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ABSTRACT

Context. Studies of solar and stellar convection often employ simple polytropic sagipg the diffusion approximation instead of
solving the proper radiative transfer equation. This allows one to cosgparately the polytropic index of the hydrostatic reference
solution, the temperature contrast between top and bottom, and the Rayieidclet numbers.

Aims. Here we extend such studies by including radiative transfer in the gmp:dmation using a Kramers-like opacity with freely
adjustable coefficients. We study the properties of such models andacetimem with results from the diffusion approximation.
Methods. We use the BNcIL CODE, which is a high-order finite difference code where radiation is treatieg tise method of long
characteristics. The source function is given by the Planck functioa.cpacity is written as = kop®T?, wherea = 1 in most
casesp is varied from—3.5 to +5, andky is varied by four orders of magnitude. We adopt a perfect monatoasc\ye consider
sets of one-dimensional models and perform a comparison with thaidiffapproximation in one- and two-dimensional models.
Results. Except for the case whete= 5, we find one-dimensional hydrostatic equilibria with a nearly polytropidifitation and

a polytropic index close ta = (3 — b)/(1 + a), covering both convectively stable (> 3/2) and unstabler{ < 3/2) cases. For

b = 3 anda = —1, the value ofn is undefined a priori and the actual valueroflepends then on the depth of the domain. For large
values ofig, the thermal adjustment time becomes long, teel€ and Rayleigh numbers become large, and the temperature tontras
increases and is thus no longer an independent input parametes th@destefan—Boltzmann constant is considered adjustable.
Conclusions. Proper radiative transfer with Kramers-like opacities provides a Useflfor studying stratified layers with a radiative
surface in ways that are more physical than what is possible with polgtnopdels using the diffusion approximation.
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1. Introduction vidual downdrafts rather than a connected network of imgarg

o ) ) ) ular lanes. This compromises the realism of such simulation
Convection in stars and accretion disks is a consequen@ of ther types of simulations give up the ambition for realisto-a
diative cooling at the surface. Pioneering work by Nordlungether and try to model a “toy Sun” in which the broad range of
(1982, 1985) has shown that realistic simulations of salang time and length scales is compressed to a much narrower range
ulation can be performed with not too much extra effort are thi apyia et al., 2013). This can be useful if one wants to under-
required computing resources are comparable to the maydalgand the physics of the solar dynamo, where we are not even
costs for solving the hydrodynamics part. Yet, many studies syre about the possible importance of the surface (Brandgnb
hydrodynamic and hydromagnetic convection today ignoee thogs), or the physics of sunspots, where so far only models of
effects of proper radiative transfer, sometimes even ae#e g oy Sun have produced spontaneous magnetic flux concentra-
pense of using compute-intensive implicit solvers to cofie @ tions similar to those of sunspots (Brandenburg et al., 0ti3
computationally stiff problem in the upper layers where i€  therefore important to know how to manipulate the pararseter
diative conductivity becomes large (e.g., Cattaneo elabl; g accommodate the relevant physics, given certain nuaderic
Gastine & Dintrans, 2008). Therefore, the main reason fer igonstraints such as the number of mesh points available.
noring radiation cannot be just the extra effort, but it isreno
likely a reduced flexibility in that one is confined to a single |n the present paper we include radiation, which introduces
physical realization of a system and the difficulty in vag/j;a- the Stefan—Boltzmann constamtys, as a new characteristic
rameters that are in principle fixed by the physics. With anly quantity into the problem. It characterizes the strengtuoface
few exceptions (e.g., Edwards, 1990), radiation hydrodyna cooling, or, conversely, the temperature needed to rattiatéux
simulations of stratified convection also employ realisfi@ci- that is transported through the rest of the domain. Eariieus
ties combined with a realistic equation of state. In the cdsee |ations that ignored radiation have specified the surfacgés-

Sun this means that one can only simulate for the duration ohfure in an ad hoc manner so as to achieve a certain tempgeratur
few days solar time (Stein & Nordlund, 1989, 1998, 2012).  contrast across the domain. An example are the simulatibns o
There are other types of realistic simulations that are alB#andenburg et al. (1996), who specified a paranteterthe ra-

to cover longer time scales by simulating only deeper lgyet# of pressure scale height at the surface, which is prapuat

so they ignore radiation. However, these simulations s&kd to the temperature at the top, and the thickness of the cenvec
to pose an upper boundary condition, where the gas is cooteely unstable layer. Alternatively, one can use a radesur-
(Miesch et al., 2000). This leads to a granulation-likegrattat face boundary condition. It involvessg and couples therefore

a depth where the flow topology is known to consist of indihe surface temperatuig,,, to the lower part of the system, so
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Tiop is then no longer a free parameter, unless one choosesseattering, and assume that the source funciignot to be con-
effective value ofrgp so as to achieve the desired temperatufased with the rate-of-strain tensy is given by the frequency-
contrast. This was done in recent simulations kpiga et al. integrated Planck function, s& = (osp/7)T*, whereosg is
(2012), who kept the aforementioned paraméters the basic the Stefan—Boltzmann constant. The divergence of thetreelia
control parameter, which then determines the effectivaevalf flux is then given by
osg in their simulations.

