect
the steady state, but it affects the cooling rate both in the op-
tically thick and thin regimes; see Appendix A for details. In
one dimension withD = 1, we haveN = 2 rays, which are
n̂1,2 = (0, 0,±1), while for D = 2 we can either haveN = 4
with n̂1,2 = (±1, 0, 0) andn̂3,4 = (0, 0,±1), orN = 8 with the
additional 4 combinationŝn5,...,8 = (±1, 0,±1)/

√
2. In three

dimensions, the correction factor isD/3 = 1, so the angular
integral is just4π times the average of the intensity over all di-
rections.

2.5. Parameters and initial conditions

In the following, we measure length in Mm, speed inkm s−1,
density ing cm−3, and temperature in K. This implies that time,
for example, is measured inks (=1000 s). The advantage of us-
ing this system of units is that it avoids extremely large or small
values of various quantities by using units that are commonly
used in solar physics such as Mm and km/s. A summary of our
units and the conversion of various quantities between cgs and
our units is given in Table 1.

For the gravitational acceleration, we takeg = (0, 0,−g)
with g = 274 km2 s−2 Mm−1 being the solar surface value
(Stix, 2002). Instead of prescribingTbot, we prescribe the sound
speedcs, wherec2s = γRT/µ, and fix cs = cs0 = 30 km s−1

at zbot = 0. With R = 8.314 107 ergK−1 mol−1 andµ =
0.6 gmol−1, this choice corresponds toTbot = 38, 968K. We
found it instructive to start with an isothermal solution that is in
hydrostatic equilibrium, but not in thermal equilibrium, so the
upper parts will gradually cool until a static solution is reached.
Thus, we useρ = ρ0 exp(−z/Hp), whereHp = RT/µg is
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Table 2. Summary of useda andb.

Set a b n Schwarzschild
A 1 −3.5 3.25 stable
B 1 0 1.5 marginally stable
C 1 1 1 unstable
D 1 5 −1 ultra unstable
E −1 3 0/0 undefined

Notes. Combinations of exponentsa andb and the resulting polytropic
indexn used in the present study. The characterization with respect to
the Schwarzschild stability criterion is based onγ = 5/3, correspond-
ing to a marginal polytropic index ofn = 1/(γ − 1) = 3/2. Each
parameter combination is denoted by a letter A–E, which corresponds
later to different sets of runs.

the pressure scale height, andρ0 is a constant that we set to
ρ0 = 4 10−4 g cm−3. This value was chosen based on values
from a solar model at a depth of approximately7Mm below the
surface. However, this particular choice is quite uncritical and
just corresponds to renormalizing the opacity. In other words,
instead of making a calculation with a ten times larger valueof
ρ, we can just use an otherwise equivalent calculation with a ten
times larger value ofκ.

2.6. Simulation strategy

We choose the exponentsa andb such that they correspond to
five different values ofn. In the casea = −1, b = 3, we have
K(ρ, T ) = const, but the value ofn is undefined. Our choice of
parameters is summarized in Table 2. It is convenient to express
κ in the form

κ = κ̃0

(
ρ

ρ0

)a(
T

T0

)b

, (16)

where κ̃0 is a rescaled opacity and is related toκ0 by κ̃0 =
κ0ρ

a
0T

b
0 ; whereT0 = Tbot is used. (By contrast,ρ0 is only

approximately equal to the density at the bottom—except ini-
tially.) With this choice, the units of̃κ0 are independent ofa
andb, and alwaysMm−1 cm3 g−1 (=10−8 cm2 g−1). For each
value of n, we choose 4 different values of̃κ0 = 104, 105,
106, and107 Mm−1 cm3 g−1. We note that the actual Kramers
opacity for free–free and bound–free transitions witha = 1 and
b = −7/2 hasκ0 between6.6 1022 and4.5 1024 cm5 g−2 K7/2,
respectively (Kippenhahn & Weigert, 1990). This corresponds
to κ̃0 = 2.26 1011 andκ̃0 = 1.54 1013 Mm−1 cm3 g−1, which
are respectively four and six orders of magnitude larger than the
largest value considered in this paper.

3. Results

We perform one-dimensional simulations with a resolution of
512 equally spaced grid points using five sets of values for the
exponentsa andb in the expression for the Kramers opacity; see
Eq. (16). Each set of runs is denoted by a letter A–E. In the first
four sets of runs, we keepa = 1 and change the value ofb from
−7/2, to 0, 1, and 5. For each of these sets, we perform four runs
that differ only in the values of̃κ0. The numeral on the label of
each run refers to a different value ofκ̃0. In Set A, we usea = 1
andb = −7/2. Runs A4, A5, A6 and A7 correspond tõκ0 equal
to 104, 105, 106 and107 Mm−1 cm3 g−1, respectively. All the

Fig. 1. Vertical temperature profile at five different timest = 0, 3, 30,
120, and1578 ks for Run A6 withκ̃0 = 106 Mm−1 cm3 g−1. Squares,
circles and crosses represent different optical depthsτ = 0.1, τ = 1
andτ = 10, respectively. The arrow represents the direction of the time
evolution of the temperature profile.

other designations follow the same scheme. All runs have been
started with the same isothermal initial condition. However, the
size of the domain is changed so as to accommodate the up-
per isothermal part by a good margin. If the domain is too big,
one needs a large number of meshpoints to resolve the resulting
strong stratification, and if it is too small, the solution changes
in the top part, as will be discussed in Sect. 3.9.

After a sufficient amount of running time, a unique equilib-
rium state is reached and the resulting profiles of temperature,
density and entropy have a nearly polytropic stratificationin the
lower part of the domain and a nearly isothermal stratification in
the upper part of the domain. An exception are the runs of Set E
where the polytropic index is undefined (n = 0/0). This will be
discussed in more detail in Sect. 3.8. We summarize the impor-
tant quantities obtained from all runs in Table 3. These quantities
are calculated in the equilibrium state. All runs show a similar
evolution of density, temperature and entropy. In the next sec-
tions we describe the resulting profiles in more detail.

3.1. Approach toward the final state

As mentioned above, we find it convenient to obtain equilib-
rium solutions by starting from an isothermal state. The up-
per layers begin to cool fastest, and eventually an equilibrium
state is reached. We plot the evolution of the temperature pro-
file of Run A6 in Fig. 1 as an exemplary case with̃κ0 =
106 Mm−1 cm3 g−1. Already after a short time oft = 3ks
(1 hours), the temperature has decreased by more than half its
initial value at the top and follows a polytropic solution inmost
of the domain, where the temperature gradient has a similar
value than in the equilibrium state. Att = 30 ks (8 hours),
close to the top boundary, an isothermal part is seen to emerge.
However, it takes more thant = 1500 ks (17 days) until the equi-
librium solution is reached with a prominent isothermal part of
T ≈ 7000 K. The locations of three different optical depths,
τ = 0.1, 1 and10, are shown in Fig. 1. Here,

τ(z) =

∫ ztop

z

κ(z′)ρ(z′) dz′ (17)

is the optical depth with respect to the surface of the domain. If
the domain is tall enough, one can see that an initially isothermal
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Table 3. Summary of the runs.