The goal of the present work is to explore the physics qf _ B
models that introduce radiation without being confined mju% Fraa = —rp éﬂu 5) dst, “)
one realization. We do this by using a Kramers-like opagity, |
but with freely adjustable parameters. It turns out that jidssi- Wherer is the opacity per unit mass (assumed independent of
ble in some cases to imitate polytropic models with any eéesirfrequency) and (z, ¢, n) is the frequency-integrated specific in-
polytropic index and Rayleigh number. This then eliminateg tensity corresponding to the energy that is carried by tamutia
restrictions to a single setup, allowing one to perform para Per unit area, per unit time, in the directien through a solid
ter surveys, just like with earlier polytropic models. Towguare angleds2. We obtain/(x, ¢,2) by solving the radiative transfer
radiative transfer models with those in the diffusion appra- €quation,
tion, we consider two-dimensional convection simulatiohs
ultimate application of this work is to study the formatidrsar- 7 VI = —fp (I —59), ()
face magnetic flux concentrations through the negativetite
magnetic pressure instability (Brandenburg et al., 201i3ickv
has been able to produce already bipolar region (Warneck
al., 2013; Mitra et al., 2014) and to investigate the refatio
the magnetic cooling instability of Kitchatinov & Mazur (@0) 2.2. Opacity
that could favor sunspot formation in the presence of ragiat o ]
cooling. This will be discussed again at the end of the paper. For our work it is essentla_l that we can control the value and

We would like to point out that, in view of more generafunctional form of the opacity. We therefore choose a Krasner
applications, we cannot assume the effective temperatupe t like opacity given by
given or fixed. Thus, unlike the case usually considered én th X
theory of stellar atmospheres, the dependence of tempemtu ~ = £op“ 1", (6)
optical depth is not known a priori. Therefore, it is morew®n .
nient to fix instead the temperature at the bottom of the domayherea andb are free parameters that characterize the relevant

and obtain the effective temperature, and thus the flux, estdtr r_aghatlve processes. It |s_useful to consider the radiareiuc-
of the calculation. tivity K (p, T'), which is given by

We begin by presenting first the governing equations and 3 3
then describe the basic setup of our model. Next we compatg, 7 = 16ospT _ 160spT
a set of one-dimensional simulations with the associatéyg po ’ 3kp 3rgptt
tropic indices that correspond to Schwarzschild stablenstas . .
ble solutions. Finally, we explore the effect of includirgliative e note that, in a plane-parallel polytropic atmosphéte;)
transfer instead of using the diffusion approximation coral  Varies linearly with height and in the stationary staté (p, T')
with a radiative boundary condition by comparing one- ano-tw S constant in the optically thick part. This implies theis pro-

along a set of rays in different directiossusing the method of
eIo(g{g characteristics.

()

dimensional simulations. portional to7™, where
3—10
2. The model [ (8)
2.1. Governing equations is the polytropic index (not to be confused with the direatio
We solve the hydrodynamics equations for logarithmic dgnsimc the rayn). This relation was also gsed by‘Edyvards (1990)’
In p, velocity u, and specific entropy, in the form but the author regarded those solutions as ‘a little coexdifiv
’ ' ’ This is perhaps the case if such solutions are applied thimitg
Dlnp the entire domain. It should also be noted that Edwards (1990
-V.u Q)
Dt ’ included thermal conduction along with radiative transtéris
Du meant that one had to pose a boundary condition for the tem-
Ppor ~Vp+pg+ V- (2p05), ) perature at the top also, which will not be necessary in oseca
Ds ) where, unless stated otherwise, no thermal conductiviip-is
pTﬁ = =V Fiaq + 2pvS°, (3) cluded. Indeed, as we shall show, with a Kramers-like opacit

. ) o ) nearly polytropic solutions are a natural outcome in theelow
wherep is the gas pressurg,is the gravitational acceleration, optically thick part of the domain, while in the upper optiga
is the viscosityS = 3[Vu+ (Vu)"] - 1V -uis the traceless thin part of the domain the stratification tends to becomeapp
rate-of-strain tensot, is the unit tensor" is the temperature, jmately isothermal.
and F'y,q is the radiative flux. For the equation of state, we as- For a perfect gas, the specific entropy gradient is related to
sume a perfect gas with= (R /u)T'p, whereR is the universal the gradients of the other thermodynamic variables via
gas constant and is the mean molecular weight. The pressure
is related tos via p = p” exp(s/cy), where the adiabatic in- Vs = ¢, Vinp — &Vinp=n+1-n)e,VInT, (9)
dexy = ¢, /¢, is the ratio of specific heats at constant pressure
and constant volume, respectively, and— ¢, = R/u. To ob- and vanishes when = 1/( — 1). For a monatomic gas where
tain the radiative flux, we adopt the gray approximationpign ~ = 5/3, the stratification is Schwarzschild-stable for- 3/2.
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2.3. Boundary conditions Table 1. Units used in this paper and conversion into cgs units.

We consider a slab with boundary conditions in thdirection
atzyor andzeop, Where we assume the gas to be stress-free, i

Guantities code units Cgs units
Oy [0z = Ouy/0z =u, =0 ONZ = Zpot, Ztop- (10)  length [] Mm 10% cm
velocity [u] kms ! 10°cms™*
We assume zero incoming intensity at the top, and compute thinsity ] gem™? lgem™®
incoming intensity at the bottom from a quadratic Taylor ex-temperature]] K 1K
pansion of the source function, which implies that the diffitmn  time [¢] ks 10%s
approximation is obeyed; see Appendix A of Heinemann et afravity [g] km?s™2 Mm™* 10% cms™?
(2006) for details. To ensure steady conditions, we fix teape opacity [x] Mm ™' cm® g™ 1078 cm? g™t
ture at the bottom, diffusivity [ x] Mmkms™? 10" em?s7!
conductivity [K] gem?km®s ™ MmK™" 10 gcms ™ K™!
T =Thot ONZ = 2Zpot, (11)  stefan-Bpss] gem Pkm®s 3K 10 gs 3K
flux [F] gem S km3s~3 10% ergem 257!

while the temperature at the top is allowed to evolve freghere
is no boundary condition on the density, but since no mass is

flowing in or out, the volume-averaged density is autom#ica

constant. Since most of the mass resides near the bottom, @ahd constructs the final intensity &) = Ioxt: (7) + Lint: (7).
density there will not change drastically and will be closéts$ Instead of solving the radiative transfer equation digectl
initial value at the bottom. for the intensity, the contribution to the cooling te@{r) =
I(1)— S(7) is calculated instead, as was done also by Nordlund
(1982). This avoids round-off errors in the optically thighrt.

For further details regarding the implementation we reter t
We use for all simulations theeRiciL Cope!, which solves Heinemann et al. (2006). To avoid interpolation, the rays ar
the hydrodynamic differential equations with a high-orfileite- ~ chosen such that they go through mesh points. The angutar int
difference scheme. The radiation module was implemented @@tion in Eq. (4) is discretized as

Heinemann et al. (2006). It solves the transfer equatiorén t
form

2.4. The radiation module

drkp D &
V. Fraq=— Np §Z[I(w,t,ﬁi) -], (15)
dIjdr =1 -8, (12) i=1

wheredr = rpdl is the differential of the optical depth along a"VN€re e_nurr;erateshthé_f rayls with dir:ecticr)]nsi,» ar;)dD / ?és
given ray and is a coordinate along this ray. a correction factor that is relevant when the number of dimen

The code is parallelized by splitting the calculation ingotp  SIONS: D, of the calculation is less than three. It does not affect
that are local and non-local with respect to each procegere € Steady state, but it affects the cooling rate both in e o
are two local parts that are compute-intensive and one shatt'Fa”y.th'Ck .and thm regimes; see Appendix A for d_eta|IB. |
non-local and fast, so it does not require any computatiomees ©ON€ dimension withD = 1, we haveN = 2 rays, which are
S is assumed independent bf(scattering is ignored), we can1.2 = (0,0,%1), while for D = 2 we can either havey = 4
write the solution of Eq. (12) as an integral fbfr), which is  With 71,2 = (£1,0,0) andn 4 = (0,0, £1), or N = S with the

thus split into two parts, additional 4 combinationg;, s = (41,0,41)/v/2. In three
dimensions, the correction factor I3/3 = 1, so the angular
T0 T . H H . H H H
_ - N, - N g integral is justdz times the average of the intensity over all di-
I(r) = /0 e S(r")dr Jr/TO e S(r"dr', (13) rections.
Iextr Iiutr

. . . ) 2.5. Parameters and initial conditions
where the subscripts ‘extr’ and ‘intr’ indicate respedivan

extrinsic, non-local contribution and an intrinsic, locale. An  In the following, we measure length in Mm, speedkm s‘l_,
analogous calculation is done for calculatingalong the geo- density Ingcm_g, and temperature in K. This implies that time,
metric coordinate as(l) = féo kpdl! + leg rpdl’, wherel is for example, is measured iks (=1000s). The advantage of us-

the geometric end point on the previous processor. In the fifd9 this system of units is that it avoids extremely largeroas

e, e oty 1), Which can b evaated mmedate/ A0 O ATI0US AT by using s et v componl
on all processors in parallel, while the first integral istten in phy X y

the form /o, (1) — Ip €™, wherel, andr, are already being units and the conversion of various quantities between nogs a

: : . our units is given in Table 1.
computed as part of thg,, calculation on neighboring proces- o . .
sors and the results included in the last step of the comipnotat For the gravitational acceleration, we tage= (0,0, —g)

. o 2 92 —1 .
In the second step, the valuesaf = fOlO kpdl’ and I, = with ¢ = 274km“s™*Mm™ " being the solar surface value

. ) Stix, 2002). Instead of prescribifg,., we prescribe the sound
I(my) are communicated from the end point of each ray on t eede,, wherec? = vRT/p, and fixcs = ¢y = 30kms—!

previous processor, which cannot be done in parallel, bat ﬂ?at e — 0. With R = 8314 107 ere K- mol~! and u —
does not require any computational time. In the final step % g‘;;olil .this choic; cdrrespondsgn — 38.968 KMV\Te
. ’ ot — 9 .

computes found it instructive to start with an isothermal solutiomtlis in
Toxer (1) = Ige™ ™ (14) hydrostatic equilibrium, but not in thermal equilibriumg the
upper parts will gradually cool until a static solution isched.

L http://pencil-code. googl ecode. conl Thus, we use = pgexp(—z/H,), whereH,, = RT/ug is
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Table 2. Summary of used andb.

S [ e e e e ]
Set a b n Schwarzschild 3x10*E E
A 1 -35 325 stable E
B 1 0 1.5 marginally stable _ F
C 1 1 1 unstable X oxi0tE
D 1 5 —1  ultra unstable & F —— t=0ks
E -1 3 0/0 undefined oo 1=3 ks
F___ t=30 ks
1x10*F _..._ t=120 ks
Notes. Combinations of exponentsandb and the resulting polytropic P 51578 ks
indexn used in the present study. The characterization with respect to of ‘ ‘ ‘
the Schwarzschild stability criterion is basedpn= 5/3, correspond- 0 5 4 6 8

ing to a marginal polytropic index of = 1/(y — 1) = 3/2. Each
parameter combination is denoted by a letter A—E, which corresponds
later to different sets of runs.
Fig. 1. Vertical temperature profile at five different times= 0, 3, 30,
. ) 120, andL578 ks for Run A6 withky = 10° Mm ' ecm? g—*. Squares,
the pressure scale height, apglis a constant that we set tOgircles and crosses represent different optical depths 0.1, 7 = 1
po = 4 10~* g cm~2. This value was chosen based on valuegdr = 10, respectively. The arrow represents the direction of the time
from a solar model at a depth of approximatélylm below the evolution of the temperature profile.
surface. However, this particular choice is quite uncaitiand
just corresponds to renormalizing the opacity. In otherdsor
instead of making a calculation with a ten times larger vaitie other designations follow the same scheme. All runs have bee
p, We can just use an otherwise equivalent calculation widna tstarted with the same isothermal initial condition. Howretlee
times larger value of. size of the domain is changed so as to accommodate the up-
per isothermal part by a good margin. If the domain is too big,
one needs a large number of meshpoints to resolve the resulti

2.6. Simulation strategy strong stratification, and if it is too small, the solutioreckyes
We choose the exponenisandb such that they correspond to'n the top part, as will be discussed in Sect. 3.9. .
five different values of.. In the caser = —1, b = 3, we have After a sufficient amount of running time, a unique equilib-