Run a b n κ̃0 ztop zτ=1 ρτ=1 τadjust Teff Kbot

A4 1 −3.5 3.25 104 8 2.8 1.0 10−4 50 23600 3.9 10−6

A5 1 −3.5 3.25 105 8 5.2 1.7 10−5 90 13900 4.6 10−7

A6 1 −3.5 3.25 106 8 6.6 2.5 10−6 700 7800 4.6 10−8

A7 1 −3.5 3.25 107 8 7.4 3.7 10−7 15000 4400 4.4 10−9

B4 1 0 1.5 104 5 1.4 2.2 10−4 40 26600 4.53 10−6

B5 1 0 1.5 105 5 2.9 9.0 10−5 60 16300 5.15 10−7

B6 1 0 1.5 106 5 3.8 3.7 10−5 400 9300 5.38 10−8

B7 1 0 1.5 107 5 4.3 1.6 10−5 5000 5200 5.08 10−9

C4 1 1 1 104 4 1 2.6 10−4 7 27600 5.1 10−6

C5 1 1 1 105 4 2.3 1.3 10−4 20 17400 5.6 10−7

C6 1 1 1 106 4 3.1 7.0 10−5 200 10100 6.0 10−8

C7 1 1 1 107 4 3.4 3.9 10−5 2100 5700 6.1 10−9

D4 1 5 −1 104 2 0.2 3.6 10−4 6 31000 1.1 10−5

D5 1 5 −1 105 2 0.8 2.8 10−4 7 23100 1.3 10−6

D6 1 5 −1 106 2 1 2.8 10−4 80 15600 1.9 10−7

D7 1 5 −1 107 2 1 3.2 10−4 700 10100 3.1 10−8

E4 −1 3 0/0 104 4 3.0 8.7 10−5 6 23700 4.47 10−6

E5 −1 3 0/0 105 4 3.6 5.6 10−5 45 14900 4.47 10−7

E6 −1 3 0/0 106 4 3.8 3.9 10−5 400 8800 4.47 10−8

Notes. The size of the domainztop and the height of the surfacezτ=1 are in Mm, the density at the surfaceρτ=1 is in g cm−3, the thermal
adjustment timeτadjust is in ks, the effective temperatureTeff is in K, radiative heat conductivity at the bottom of the domainKbot is in
g cm−3 km3 s−3 MmK−1 and the normalized opacitỹκ0 = κ0ρ

a

0T
b

0 is in Mm−1 cm3 g−1 are shown for each run. The second to the sixth
columns show quantities which are input parameters to the models whereasthe quantities in last five columns are the results of the simulations,
computed from the equilibrium state.

Fig. 2. Temperature over height for Run A6 at different timest = 0,
0.01, 0.1, and0.2 ks, plotted as solid, dotted, dashed and dashed-dotted
lines, respectively. The red dots correspond to the location ofτ ≈ 1.

stratification cools down first near the location whereτ(z) ≈ 1,
which is where the cooling is most efficient. As an example we
plot in Fig. 2 the early stages of the temperature evolution at
t = 0, 0.01, 0.1, and0.2 ks for a taller variant of Run A6 with
ztop = 12Mm using 1024 equally spaced grid points. Att =
0.01 ks, the temperature starts to decrease at the height where
τ ≈ 1, while in the upper part, which is far enough from the
surface, the temperature remains at first unchanged. Only ata
somewhat later time (t = 0.1 ks) does the temperature atz =
12Mm start to cool down. This is explained by the fact that the
radiative cooling rate (or inverse cooling time) is largestnear

τ = 1 (Spiegel, 1957; Unno & Spiegel, 1966; Edwards, 1990);
see also Appendix A.

3.2. Temperature stratification

For all runs, the temperature reaches an equilibrium state after a
certain time; see Fig. 1. The temperature profile can be divided
into two distinguishable parts, a nearly polytropic part which
starts from the bottom of the domain and extends to a certain
height, and a nearly isothermal part which starts from this height
and extends to the top of the domain. The transition of the tem-
perature from the initial state to the equilibrium state follows a
specific pattern, which is the same for all the runs. The higher
the value ofκ̃0, the lower the temperature is in the isothermal
part and the longer it takes to reach this state. Increasing the nor-
malized opacityκ̃0 by three orders of magnitude results in a de-
crease in the temperature by a factor of five for Set A and a factor
of three for Set D. As the exponentb changes from the smallest
value in Set A to the largest one in Set D, the slope of the tem-
perature decreases with height. This means that the polytropic
part of the atmosphere is smaller for larger values ofb. We note
that the size of the domain is chosen larger for smaller values of
b. For Sets A, B and C, the temperature in the polytropic part is
almost the same for different values ofκ̃0, although for the low-
est value ofκ̃0 the temperature deviates somewhat. However, in
Set D, for different values of̃κ0, the slope of the temperature is
different for each value of̃κ0. This has to do with the fact that
in this case with(b − 3)/(1 + a) = −1 the stratification is no
longer a polytropic one. (A polytrope withn = −1 would have
constant pressure, which is unphysical.)

The temperatures in the isothermal part also show a depen-
dency onb. For κ̃0 = 104 Mm−1 cm3 g−1 the temperature in
Run A4 is T ≈ 2.2 104 K, whereas in Run D4 the value is
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Fig. 3. Density, temperature and entropy of the equilibrium state versus height, from left to right, for Sets A, B, C and D, from top to bottom. The
four different lines in each plot corresponds to the value of the rescaled opacityκ̃0 = 104, 105, 106, 107 Mm−1 cm3 g−1. The dots in all plots
represent the surfaceτ ≈ 1. The red dotted lines represent the initial profile of each set.

T ≈ 2.9 104 K. A similar behavior can also be seen for the
other values ofκ̃0. Next, we calculate the optical depth for all
runs. We find that the transition point from the polytropic part to
the isothermal part coincides with theτ ≈ 1 surface. We indi-
cate the surfaceτ ≈ 1 by dots in all plots in Fig. 3. The poly-
tropic part corresponds to the optically thick part withτ > 1
and the isothermal part corresponds to the optically thin part
with τ < 1. For each set, the transition point depends on the
value of κ̃0. As we go from smaller to larger values of̃κ0, the
surface shifts to larger heights and becomes cooler. This isbe-
cause the radiative heat conductivityK is inversely proportional
to κ̃0 and directly proportional to the flux. Therefore, by in-
creasing the value of̃κ0, K decreases and, as a consequence,
the radiative flux also decreases. By decreasing the flux, theef-
fective temperature decreases asTeff ∝ F

1/4
rad . This means that

the temperature at the surface is smaller for larger values of κ̃0.
For Set A, theτ ≈ 1 surfaces lie on the polytropic part of the
temperature profile. However, by increasing the value ofb, the
locations of theτ = 1 surfaces shift toward the lower boundary
and the optically thick part becomes narrower. This is particu-
larly severe for the solutions with a small value ofκ̃0, especially
for κ̃0 = 104 Mm−1 cm3 g−1, when the boundary condition
T = Tbot at z = 0 becomes unphysical and the temperature
drops between the first two meshpoints in a discontinuous fash-
ion; see Fig. 3.