K(p,T) = const, but the value of: is undefined. Our choice of rium state is reached and the resulting profiles of temperatu

parameters is summarized in Table 2. It is convenient toessgor d€NSity and entropy have a nearly polytropic stratificatiotie
« in the form lower part of the domain and a nearly isothermal stratifacain

the upper part of the domain. An exception are the runs of Set E

([ p\(T b where the polytropic index is undefined & 0/0). This will be
k=Ko (Po) (To> ) (16) discussed in more detail in Sect. 3.8. We summarize the HNpor
tant quantities obtained from all runs in Table 3. These tjties
where £ is a rescaled opacity and is relatedudg by iy = are calculated in the equilibrium state. All runs show a Eimi

kopdTS; whereTy = Tio iS used. (By contrastp, is only evolution of density, temperature and entropy. In the nekt s
approximately equal to the density at the bottom—except ifions we describe the resulting profiles in more detail.
tially.) With this choice, the units ok, are independent ai
andb, and alwaysMm ' cm® g~! (=10~% em? g~!). For each
value of n, we choose 4 different values af, = 10%, 10°,
10%, and10” Mm ™' cm? g—!. We note that the actual KramersAs mentioned above, we find it convenient to obtain equilib-
opacity for free—free and bound—free transitions with: 1 and rium solutions by starting from an isothermal state. The up-
b = —7/2 hask, betweers.6 10?2 and4.5 10%* cm® g—2 K7/2, per layers begin to cool fastest, and eventually an eqiifibr
respectively (Kippenhahn & Weigert, 1990). This correspon state is reached. We plot the evolution of the temperatuse pr
to K5y = 2.26 101! andky = 1.54 103 Mm ™' em3 g1, which file of Run A6 in Fig. 1 as an exemplary case with =
are respectively four and six orders of magnitude largartha 105 Mm " cm®g~*. Already after a short time of = 3ks
largest value considered in this paper. (1 hours), the temperature has decreased by more than $alf it
initial value at the top and follows a polytropic solutionritost
of the domain, where the temperature gradient has a similar
3. Results value than in the equilibrium state. At = 30ks (8 hours),

We perform one-dimensional simulations with a resolutién lg\?vee\t/(()arﬂ:tet;igsbﬁq%r;g?{]);ninIzgz)hl?s”(nlil é):rts;suita?tr;]éoeeﬂlﬂt_arg
512 equally spaced grid points using five sets of values fer t ' y q

: . - brium solution is reached with a prominent isothermalt r
exponents andb in the expression for the Kramers opacity; sei ~ 7000 K. The locations of three different optical depths,

Eq. (16). Each set of runs is denoted by a letter A—E. In the firs ~ A

four sets of runs, we keep= 1 and change the value b6ffrom 7=0.1, 1 and10, are shown in Fig. 1. Here,
—7/2,100, 1, and 5. For each of these sets, we perform four runs Ztop

that differ only in the values of. The numeral on the label of 7(z) = / k(2")p(2") d2’ (17)
each run refers to a different value@f. In Set A, we use: = 1 z

andb = —7/2. Runs A4, A5, A6 and A7 correspond &g equal s the optical depth with respect to the surface of the doniin
to 10%, 10°, 10% and 107 Mm ™" cm?® g, respectively. All the the domain is tall enough, one can see that an initially iottal

3.1. Approach toward the final state
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Table 3. Summary of the runs.

Run a b n K::O Ztop Zr=1 Pr=1 Tadjust Teff Kbot

A4 1 —-35 325 10% 8 28 1.0107% 50 23600 3.910°°
A5 1 -35 325 10° 8 52 1.7107° 90 13900 4.61077
A6 1 —-35 325 10° 8 6.6 2.5107° 700 7800 4.61078
A7 1 -35 325 107 8 7.4 371077 15000 4400 4.4107°
B4 1 0 1.5 10% 5 1.4 2210°% 40 26600 4.5310°°
B5 1 0 1.5 10° 5 29 9.0107° 60 16300 5.1510°7
B6 1 0 15 10° 5 38 3.7107° 400 9300 5.3810°%
B7 1 0 15 107 5 43 1.610°° 5000 5200 5.08107°
C4 1 1 1 107 4 1 2.610° 7% 7 27600 5.110°°
C5 1 1 1 10° 4 23 1.3107% 20 17400 5.61077
C6 1 1 1 10° 4 31 7.010°° 200 10100 6.010°%
Cc7 1 1 1 107 4 34 3910°° 2100 5700 6.1107°
D4 1 5 —1 107 2 02 3610717 6 31000 1.110°°
D5 1 5 -1 10° 2 08 28107* 7 23100 1.310°°¢
D6 1 5 -1 10° 2 1 281074 80 15600 1.91077
D7 1 5 -1 107 2 1 321074 700 10100 3.110°%
E4 -1 3 0/0 107 4 3.0 8710°° 6 23700 4.4710°°
E5 -1 3 0/0 10° 4 36 56107° 45 14900 4.4710°"
E6 -1 3 0/0 10° 4 38 39107° 400 8800 4.4710°%

Notes. The size of the domain., and the height of the surface —; are in Mm, the density at the surfape—; is in gcm™, the thermal
adjustment timeraqjust IS In ks, the effective temperatur@.¢ is in K, radiative heat conductivity at the bottom of the doméip.. is in
gem 2 km® s Mm K1 and the normalized opacitfy = koplT¢ is in Mm ' cm?® g~* are shown for each run. The second to the sixth
columns show quantities which are input parameters to the models whibeegsantities in last five columns are the results of the simulations,
computed from the equilibrium state.

7 = 1 (Spiegel, 1957; Unno & Spiegel, 1966; Edwards, 1990);

4.0x10*F 1 see also Appendix A.
3.8x10° TR ]
5 6x10 L _---1 3.2. Temperature stratification
— s 0 ks " e, i g 1 Forall runs, the temperature reaches an equilibrium steeea
X, 34x107¢ 001 ke Nt 1 certain time; see Fig. 1. The temperature profile can be elivid
& 32x10° L __ t=0.1 ks \'-.\ 1 into two distinguishable parts, a nearly polytropic particth
r =02 ks o <] starts from the bottom of the domain and extends to a certain
3.0x10*F — height, and a nearly isothermal part which starts from thiglt
3 1 and extends to the top of the domain. The transition of the tem
2.8x10° - ‘ ‘ ‘ ‘ ‘ 7 perature from the initial state to the equilibrium statddak a
B o 4 6 8 10 1> specific pattern, which is the same for all the runs. The highe
z [Mm] the value ofky, the lower the temperature is in the isothermal

part and the longer it takes to reach this state. Increabmgar-
malized opacitys, by three orders of magnitude results in a de-
crease in the temperature by a factor of five for Set A and afact
§flthree for Set D. As the exponebhthanges from the smallest
value in Set A to the largest one in Set D, the slope of the tem-
perature decreases with height. This means that the ppigtro
part of the atmosphere is smaller for larger values. &/e note
that the size of the domain is chosen larger for smaller gatdie
stratification cools down first near the location whefe) ~ 1, b. For Sets A, B and C, the temperature in the polytropic part is
which is where the cooling is most efficient. As an example waimost the same for different values/f, although for the low-
plot in Fig. 2 the early stages of the temperature evolution @st value of, the temperature deviates somewhat. However, in
t = 0, 0.01, 0.1, and).2 ks for a taller variant of Run A6 with Set D, for different values ofy, the slope of the temperature is
ztop = 12Mm using 1024 equally spaced grid points. ;A= different for each value of,. This has to do with the fact that
0.01ks, the temperature starts to decrease at the height whigrghis case with(b — 3)/(1 + a) = —1 the stratification is no

T ~ 1, while in the upper part, which is far enough from théonger a polytropic one. (A polytrope with = —1 would have
surface, the temperature remains at first unchanged. Ordy atonstant pressure, which is unphysical.)

somewhat later timet(= 0.1ks) does the temperature at= The temperatures in the isothermal part also show a depen-
12 Mm start to cool down. This is explained by the fact that théency onb. For £, = 10* Mm ™! cm?® g~! the temperature in
radiative cooling rate (or inverse cooling time) is largasar Run A4 isT ~ 2.2 10*K, whereas in Run D4 the value is

Fig. 2. Temperature over height for Run A6 at different tintes- 0,
0.01, 0.1, and0.2 ks, plotted as solid, dotted, dashed and dashed-dot
lines, respectively. The red dots correspond to the location-ofl.
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Fig. 3. Density, temperature and entropy of the equilibrium state versus heigfmt |éft to right, for Sets A, B, C and D, from top to bottom. The
four different lines in each plot corresponds to the value of the resaglacity<, = 10*, 10, 10%, 107 Mm ! ecm® g 1. The dots in all plots
represent the surfaece= 1. The red dotted lines represent the initial profile of each set.

T =~ 2.9 10*K. A similar behavior can also be seen for thé.3. Entropy stratification
other values ok. Next, we calculate the optical depth for all

runs. We find that the transition point from the polytropictga

the isothermal part coincides with the~x 1 surface. We indi-

cate the surface ~ 1 by dots in all plots in Fig. 3. The poly-

tropic part corresponds to the optically thick part with> 1

and the isothermal part corresponds to the optically thir p

with 7 < 1. For each set, the transition point depends on tS(ge plot the entropy profiles for all sets of runs in the equiliin
value of 5y. As we go from smaller to larger values &, the state in the last column of Fig. 3. For Runs C6-7 and D57, the

surface shifts to larger heights and becomes cooler. Thigis ENtropy decreases in the polytropic part and starts to asere
cause the radiative heat conductivityis inversely proportional 1" the isothermal part. All runs show a positive verticalrepy
to #, and directly proportional to the flux. Therefore, by indradient in the isothermal part. In the lower part, the gmtro
creasing the valle ofy, K decreases and, as a consequencdadient is positive {.s > 0) for Set A, while for Set B it

the radiative flux also decreases. By decreasing the flwefthe 'S constant and equal to zer¥{s ~ 0). This shows that for
1/4 Set B, the atmospheres are isentropic. In Sets C and D, except

fective temperature decreasesjag o« Fli. This means Ehat for the casedy, = 10* Mm ' cm® g1, the entropy gradient is
the temperature at the surface is smaller for larger valtiel.o tive v 0. Thi hat thei h

For Set A, ther ~ 1 surfaces lie on the polytropic part of the'€92 |v|e, =5 <b| : CIS means t altlt felr atmospheres are con-
temperature profile. However, by increasing the valué, dhe vectively unstable. (Convection will of course not occurour

locations of ther = 1 surfaces shift toward the lower boundar)g Pa?[{g'gfeerlse'sgglsrgﬁj ?i%llil t;l;ta\t/vg Vﬁile%bgrégrﬁ i?:?rl]lsdrby?ei
and the optically thick part becomes narrower. This is parti P Raty

. . . ; number, as will also be done later in this paper.) In Set D the e
IarIy~severe ffr thef’f)|Ut'§nfl\'v'th a small valuef especw}l!y tropy gradients are larger than in case C where their atnevsph
for Ko = 10% Mm " cm”g™", when the boundary condition ;e 1harginally stable. In the isothermal part of Set C, theopy
T" = Tho atz = 0 becomes unphysical and the temperatuls» jiantis much larger than in Set D. For each set of runsgas w
drops between the first two meshpoints in a discontinuous fa o from smaller values of;, to larger ones, the entropy profiles

ion; see Fig. 3. have larger gradients.
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Fig. 4. Source function and vertical profiles of incoming and outgoing z [Mm]

intensity near the surface for Run A7. The dashed line represents the

source function and the solid lines represent the incoming intefiSity

(red) and outgoing intensity™ (blue). The vertical lines represent therjg 5. Radiative heat conductivitys versus height for Set CK is