3.3. Entropy stratification

We plot the entropy profiles for all sets of runs in the equilibrium
state in the last column of Fig. 3. For Runs C6–7 and D5–7, the
entropy decreases in the polytropic part and starts to increase
in the isothermal part. All runs show a positive vertical entropy
gradient in the isothermal part. In the lower part, the entropy
gradient is positive (∇zs > 0) for Set A, while for Set B it
is constant and equal to zero (∇zs ≈ 0). This shows that for
Set B, the atmospheres are isentropic. In Sets C and D, except
for the caseκ̃0 = 104 Mm−1 cm3 g−1, the entropy gradient is
negative,∇zs < 0. This means that their atmospheres are con-
vectively unstable. (Convection will of course not occur inour
one-dimensional model, but we will obtain the so-called hydro-
static reference solution that is used to compute the Rayleigh
number, as will also be done later in this paper.) In Set D the en-
tropy gradients are larger than in case C where their atmospheres
are marginally stable. In the isothermal part of Set C, the entropy
gradient is much larger than in Set D. For each set of runs, as we
go from smaller values of̃κ0 to larger ones, the entropy profiles
have larger gradients.

6
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Fig. 4. Source function and vertical profiles of incoming and outgoing
intensity near the surface for Run A7. The dashed line represents the
source function and the solid lines represent the incoming intensityI+

(red) and outgoing intensityI− (blue). The vertical lines represent the
(constant) difference betweenI+ andI−.

3.4. Incoming and outgoing intensity profiles

It is instructive to inspect the vertical profiles of the intensity
for rays pointing in the up- and downward directions,n̂ =
(0, 0,±1), denoted in the following byI±. If we have just these
two rays, the energy flux is given byFrad = (2π/3)(I+ − I−).
In thermal equilibrium, the difference betweenI+ andI− must
be constant. This is indeed the case; see Fig. 4, where we plotI+

andI− and compare withS. The vertical lines in this figure rep-
resents the difference betweenI+ andI−, whereI+−I− ≈ 104

erg cm−2 s−1 in the whole domain as we have radiative equilib-
rium ∇ · F rad = 0. Radiative equilibrium also demands that
J = S, soS has to be equal to the average ofI+ andI−, which
is indeed the case.

3.5. Radiative heat conductivity

In Sets A, B, and C, the value of radiative heat conductivityK
turns out to be constant in the optically thick part of the atmo-
sphere, but not for Set D. The value ofK at the bottom of the
optically thick part of the domain is denoted in Table 3 byKbot,
and agrees roughly with

Kbot ≈ K0 ≡ 16σSBT
3
0

3κ̃0ρ0
. (18)

Indeed, it has almost the same order of magnitude for A, B and
C, independently of the value ofb, but it is one order of mag-
nitude larger for Set D. This is because in this set the density
is lower in the optically thick part compared to the other sets.
Moreover, as we go from higher values ofκ̃0 to the lower ones,
the radiative heat conductivity increases. This can be explained
by the inverse proportionality ofK with opacity asK ∝ 1/κ̃0.
For smaller values of̃κ0,K is larger and vice versa. As an exam-
ple, we plot in Fig. 5 the resulting vertical profiles of radiative
heat conductivity for Set C. We note thatK is constant in the
optically thick part and starts to increase in the opticallythin
part. In the optically thin part,κρ decreases, soK increases as
K ∝ 1/κρ. To maintain∇ · F rad = 0, the modulus of∇T has
to decrease. AsK increases even further, a thermostatic equilib-
rium can be satisfied if∇T comes close to zero.

Fig. 5. Radiative heat conductivityK versus height for Set C.K is
plotted for different values of̃κ0 whereκ̃0 = 104 Mm−1 cm3 g−1 is
shown by dotted-dashed line,̃κ0 = 105 Mm−1 cm3 g−1 dashed line,
κ̃0 = 106 Mm−1 cm3 g−1 dotted line andκ̃0 = 107 Mm−1 cm3 g−1

solid line.

3.6. Effective temperature

The effective temperatureTeff of all runs is calculated from the
z component of the radiative fluxF rad,

Teff =

(
Frad

σSB

)1/4

. (19)

The values ofTeff of all sets of runs are summarized in Table 3.
By increasing the value ofb, Teff also increases. The value of
Teff decreases as we go from lower to higher opacities for each
set. We plotTeff versusκ̃0 in Fig. 6 for Sets A, C and D where
the values ofTeff are represented by crosses, circles and stars, re-
spectively. For each set of runs, we fit a line toTeff versusκ̃0. We
find thatTeff has a power law relation with̃κ0. The power ofκ̃0,
which is the slope of the plot, depends on the polytropic index
and therefore onb. For larger values ofb, the power is smaller
than for smaller values ofb. Additionally, the offset shows also
a weak dependence onb. A power law relation betweenTeff and
the opacity of roughly1/4 can be expected, because of the lin-
ear relation of the radiative flux and the opacity. Toward larger
b, this dependency is no longer accurate. We also calculate for
each run the corresponding optical depth whereT = Teff . For all
runs,Teff corresponds to the optical depthτ ≈ 1/3. This is less
than what is expected for a gray atmosphere, whereTeff = T at
τ ≈ 2/3. This is presumably because in our integration ofτ we
have not included the contribution between∞ andz = ztop.

3.7. Thermal adjustment time

In our simulations we define a thermal adjustment timeτadjust
as the time it takes for each run to reach its numerically obtained
final equilibrium temperature in the isothermal part to within 1%
(see Fig. 7). The unit ofτadjust is ks (see Sect. 2.5). The value of
τadjust for all runs is summarized in Table 3. As we can see in
Table 3, the thermal adjustment time becomes smaller for larger
b and smallern. For each set of runs,τadjust grows approxi-
mately linearly withκ̃0, although forκ̃0 <∼ 105 Mm−1 cm3 g−1,
the dependency is more shallow. For larger values ofκ̃0, τadjust
seems to have a stronger dependency onb. We speculate that the
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Fig. 6. Effective temperatureTeff versus rescaled opacitỹκ0 for Sets A,
C, and D. The crosses, circles and stars show the values ofTeff for
different values ofκ̃0 for Sets A, C, and D, respectively. Different lines
correspond to line fit ofTeff with normalized opacitỹκ0.

Fig. 7. TemperatureT at ztop = 4Mm versus timet for Run C5. The
two horizontal lines mark the 1% margin around the final value ofT
and the vertical line marks the timeτadjust ≈ 20 ks after whichT lies
within these margins.

reason for increasing the value ofτadjust for higher values of̃κ0

is that by increasing the opacity the energy transport via radia-
tion becomes less efficient as the mean free path of the photon
decreases. But it seems that there exists a threshold of efficiency,
leading to a larger adjustment time for the lowest values ofκ̃0,
as expected.

We plot the vertical dependence of the mean free path of the
photonsℓ = 1/κρ normalized by the size of the domainL for
Set C. As we can see in Fig. 8, the mean free path increases by
several orders of magnitude from the bottom of the domain to
the top. Furthermore,ℓ is larger for smallerκ̃0. In the optically
thick part, the difference inℓ is one order of magnitude, which is
equal to a corresponding change inκ̃0. In the optically thin part,
the difference in the values ofℓ becomes smaller, as we reach the
top of the domain. For̃κ0 = 107 Mm−1 cm3 g−1, ℓ is the small-
est and, at the bottom of the domain, three orders of magnitude
smaller than forκ̃0 = 104 Mm−1 cm3 g−1. Furthermore,ℓ is
10 times the size of the domain for̃κ0 = 104 Mm−1 cm3 g−1,
which makes the cooling more efficient. We would have ex-
pected to see a large change in the mean free path as we go
through the surface. Nevertheless, the exponential growthseems
to be roughly the same throughout the domain, at least for the
smallest value of̃κ0.