(constant) difference betwedn and/ ™. plotted for different values of, wheres, = 10* Mm ™' em® gt is
shown by dotted-dashed lingy = 10° Mm ™' cm® g~* dashed line,
Ko = 10° Mm ™! em? g ! dotted line andp = 107 Mm ™! em3 g~ *

. o ) ) solid line.
3.4. Incoming and outgoing intensity profiles

It is instructive to inspect the vertical profiles of the inéély 3.6. Effective temperature

for rays pointing in the up- and downward directions, = , i

(0,0, 1), denoted in the following by*. If we have just these The effective temperaturf.q of all runs is calculated from the
two rays, the energy flux is given B.q = (27/3)(I* — 1-). * component of the radiative fluk'.q,

In thermal equilibrium, the difference betweéh and/~ must 1/4

be constant. This is indeed the case; see Fig. 4, where wé'ploty, . — (Frdd) ) (19)
and/— and compare witly. The vertical lines in this figure rep- 0SB

resents the difference betweEhandI —, wherel t —1— =~ 10*
ergcm—2s~! in the whole domain as we have radiative equili
rum V - F..q = 0. Radiative equilibrium also demands tha
J = S, soS has to be equal to the averagelofandl—, which

is indeed the case.

b'_l'he values ofl .4 of all sets of runs are summarized in Table 3.
y increasing the value df, T, also increases. The value of
wt decreases as we go from lower to higher opacities for each

set. We plotT ¢ versusky in Fig. 6 for Sets A, C and D where

the values ofl i+ are represented by crosses, circles and stars, re-
spectively. For each set of runs, we fit a liné/tg versus<,. We

3.5. Radiative heat conductivity find that7.g has a power law relation witk,. The power of,

which is the slope of the plot, depends on the polytropicxnde

In Sets A, B, and C, the value of radiative heat conducti¥ity and therefore om. For larger values of, the power is smaller

turns out to be constant in the optically thick part of the @m than for smaller values df. Additionally, the offset shows also

sphere, but not for Set D. The value &f at the bottom of the g weak dependence 6nA power law relation betweef.g and
optically thick part of the domain is denoted in Table 3/&y,¢, the opacity of roughlyi /4 can be expected, because of the lin-

and agrees roughly with ear relation of the radiative flux and the opacity. Towardjéar
b, this dependency is no longer accurate. We also calculate fo
_ 160spTy each run the corresponding optical depth whgre T, . For all
Koy = Ko = ————. (18) runs,T.g corresponds to the optical depthr 1/3. This is less

3Ky -
0po than what is expected for a gray atmosphere, whgge= T at

Indeed, it has almost the same order of magnitude for A, B afd™ 2/3- This is presumably because in our integration efe

C, independently of the value &f but it is one order of mag- Nave notincluded the contribution betwegnandz = zop.
nitude larger for Set D. This is because in this set the dgnsit

is lower in the optically thick part compared to the otheisset3 7. Thermal adjustment time

Moreover, as we go from higher values:&f to the lower ones,

the radiative heat conductivity increases. This can beagxgt In our simulations we define a thermal adjustment timgus:

by the inverse proportionality ok with opacity ask o 1/k,. as the time it takes for each run to reach its numericallyiobth
For smaller values ofy, K is larger and vice versa. As an examfinal equilibrium temperature in the isothermal part to with’%
ple, we plot in Fig. 5 the resulting vertical profiles of railie  (see Fig. 7). The unit of.qjust is ks (see Sect. 2.5). The value of
heat conductivity for Set C. We note that is constant in the Tadjust fOr all runs is summarized in Table 3. As we can see in
optically thick part and starts to increase in the opticaliijn Table 3, the thermal adjustment time becomes smaller fgefar
part. In the optically thin partsp decreases, s increases as b and smallern. For each set of runssqjust grows approxi-
K o 1/kp. To maintainV - F,q = 0, the modulus o7 has mately linearly with<y, although fory < 10° Mm ' em? g1,

to decrease. AK’ increases even further, a thermostatic equilitihe dependency is more shallow. For larger valuesof.qjust
rium can be satisfied W71 comes close to zero. seems to have a stronger dependency. Mie speculate that the
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Fig. 6. Effective temperaturé.q versus rescaled opacity for Sets A, 0 . : : )

C, and D. The crosses, circles and stars show the valu&sgofor
different values of, for Sets A, C, and D, respectively. Different lines
correspond to line fit of g with normalized opacitys.

Fig.8. Normalized mean free path of photoAsL versus height for
Set C. The dots represent the surface 1.

nd E
1910 1 3.8. Properties of an atmosphere with undefined n
1.8x10% £ 3 By choosinga = —1 andb = 3, we have a constant heat con-
N 3 ductivity K thatis independent of density and temperature as the
= 1.7x10 3 3 heat conductivity is given by Eq. (7). The nominal valuewdb
o 16x10*F = givenby
: E 3—-3 0
E 3 = — = —. 20
1.5x104E "T1T170 (20)
1.4x10*F 4 In this case, sinc& = const, we expect to have only a poly-
1 tropic solution which satisfies the thermostatic equilibmi if