Fig. 8. Normalized mean free path of photonsℓ/L versus height for
Set C. The dots represent the surfaceτ ≈ 1.

3.8. Properties of an atmosphere with undefined n

By choosinga = −1 andb = 3, we have a constant heat con-
ductivityK that is independent of density and temperature as the
heat conductivity is given by Eq. (7). The nominal value ofn is
given by

n =
3− 3

1− 1
=

0

0
. (20)

In this case, sinceK = const, we expect to have only a poly-
tropic solution which satisfies the thermostatic equilibrium if
∇zT = const, but it is then unclear howρ varies. In Fig. 9, we
plot the profiles of density, temperature and entropy for allthree
runs of Set E. The first panel shows that in the optically thick
part the density is nearly the same for the three values ofκ̃0,
while in the optically thin part it decreases with increasing κ̃0.
For higher values of̃κ0, the density drops faster than in the case
of smallerκ̃0. In all cases,K is constant in both the optically
thick and thin parts, but an interesting aspect is that its bottom
valueKbot is of the same order of magnitude as in Sets A, B, and
C. In the second panel of Fig. 9, we plot the temperature profiles.
As expected, there is no isothermal part. The slope of tempera-
ture decreases approximately linearly as we go to higher values
of κ̃0, becauseK is proportional to1/κ̃0. Although the solutions
show no transition from the polytropic part to an isothermalone,
the atmosphere has still a layer whereτ = 1, which is shown as
red dots in all panels of Fig. 9. In contrast to the other sets,A, B,
C, and D, the temperature profiles look qualitatively different.
As in Sets A, B, and C, in the optically thick part, the differ-
ent temperature profiles have nearly the same gradient, while in
Set E, the gradient is different for the three values ofκ̃0. This is
because in this case, thermostatic equilibrium is obeyed with a
constant value ofK (independent ofz).

In the third panel of Fig. 9, we plot entropy profiles for the
three values of̃κ0. In all cases the entropy increases with a slope
that depends oñκ0. The actual polytropic index can be computed
from the resulting super-adiabatic (or entropy) gradient,

∇−∇ad =
d(s/cp)

d ln p
, (21)

where∇ad = 1 − 1/γ is the adiabatic gradient. This gives∇,
which is related to the actualn via

nactual =
d ln ρ

d lnT
=

d ln p

d lnT
− 1 = ∇−1 − 1, (22)
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Fig. 9. Density, temperature, and entropy profiles for Set E (n = 0/0).
Dashed, dotted, and solid lines represent E4, E5, and E6, respectively.
The red dots present the surface of the model whereτ = 1.

Fig. 10. b versusa for different values of the polytropic indexn. The
black dots represents the combination ofa = 1 with different values of
b which are used in the main simulation; see Table 3. The stars represent
the combination ofa = 2 and squares representa = 0.5 with different
values ofb; see Table 4.

which follows from the perfect gas relationp ∝ ρT . We note
also that convection is not possible in one dimension, so we ob-
tain directly the hydrostatic solution, which may be unstable.

By solving Eq. (8) forb, we obtainb = 3 − n(1 + a); see
Fig. 10. We see that for different values ofn, the graphs ofb
versusa intersect each other at one common point. This corre-
sponds toK = K0 = const; see Eq. (7). This means that the
solution for constantK can belong to any of these polytropic
indexes. Fora = −1 andb = 3, in which casen is undefined,

Fig. 11. Temperature gradient (upper panel) and temperature profile
(lower panel) of seven different sizes of the domainz = 3, 4, 5, 6,
7, 8, and10Mm of Run A5. We note that the lines forz ≥ 6 all fall on
top of each other.

the solutions have a value ofnactual that depends on the height
of the domain. Using Eq. (22) together with hydrostatic equilib-
rium,dp/dz = −ρg, we find

nactual = g
µ

R
ztop − zbot
Tbot − Ttop

− 1, (23)

sonactual increases asztop is increased. However, this increase
is partially being compensated by a small simultaneous decrease
of Ttop, which reduces the increase ofnactual by about 10% as
ztop increases. When the domain is sufficiently thin, the value
of nactual drops below the critical value(γ − 1)−1 = 3/2, so
the system would be unstable to the onset of convection. We
return to the relation betweenn and the height of the domain in
Sect. 3.12, where we consider solutions using the opticallythick
approximation with a radiative boundary condition at the top.

3.9. Dependence on the size of the domain

In our model, the size of the domain plays an important role in
getting the polytropic and isothermal solutions for the tempera-
ture profile. The domain has to be big enough so that the transi-
tion point lies inside the domain. In Fig. 11, we show the vertical
dependence of temperature for six domain sizes for Run A5. If
the size of the domain isz < 7Mm, it is too small to obtain the
isothermal part where∇zT = 0 and a boundary layer is pro-
duced. The opacity is then too large to let the heat be radiated
away. A size of aroundz = 8Mm is sufficient to get the isother-
mal part. However, a domain size that is too large (z = 10Mm)
leads to numerical difficulties near the top boundary, especially
if the resolution is too low. For all the runs shown in Table 3,
we have always started by performing several test simulations to
find a suitable domain size.

3.10. Radiative diffusivity

In numerical simulations, the radiative diffusivityχ is an im-
portant parameter, and has the same dimension as the kinematic
viscosityν. Bothχ andν determine whether the results of nu-
merical turbulence simulations are reliable or not and whether
they are able to dissipate all the energy within the mesh. In anu-
merical simulation we are restricted to a certain number of grid
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Fig. 12. P̃e versusz for Set C using different values of̃κ0: κ̃0 =
104 Mm−1 cm3 g−1 (dotted-dashed line),̃κ0 = 105 Mm−1 cm3 g−1

(dashed line),κ̃0 = 106 Mm−1 cm3 g−1 (dotted line) andκ̃0 =
107 Mm−1 cm3 g−1 (solid line).

points. If the diffusion of the temperature in a simulation is very
small, it can happen that the changes in the temperature are too
large over the distance of neighboring grid points. Hence, the
changes in the temperature cannot be resolved in such a simu-
lation. Therefore, it is important to measure how large are the
thermal diffusivity in our models of a radiative atmosphere. The
Péclet number is a dimensionless number that quantifies the im-
portance of advective and diffusive term, which is here defined
as

Pe= urmsHp/χ, (24)

whereHp is a pressure scale height andurms is rms velocity.
The radiative diffusivity is defined as

χ = K/cpρ, (25)

whereK is evaluated using Eq. (7). As we do not solve for
a velocity equation in our model, so we use instead the sound
speed, which can be related tourms via the Mach number Ma=
urms/cs. The normalized Ṕeclet number in our simulatioñPe is
then given by

P̃e ≡ Pe/Ma = csHp/χ. (26)

As an example, we plot̃Pe for Set C in Fig. 12. As we can see
in Fig. 12,P̃e is a large number for the optically thick part and
it decreases as we go toward the optically thin part. This canbe
explained with Eq. (25), whereχ is proportional toK. In the
optically thin part,K increases, soχ also increases. As a result,
P̃e decreases. Furthermore,̃Pe is larger for the larger value of
κ̃0.