V.T = const, but it is then unclear howvaries. In Fig. 9, we
1 10 100 1000 plot the profiles of density, temperature and entropy fottate
t [ks] runs of Set E. The first panel shows that in the optically thick
part the density is nearly the same for the three valuesg,of
Fig. 7. Temperaturdl’ at z;,, = 4 Mm versus time for Run C5. The while in the optically thin part it decreases with incre@siy.
two horizontal lines mark the 1% margin around the final valug'of For higher values ofy, the density drops faster than in the case
and the vertical line marks the timeq;ust ~ 20ks after whichT lies  of smallery. In all casesK is constant in both the optically
within these margins. thick and thin parts, but an interesting aspect is that itsobo
value K}, is of the same order of magnitude as in Sets A, B, and
C. Inthe second panel of Fig. 9, we plot the temperature psofil
reason for increasing the valuegfi;.«: for higher values o, As expected, there is no isothermal part. The slope of teaper
is that by increasing the opacity the energy transport \itara ture decreases approximately linearly as we go to higheresal
tion becomes less efficient as the mean free path of the phofro, becausel is proportional tal /. Although the solutions
decreases. But it seems that there exists a threshold déeffic Show no transition from the polytropic part to an isotherora,
leading to a larger adjustment time for the lowest valuesef the atmosphere has still a layer where- 1, which is shown as
as expected. red dots in all panels of Fig. 9. In contrast to the other &t8,

We plot the vertical dependence of the mean free path of the @nd D, the temperature profiles look qualitatively defet
photons! = 1/kp normalized by the size of the domainfor ~AS in Sets A, B, and C, in the optically thick part, the differ-
Set C. As we can see in Fig. 8, the mean free path increase£Bjt€mperature profiles have nearly the same gradientg whil
several orders of magnitude from the bottom of the domain & E. the gradient is different for the three valueg@fThis is
the top. Furthermoré, is larger for smallers. In the optically because in this case, thermostatic equilibrium is obeyehl avi
thick part, the difference ifiis one order of magnitude, which isconstant value of (independent of). _
equal to a corresponding changesin In the optically thin part,  In the third panel of Fig. 9, we plot entropy profiles for the
the difference in the values ébecomes smaller, as we reach thiree values ofy. In all cases the entropy increases with a slope
top of the domain. Fofy = 107 Mm ™' cm? g1, £ is the small- that depends ORy. The actuz_;ll poI_ytroplc index can be; computed
est and, at the bottom of the domain, three orders of magmitJffiom the resulting super-adiabatic (or entropy) gradient,
smaller than forsy = 10* Mm™* cm?® g~'. Furthermore/ is d(s/cp)

10 times the size of the domain fep = 10* Mm 'em3g=!, V= Vaa = —7—=
which makes the cooling more efficient. We would have ex-
pected to see a large change in the mean free path as wempereV.q = 1 — 1/ is the adiabatic gradient. This giv&3
through the surface. Nevertheless, the exponential greggims which is related to the actualvia

to be roughly the same throughout the domain, at least for the dlnp dlnp .

smallest value of. Mactual = 57 on = gpon — 1=V — 1, (22)

dlnp (21)
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8-(1) - the solutions have a value of...; that depends on the height
’ 0 ) 5 3 4 of the domain. Using Eq. (22) together with hydrostatic 8
2 [Mm)] rium, dp/dz = —pg, we find

o 12 Ztop — Zbot
Nactual =

Fig. 9. Density, temperature, and entropy profiles for Seh E<(0/0). I R Tyor — Thop
Dashed, dotted, and solid lines represent E4, E5, and E6, res;l;ectiv§o Nactual INCrEases aSiop is increased. However, this increase
The red dots present the surface of the model wherel. is partially being compensated by a small simultaneousedser

of Tiop, Which reduces the increase f....1 by about 10% as
ztop INCreases. When the domain is sufficiently thin, the value
of Nactual drops below the critical valuéy — 1)~ = 3/2, so

the system would be unstable to the onset of convection. We
return to the relation betweenand the height of the domain in
Sect. 3.12, where we consider solutions using the optitiaibk
approximation with a radiative boundary condition at the. to

1, (23)

3.9. Dependence on the size of the domain

In our model, the size of the domain plays an important role in
getting the polytropic and isothermal solutions for the pena-
ture profile. The domain has to be big enough so that the transi
tion point lies inside the domain. In Fig. 11, we show theicait
dependence of temperature for six domain sizes for Run A5. If
a the size of the domain is < 7 Mm, it is too small to obtain the
isothermal part wher& .7 = 0 and a boundary layer is pro-
duced. The opacity is then too large to let the heat be ratliate
away. A size of around = 8 Mm is sufficient to get the isother-
dp@l part. However, a domain size that is too large<(10 Mm)
leads to numerical difficulties near the top boundary, esfigc

if the resolution is too low. For all the runs shown in Table 3,
we have always started by performing several test simulstio
find a suitable domain size.

Fig. 10. b versusa for different values of the polytropic index. The
black dots represents the combinatioruc 1 with different values of
b which are used in the main simulation; see Table 3. The stars repre
the combination of = 2 and squares represent= 0.5 with different
values ofb; see Table 4.

which follows from the perfect gas relatignx p7". We note
also that convection is not possible in one dimension, solwe o e
tain directly the hydrostatic solution, which may be unktab 3.10. Radiative diffusivity

By solving Eg. (8) forb, we obtainb = 3 — n(1 + a); see In numerical simulations, the radiative diffusivity is an im-
Fig. 10. We see that for different values of the graphs ob  portant parameter, and has the same dimension as the kinemat
versusa intersect each other at one common point. This correiscosityr. Both y andv determine whether the results of nu-
sponds toX = K, = const; see Eq. (7). This means that thanerical turbulence simulations are reliable or not and tubiet
solution for constanf can belong to any of these polytropicthey are able to dissipate all the energy within the meshnu-a
indexes. Fow = —1 andb = 3, in which casen is undefined, merical simulation we are restricted to a certain numberriaf g
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Table 4. Summary of the results for different valuesw&ndb with the
same polytropic index.