The quantity P̃e is a measure of the ratio of Kelvin-
Helmholtz time to the sound travel time,τsound = d/cs. In our
case,τsound ≈ 0.1 ks. Looking at Fig. 12, one sees that̃Pe is
proportional toκ̃0 and thus proportional to the thermal adjust-
ment time.P̃e depends onz, but in the middle of the layer at
z = 2Mm we haveP̃e τsound ≈ τadjust. This time is much
longer than the response time to general three-dimensionaldis-
turbances (Spiegel, 1987).

Table 4. Summary of the results for different values ofa andb with the
same polytropic indexn.

Run a b n zτ=1 Teff

F1 0.5 −1.9 3.25 5.3 13900
F2 1 −3.5 3.25 5.2 13900
F3 2 −6.75 3.25 5.1 13400
G1 0.5 0.75 1.5 3.2 16600
G2 1 0 1.5 2.9 16300
G3 2 −1.5 1.5 2.7 16100
H1 0.5 1.5 1 2.6 17100
H2 1 1 1 2.3 17500
H3 2 0 1 2.1 18100
I1 0.5 4.5 −1 1.1 21800
I2 1 5 −1 0.8 23100
I3 2 6 −1 0.6 23700

Notes. zτ=1 is the position ofτ ≈ 1 in Mm andTeff is in K. For all
the runs,κ̃0 = 105 Mm−1 cm3 g−1.

3.11. The same polytropic index with different a and b

As we can see in Fig. 10, for a certain value of the polytropic
index, we can choose different combinations ofa and b. For
each value ofn that we have in Table 3, we choose two dif-
ferent other combinations ofa and b with the same value of
κ̃0 = 105 Mm−1 cm3 g−1 . For example for the polytropic in-
dexn = 1 we choose two other combinations asa = 0.5 and
b = 1.5 for one set anda = 2 andb = 0 for another one (see
Table 4). We run eight more simulations with the same initial
conditions as in previous runs and we obtain a similar equilib-
rium solution for the same polytropic indexn. We calculate the
effective temperature and the position whereτ ≈ 1 as refer-
ence parameters with our old runs. The results are summarized
in Table 4. For each set of runs with the same polytropic index,
we labeled the runs similarly to those in Table 3.

As we see in Table 4, for each set of runs the effective tem-
perature does not vary strongly, but there is a systematic behav-
ior. By increasing the value ofa, the effective temperature in-
creases whenn < 3/2 and decreases whenn ≥ 3/2, but the
surface is shifted to the lower part of the domain for all sets.
The stratification of temperature and other important properties
of these atmospheres can be explained analogously to those of
Sets A, B, C and D. As an example, we plot in Fig. 13 the tem-
perature profiles (upper panel) and radiative diffusivityχ (lower
panel) for Set H. In the optically thick part,χ is the same for dif-
ferent combinations ofa andb for the samen. However, in the
optically thin part,χ becomes larger for larger values ofa. This
can be explained using Eqs. (7) and (25) to show that in the up-
per isothermal part,χ increases with decreasingρ like ρ−(a+2).
Thus, we can conclude that, even thoughχ is the same and the
solution similar to the optically thick part, there are differences
in the optically thin part.

3.12. Optically thick case with radiative boundary

To compare our results with those in the optically thick approx-
imation, we adopt the radiative boundary condition,

−K
dT

dz
= σSBT

4 onz = ztop, (27)

and keep all other conditions the same as in the radiative trans-
fer calculation, except that−∇ · F rad in Eq. (3) is replaced by
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Fig. 13. Profile ofT andχ for Set H. In the upper panel, the red dots
denote the locations ofτ = 1.

K∇2T . Here, we have assumedK to be constant, so we shall
from now on refer to its value asK0, so our solutions will be
polytropes with constant polytropic indexn = d ln ρ/d lnT
and constant double-logarithmic temperature gradient∇ =
d lnT/d ln p.

The value of∇ = 1/(1 + n) can be computed from the
equations governing hydrothermal equilibrium,

dp

dz
= −ρg,

dT

dz
= −Frad

K0
, (28)

which yields

∇ =
d lnT

d ln p
=

p

Tρ

Frad

gK0
= ∇adcp

Frad

gK0
. (29)

Such a model is characterized by choosing values forn andK0.
This is analogous to the case with radiative transfer, wheren and
κ̃0 are specified, and̃κ0 is related toK0 via Eq. (18). Here, it is
convenient to define a non-dimensional radiative conductivity as

K =
gK0

cpσSBT 4
bot

∇
∇ad

. (30)

The radiative flux is then given by

Frad = K0
g

cp

∇
∇ad

= KσSBT
4
bot, (31)

so we get the temperature at the top immediately as

Ttop = (Frad/σSB)
1/4 = K1/4Tbot. (32)

Since the temperatures at top and bottom are now known, the
thickness of the layer cannot be chosen independently and isin-
stead given by

d = (Tbot − Ttop)K0/Frad =
cp (Tbot − Ttop)

g∇/∇ad
, (33)

which is equivalent to Eq. (23) used before. Again, the fact that
the value ofd cannot be chosen independently is analogous to
the case with radiative transfer, where the thickness of theop-
tically thick layer with nearly constantK emerges as a result
of the calculation. In Table 5 we present models for the same

parameters as in Table 3, whereTeff = Ttop in the optically
thick model. In agreement with our radiative transfer calcula-
tions, we have here treated̃κ0 (instead ofK) as our main input
parameter (in addition ton). We have used Eq. (18) to convert
κ̃0 into K0 and then used Eq. (30) to computeK. It turns out
that there is good agreement regarding the values ofd, ρtop, and
Ttop between the optically thick approximation using a radiative
upper boundary condition and the radiative transfer calculations.
However, unlike Fig. 6, the data in Table 5 show power law de-
pendence ofTeff versusκ̃0 with the same exponent of1/4 in all
cases. To characterize the strength of density and temperature
stratification, we also list the ratiosρbot/ρtop and the ratio of
the pressure scale height at the top to the thickness of the layer,
ξ = Htop

p /d. As expected, smaller values ofξ are reached by in-
creasing the value of̃κ0, but even forκ̃0 = 107 Mm−1 cm3 g−1

the smallest values ofξ are 0.03 forn = 3.25 and 0.08 forn = 1.

We emphasize that the only place where the choice of density
enters our calculation is in Eq. (18) when we convertκ̃0 intoK0.
As already indicated at the end of Sect. 2.5, an increase ofρ0
by some factor is equivalent to an increase ofκ̃0 by the same
factor. We note here thatρ0 enters both as the initial density at
the bottom and in the definition of opacity through Eq. (16). The
latter ensures that the opacity only changes through changes in
κ̃0, and not also through changes inρ0.

3.13. Convection

We now consider two-dimensional convection and compare
again results from the optically thick approximation usinga ra-
diative upper boundary condition with a calculation using ra-
diative transfer. The control parameter characterizing onset and
amplitude of convection is the Rayleigh number,

Ra=
gd4

νχmid

(
−ds/cp

dz

)

mid

, (34)

where(−c−1
p ds/dz)mid = (∇−∇ad)/H

mid
p is the superadia-

batic gradient of the unstable, non-convecting hydrostatic refer-
ence solution, andHmid

p = ∇adcpTmid/g is the pressure scale
height in the middle of the optically thick layer. Furthermore,

Table 5. Summary of model parameters as a function ofn and κ̃0 as
obtained from the optically thick approximation with radiative upper
boundary condition.

n κ̃0 d ρtop Ttop ξ ρbot/ρtop
3.25 104 3.09 8.3 10−5 24600 0.40 4.5
3.25 105 5.40 1.3 10−5 13800 0.13 28.9
3.25 106 6.70 2.1 10−6 7800 0.06 187
3.25 107 7.44 3.2 10−7 4400 0.03 1220
1.50 104 1.37 2.2 10−4 28100 1.04 1.6
1.50 105 2.93 8.9 10−5 15800 0.27 3.9
1.50 106 3.80 3.8 10−5 8900 0.12 9.2
1.50 107 4.30 1.6 10−5 5000 0.06 21.8
1.00 104 0.94 2.8 10−4 29700 1.61 1.3
1.00 105 2.25 1.4 10−4 16700 0.38 2.3
1.00 106 2.99 8.0 10−5 9400 0.16 4.1
1.00 107 3.41 4.5 10−5 5300 0.08 7.4

Notes. The units of dimensional quantities are[κ̃0] =
Mm−1 cm3 g−1, [d] = Mm, [ρtop] = g cm−3, and[T ] = K.
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Fig. 14. Comparison of velocity and entropy distribution in two-dimensional convection using the optically thick approximation with a radiative
upper boundary condition (upper panel) and radiative transfer (lower panel). In both cases we have Pr= 100 andK = 0.01, corresponding to
Ra = 3.6 104. In the lower panel, the dashed line gives the contourτ = 1. In order to compare similar structures in the two plots, we have
extended the color table of the lower panel to slightly more negative values of s and have clipped it at high values, which are dominated by the
strong increase ofs above theτ = 1 surface.

we define the Prandtl number as Pr= ν/χmid, whereν is as-
sumed to be constant andχmid is the radiative diffusivity in the
middle of the optically thick layer; see Appendix B for details
and an example. In Table 6 we list the values of the product
Pr Ra, as well asd andχmid for models withn = 1 and dif-
ferent values ofK. We adopt periodic boundary condition in the
x direction over a domain with side lengthLx. When we adopt
the diffusion approximation we takeztop = d, whered is calcu-
lated from Eq. (33) and given in Table 6. The mid-layer is then
at z = d/2, which is also the case when using radiative transfer,
where the value ofztop (> d) was chosen to be sufficiently large
anda = b = 1 is chosen to yieldn = 1 (see Table 3).

We determine the critical value for the onset of convection
by calculating the rms velocity in the domain,urms, for dif-
ferent values ofK and extrapolate tourms → 0. For the final
to initial bottom density ratio,ρbot/ρ0, we use Eq. (C.5) de-
rived in Appendix C. SinceK is proportional toχ andχmid,
we can compute the product Pr Ra using Eq. (34). It turns out
that for Pr= 1, the critical value is atK >∼ 0.2 (corresponding
to Ra<∼ 710) in the optically thick approximation. This corre-
sponds toκ̃0 = 1.7 104 Mm−1 cm3 g−1, which is too small to
obtain a proper polytropic lower part. Therefore we choose in the
following Pr= 100, in which cases the critical value for the on-
set of convection is atK >∼ 0.02 (corresponding to Ra<∼ 6600).

In the following, we takeK = 0.01, so Ra = 3.6 104,
d = 2.70Mm, ν = 1.8Mmkms−1 (corresponding toν =
1.8 1013 cm2 s−1), andκ̃0 = 3.4 105 Mm−1 cm3 g−1; see the
sixth row of Table 6. We chooseLx = 14Mm, which is large
enough to accommodate two convection cells into the domain;
see Fig. 14. Theτ = 1 surface in the radiative transfer calcula-
tion agrees approximately with the height expected from theop-
tically thick models using a radiative upper boundary condition.
The flow is only weakly supercritical and therefore not very vig-

orous, which is also reflected by the fact that theτ = 1 surface
is nearly flat. In the radiative transfer calculation, the specific
entropy increases sharply with height above theτ = 1 surface.
We note also that the characteristic narrow downdrafts of the op-
tically thick calculation are now much broader when radiation
transfer is used. Furthermore, the expected entropy minimum
near the surface is virtually absent in the latter case; see also the
middle panel of Fig. 15. This is because nearz = d, the local
value ofχ is rather large (see the lower panel of Fig. 13), so the

Table 6. Summary of model parameters as a function ofK for n = 1.

K Pr Ra d χmid K0 κ̃0

5 10−1 7.5 100 0.63 5.6 10−1 6.6 10−6 6.8 103

2 10−1
7.1 10

2 1.31 2.6 10−1 2.6 10−6
1.7 10

4

1 10−1 7.7 103 1.73 1.4 10−1 1.3 10−6 3.4 104

5 10−2 5.9 104 2.08 7.7 10−2 6.6 10−7 6.8 104

2 10−2
6.6 10

5 2.46 3.3 10−2 2.6 10−7 1.7 105

1 10
−2

3.6 10
6

2.70 1.8 10
−2

1.3 10
−7

3.4 10
5

5 10−3 1.9 107 2.89 9.1 10−3 6.6 10−8 6.8 105

2 10−3 1.5 108 3.11 3.8 10−3 2.6 10−8 1.7 106

1 10−3 6.9 108 3.24 1.9 10−3 1.3 10−8 3.4 106

5 10−4 3.1 109 3.35 9.9 10−4 6.6 10−9 6.8 106

2 10−4 2.2 1010 3.47 4.1 10−4 2.6 10−9 1.7 107

1 10−4 9.5 1010 3.55 2.1 10−4 1.3 10−9 3.4 107

Notes. The values discussed and used in this paper are shown in bold
face and are valid for any value of Pr. The units are[d] = Mm,
[χmid] = Mmkms−1, [K0] = g cm−3 km3 s−3 MmK−1, and
[κ̃0] = Mm−1 cm3 g−1.
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Fig. 15. Comparison of vertical temperature, entropy, and velocity pro-
files at differentx positions for the model shown in Fig. 14. The black
dotted lines refer to the run with diffusion approximation and radiative
upper boundary condition and the red solid lines to the run with radia-
tive transfer.

Fig. 16. Similar to the lower panel of Fig. 14, but at a later time (t =
500 ks), when the solution has switched into a single-cell configuration.

thickness of the thermal boundary layer becomes comparableto
d itself.

In the model using the diffusion approximation, the temper-
ature variations are much larger than in the model with radiative
transfer; see Fig. 15. In the latter case, the velocities overshoot
into the upper stably stratified layer, and the downflows are much
broader and therefore slower than in the diffusion approxima-
tion.

It turns out that the solution with radiative transfer shown
in Fig. 14 is quasi-stable until about350 ks (≈ 4days) and then
switches into a single-cell configuration with a fairly isolated up-
draft; see Fig. 16. We have seen similar behavior in other cases
with radiation too, and it is possible that this is a consequence of
our setup. Firstly, the restriction to two-dimensional convection
is a serious artifact. Secondly, the assumption of a fixed temper-

ature at the bottom was a mathematical convenience, but it isnot
physical motivated.

4. Increasing the density contrast

As alluded to in the introduction, the inclusion of the physics of
radiation implies the occurrence ofσSB as an additional phys-
ical constant that couples the resulting temperature and density
contrasts to changes in the Rayleigh number. Given that we have
already made other simplifications such as the negligence ofhy-
drogen ionization, we end up with rather small density contrasts
of less than ten whenn = 1, as seen in Table 5. By considering
σSB an adjustable parameter, we can alleviate this constraint.
We demonstrate this in Table 7, where we increase the value of
σSB from its physical value of5.67 10−20 g cm−3 km3 s−3 K−4

by eight orders of magnitude, keeping howeverK0 fixed. We
have chosen hereK0 = 1.3 10−7 = g cm−3 km3 s−3 MmK−1,
which corresponds to the model in the sixth row of Table 6. Since
σSB enters the definition ofK, its value is now no longer the
same, even thoughK0 is. The Rayleigh numbers change slightly,
because they depend on the values of density and temperaturein
the middle of the domain, which do of course change.

Large density contrasts are one of the important ingredients
in modeling the physics of sunspot formation by surface effects
such as the negative effective magnetic pressure instability; see
Brandenburg et al. (2013) for a recent model. Including radiation
into such still rather idealized models and to study the relation
to other competing or corroborating mechanisms such as the one
of Kitchatinov & Mazur (2000) was indeed an important moti-
vation behind the work of the present paper.

5. Conclusions

The inclusion of radiative transfer in a hydrodynamic code pro-
vides a natural and physically motivated way of placing an up-
per stably stratified layer on top of an optically thick layerthat
may be stably or unstably stratified, which of the two depends
on the opacity. Using a Kramers-like opacity law with freelyad-
justable exponents on density and temperature yields polytropic
solutions for certain combinations of the exponentsa andb. The
prefactor in the opacity law determines essentially the values of
the Ṕeclet and Rayleigh numbers. However, in contrast to earlier
studies of convection in polytropic layers, the temperature con-
trast is no longer a free parameter and increases with increasing
Rayleigh number—unless one considers the Stefan–Boltzmann
‘constant’ as an adjustable parameter. The physical valuesof the
prefactor on the opacity are much larger than those used here,
but larger prefactors lead to values of the radiative diffusivity
that become eventually so small that temperature fluctuations

Table 7. Density contrast and other model parameters as a function of
σSB for n = 1 andK0 = 1.3× 10−7.

σSB Pr Ra d χmid ρbot/ρtop κ̃0

5.67 10−20 3.63 106 2.70 1.8 10−2 3.2 3.4 105

5.67 10−18 9.45 106 3.55 2.1 10−2 10.0 3.4 107

5.67 10−16 1.23 107 3.82 2.2 10−2 31.6 3.4 109

5.67 10−14 1.33 107 3.90 2.2 10−2 100.0 3.4 1011

5.67 10−12 1.36 107 3.93 2.2 10−2 316.2 3.4 1013

Notes. The units are[σSB] = g cm−3 km3 s−3 K−4, [d] = Mm,
[χmid] = Mmkms−1, and[κ̃0] = Mm−1 cm3 g−1.
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on the mesh scale cannot be dissipated by radiative diffusion.
In previous work (Nordlund, 1982; Steffen et al., 1989; Vögler
et al., 2005; Heinemann et al., 2007; Freytag et al., 2012), this
problem has been avoided by applying numerical diffusion orus-
ing numerical schemes that dissipate the energy when and where
needed. However, this may also suppress the possibility of phys-
ical instabilities that we are ultimately interested in. This moti-
vates the investigation of models with prefactors in the Kramers
opacity law that are manageable without the use of numerical
procedures to dissipate energy artificially.

It turns out that in all cases witha andb such thatn > −1,
the stratification corresponds to a polytrope with indexn below
the photosphere and to an isothermal one above it. This was ac-
tually expected given that such a solution has previously been
obtained analytically in the special case of constantκ (corre-
sponding toa = b = 0); see Spiegel (2006). On the other hand,
the isothermal part was apparently not present in the simulations
of Edwards (1990).

Contrary to the usual polytropic setups (e.g., Brandenburget
al., 1996), the temperature contrast is now no longer an indepen-
dent parameter but it is tied essentially to the Rayleigh number.
Significant temperature contrasts can only be achieved at large
Rayleigh numbers, which corresponds to a large prefactor in
front of the opacity. While this aspect can be reproduced already
with polytropic models using the radiative boundary conditions,
there are some surprising differences between the two. Mostim-
portant is perhaps the fact that the specific entropy must increase
above the unstable layer, while with a radiative boundary con-
dition the specific entropy always decreases. Although the dif-
ferences in the resulting temperature profiles are small, there are
major differences in the flows speeds in the two cases. We also
find that at late times the convection cells in simulations with
full radiative transport tend to merge into larger ones. Whether
or not this is an artefact of our restriction to two-dimensional
flows remains open. In this connection, we should also point out
the presence of a geometric correction factor in front of thera-
diative heating and cooling term in Eq. (15) that is needed tore-
produce the correct cooling rate, but it does not affect the steady
state solution.

Comparing with realistic simulations of the Sun, there is not
really an isothermal part, but a pronounced sudden drop in tem-
perature followed by a continued decrease in temperature (see,
e.g., Stein & Nordlund, 1998). On the other hand, in our simu-
lations there is no jump in the temperature profile near the sur-
face and the atmosphere changes smoothly from polytropic to
isothermal. We suspect that the reason for this difference is that
in our models ionization effects are ignored, while in the solar
atmosphere the degree of ionization of hydrogen increases with
depth. In the Sun, the density decreases significantly from the
upper part of the convection zone as we go to the photosphere.
This makes the opacity smaller and the atmosphere in the photo-
sphere becomes transparent. At the height where the ionization
temperature of hydrogen is reached, theH− opacity becomes
important, which is not included in our simulations. The radia-
tive heat conductivity in our simulations is found to be constant
throughout the optically thick part and then increases sharply
in the optically thin part. Solving this in the optically thick ap-
proximation, which has sometimes been done, becomes compu-
tationally expensive and even unphysical, so radiative transfer
becomes a viable alternative for studying layers that are other-
wise polytropic in the lower part of the domain.
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Appendix A: Cooling rate and correction factor

The purpose of this appendix is to show that for one-dimensional
temperature perturbations, the correct cooling rates are obtained
with just two rays if theD/3 correction factor in Eq. (15) is
applied. Similar considerations apply also to the case of two-
dimensional problems. Cooling rates are important for under-
standing temporal aspects such as the approach to the final state
(Sect. 3.1) or the thermal adjustment time (Sect. 3.7). Thus, the
equilibrium solutions discussed in the other sections are not af-
fected by the following considerations.

The source of the problem lies in the fact that the4π angu-
lar integration in Eq. (4) becomes inaccurate in one dimension
and dependent on the optical thickness. In the optically thick
regime, the diffusion approximation holds, so the cooling rate
is proportional toK, which has a1/3 factor in Eq. (7). In one
dimension, one uses only the two rays in the vertical direction,
so one misses the1/3 factor and has to apply it afterwards to
account for the “redundant” rays in the other two coordinatedi-
rections that show no variation. This is what is done in Eq. (15).
However, in the optically thin limit, the mean free path becomes
infinite and cooling is now possible in all three directions.In
that case, the one-dimensional approximation is not useful. To
explain this in more detail, we begin by considering first the
general case of three-dimensional perturbations with wavevec-
tor k (Spiegel, 1957). In that case, one can use the Eddington
approximation to solve the transfer equation for the mean inten-
sity, J =

∫
I dΩ/4π,

1
3 (ℓ∇)2J = J − S, (A.1)

so the cooling rate (for three-dimensional perturbations)is
(Unno & Spiegel, 1966; Edwards, 1990)

λ3D =
16σSBT

3

ρcp

κρk2

3κ2ρ2 + k2
. (A.2)

It is convenient to introduce here a photon diffusion speed as

cγ = 16σSBT
3/ρcp (A.3)

and to write Eq. (A.2) in the form

λ3D =
cγℓk

2/3

1 + ℓ2k2/3
, (A.4)

where cγℓ/3 = χ is the radiative diffusivity, as defined in
Eq. (25), andℓ = 1/κρ is the local mean-free path of photons.

Solving Eq. (5) for two rays corresponds to solving Eq. (A.1)
without the1/3 factor. We would then obtain Eq. (A.4) without
the two1/3 factors. This would evidently violate the well-known
cooling rateχk2 in the optically thick limit, but in the optically
thin limit it would be in agreement with Eq. (A.4), because the
two 1/3 factors would cancel for large values ofℓ. However,
we have to remember that temperature perturbations are hereas-
sumed one-dimensional, so the intensity can only vary in the
z direction, while the rays still go in all three directions. This

14



A. Barekat and A. Brandenburg: Near-polytropic stellar simulations witha radiative surface

Fig. A.1. Dependence of the cooling rates computed from models with
different values ofκ̃0 (from 102 to 105 Mm−1 cm3 g−1) andkz (=1,
2, and 4 indicated by diamonds, triangles, and squares, respectively).
2-D models with four and eight rays are indicated by crosses and cir-
cles, respectively, while 3-D models with six rays are shown as plus
signs. The red solid line corresponds to Eq. (A.5), the dashed blue line
to Eq. (A.4), and the dotted line with open circles to the case without
correction factor.

means that under the sum in Eq. (15) only one third of theI −S
terms give a contribution, and that the cooling rate is therefore

λ1D =
cγℓk

2
z/3

1 + ℓ2k2z
, (A.5)

which has now only a single1/3 factor. Likewise, if we had
two-dimensional perturbations such as in two-dimensionalcon-
vection considered in Sect. 3.13, only2/3 of the terms un-
der the sum in Eq. (15) would contribute. However, in a two-
dimensional radiative transfer calculation, the additional 1/3
would be absent, which explains theD/3 correction factor with
D = 2 in this case.

We have verified that with the correction factor in place, the
code now yields the same cooling rates in both the optically thick
and thin regimes, regardless of the numbers of rays used. This
is shown in Fig. A.1, where we plot cooling rates for different
values ofκ̃0 in a domain of size2π (in Mm), so the smallest
wavenumber is1Mm−1. With ρ = 4× 10−4 g cm−3 the photon
mean-free path varies from 0.025 to 25Mm asκ̃0 is decreased
from 105 to 102 Mm−1 cm3 g−1. For the Kramers opacity, we
use the exponentsa = 1 andb = 0. (No gravity is included here,
so there would be no convection.) The temperature is38, 968K,
as before, which yieldscγ = 3.87 km s−1 for the photon diffu-
sion speed. There is excellent agreement between 1-D cases with
correction factor and the 3-D calculation (with one-dimensional
perturbation). However, the 2/3 correction factor in the 2-D cal-
culation (both with four and with eight rays) seems to be system-
atically off and should instead by around 0.8 for better agree-
ment. However, as discussed before, the correction factor does
not affect the steady state and therefore also not the results pre-
sented in Sect. 3.13. The diffusion approximation would imply
λ = (cγk/3)ℓk = χk2, which corresponds to the diagonal in
Fig. A.1 and agrees with the red solid line forℓk <∼ 0.5.

For three-dimensional perturbations, the correct coolingrate
in the optically thin regime is three times faster than for one-
dimensional perturbations. This is because now the radiation
goes in all three directions. Solutions to three-dimensional per-
turbations clearly cannot be reproduced in less than three dimen-
sions. However, for one-dimensional perturbations, the correct

cooling rate is now obtained with a one-dimensional calculation
both in the optically thin and thick regimes.

Appendix B: Expressions for Pr Raand χmid

In Table 6 we listed the values of Pr Ra andχmid in the mid-
dle of the layer. The purpose of this appendix is to give the
explicit expressions and to demonstrate the calculation with
the help of an example. Sincen = 1 was assumed, we have
∇ = (1 + n)−1 = 1/2. Considering the caseK = 0.01,
Eqs. (31)–(33) yieldFrad = 0.00131 g cm−3 km3 s−3, Ttop =
12320K, and d = 2.70Mm. Next, given that the tempera-
ture varies linearly, we compute the mid-layer temperatureas
Tmid = 1

2 (Ttop + Tbot) = 25600K. This allows us to compute
ρmid = ρbot (Tmid/Tbot)

n = 2.2 10−4 g cm−3, whereρbot =
3.3 10−4 g cm−3 is smaller thanρ0 by a factorρbot/ρ0 =
0.83; see Appendix C. Thus,χmid = Frad/(ρmidg∇/∇ad) =
0.0175Mmkms−1, as well asHmid

p = ∇adcpTmid/g =

1.30Mm. This yields Pr Ra= gd4/χ2
mid(∇ − ∇ad)/H

mid
p =

3.6 106, where∇−∇ad = 0.1.

Appendix C: Final to initial bottom density ratio

Initially, the stratification is isothermal, so the densityis given
by ρ(z) = ρ0 exp(−z/Hbot

p ) and the initial surface density is

Σini =

∫ d

0

ρ(z) dz = ρ0H
bot
p

[
1− exp(−d/Hbot

p )
]
. (C.1)

In the final state, the stratification is polytropic, so the density is
given byρ(z) = ρbot[T (z)/Tbot]

n and the surface density is

Σfin = ρbot

∫ d

0

[
T (z)

Tbot

]n
dz

dT
dT. (C.2)

Here,ρbot is the bottom density of the final state, which is differ-
ent from the initial valueρ0, as explained in Sect. 2.6. Integrating
Eq. (C.2) and usingdz/dT = K0/Frad from Eq. (28) yields

Σfin =
ρbot
n+ 1

[
1−

(
Ttop

Tbot

)n+1
]
K0Tbot

Frad
. (C.3)

Using Eq. (29) together with∇ = 1/(1 + n) and Hbot
p =

∇adcpTbot/g, we have

Σfin = ρbotH
bot
p

[
1−

(
Ttop

Tbot

)n+1
]
. (C.4)

Using mass conservation, we haveΣfin = Σini, so we obtain
from Eqs. (C.1) and (C.4)

ρbot
ρ0

=
1− e−d/Hbot

p

1− (Ttop/Tbot)n+1
. (C.5)

for the final to initial bottom density ratio.
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