Run a b n Zr—1 Terr
F1 0.5 —-1.9 3.25 5.3 13900

é’ F2 1 -3.5  3.25 5.2 13900
> F3 2 —6.75 3.25 5.1 13400
o, Gl 0.5 0.75 1.5 3.2 16600
G2 1 0 1.5 2.9 16300
G3 2 —-1.5 1.5 2.7 16100
H1 0.5 1.5 1 2.6 17100
H2 1 1 1 2.3 17500
. H3 2 0 1 2.1 18100
ot L L L "~ T 05 45 -1 1.1 21800
12 1 5 -1 0.8 23100
0 ! 2 [;m] 3 4 13 2 6 —1 0.6 23700
Fig. 12. Pe versusz for Set C using different values ofy: o = NOt&S. zr—1 1S th%e position OJT ~1in Mm and7eq is in K. For all
10 Mm~! cm?® g~! (dotted-dashed line)o = 10° Mm ' em® g~  the runsxo = 10> Mm™" cm” g™ ".
(dashed line)ky = 10° Mm~'cm®g~! (dotted line) andsy =

7 —1 3 -1 id i
107 Mm™" em” g™ (solid line). 3.11. The same polytropic index with different ¢ and b
] o ] ) o As we can see in Fig. 10, for a certain value of the polytropic
points. If the diffusion of the temperature in a simulatisivery index, we can choose different combinationsaofind b. For
small, it can happen that the changes in the temperature@redach value of: that we have in Table 3, we choose two dif-
large over the distance of neighboring grid points. Henlbe, tferent other combinations of and b with the same value of
changes in the temperature cannot be resolved in such a sigy— 105 Mm ' cm® g~! . For example for the polytropic in-

lation. Therefore, it is important to measure how Iarge e tdeXn — 1 we choose two other combinations @as= 0.5 and
thermal dlfoSIVIty in our models of a radiative atmosphe'l?be b = 1.5 for one set and, = 2 andb = 0 for another one (see
Péclet number is a dimensionless number that quantifies the imple 4). We run eight more simulations with the same initial
portance of advective and diffusive term, which is here @efin conditions as in previous runs and we obtain a similar dauili
as rium solution for the same polytropic index We calculate the
effective temperature and the position wherex 1 as refer-
Pe= s Hy/X, (24) ence parameters with our old runs. The results are sumrdarize
in Table 4. For each set of runs with the same polytropic index
we labeled the runs similarly to those in Table 3.
As we see in Table 4, for each set of runs the effective tem-
x = K/cpp, (25) perature does not vary strongly, but there.is a systemaltia\b_e
ior. By increasing the value af, the effective temperature in-
where K is evaluated using Eq. (7). As we do not solve focreases when < 3/2 and decreases when > 3/2, but the
a velocity equation in our model, so we use instead the souswface is shifted to the lower part of the domain for all sets
speed, which can be relateditg,s via the Mach number Ma=  The stratification of temperature and other important privge

Usms /. The normalized &clet number in our simulatioRe is ~ Of these atmospheres can be explained analogously to tfiose o

where H,, is a pressure scale height angd,s is rms velocity.
The radiative diffusivity is defined as

then given by Sets A, B, C and D. As an example, we plot in Fig. 13 the tem-
perature profiles (upper panel) and radiative diffusiyitffower
Pe = Pe/Ma= ¢, H,/x. (26) panel) for Set H. In the optically thick pa,is the same for dif-

ferent combinations aof andb for the same.. However, in the
As an example, we pldee for Set C in Fig. 12. As we can seeoptically thin part,y becomes larger for larger valuesafThis
in Fig. 12, Pe is a large number for the optically thick part and?@" b€ explained using Egs. (7) and (25) to show thf‘}a'ﬂ;)he up-
it decreases as we go toward the optically thin part. Thisaean PET isothermal party increases with decreasipgike p :
explained with Eq. (25), wherg is proportional tok. In the 1hUS, we can conclude that, even thougfs the same and the
optically thin part,K increases, sq also increases. As a result Selution similar to the optically thick part, there are diénces
Pe decreases. Furthermori is larger for the larger value of in the optically thin part.
KQ. s
The quantity Pe is a measure of the ratio of Kelvin-3.12. Optically thick case with radiative boundary

Helmholtz time to the sound travel tiMeoung = d/cs. Irjvour To compare our results with those in the optically thick appr

case, Tsound ~ 0.1ks. Looking at Fig. 12, one sees thBt iS  jmation, we adopt the radiative boundary condition,
proportional toky and thus proportional to the thermal adjust-

ment time.Pe depends ore, but in the middle of the layer at —Kg =osgT* ONz =z (27)
—~ 2 Y

z = 2Mm we havePe Tyoqund & Tadjust- ThiS time is much
longer than the response time to general three-dimensitistal and keep all other conditions the same as in the radiativs-tra
turbances (Spiegel, 1987). fer calculation, except thatV - F',q in Eq. (3) is replaced by

10
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parameters as in Table 3, whefer = Tiop in the optically
thick model. In agreement with our radiative transfer cleu
tions, we have here treated (instead ofC) as our main input
parameter (in addition to). We have used Eg. (18) to convert
Ko into Ky and then used Eq. (30) to compuge It turns out
that there is good agreement regarding the values af,,, and
Tiop between the optically thick approximation using a raditiv
upper boundary condition and the radiative transfer catauts.
However, unlike Fig. 6, the data in Table 5 show power law de-
pendence of o+ versus<y with the same exponent af/4 in all
cases. To characterize the strength of density and tenuperat
stratification, we also list the ratigs,o./piop and the ratio of
the pressure scale height at the top to the thickness of yee la
&= HIE,OP/d. As expected, smaller valuesére reached by in-

creasing the value ofy, but even forsy = 107 Mm ™' cm? g1
the smallest values gfare 0.03 fom = 3.25 and 0.08 fom = 1.

We emphasize that the only place where the choice of density

Fig. 13. Profile of 7" and y for Set H. In the upper panel, the red dotgnters our calculation is in Eq. (18) when we convgrinto K.

denote the locations of = 1.

KV?T. Here, we have assumdd to be constant, so we shall
from now on refer to its value aK, so our solutions will be
polytropes with constant polytropic index = dlnp/dInT
and constant double-logarithmic temperature gradient=
dInT/dnp.

The value ofV = 1/(1 + n) can be computed from the
equations governing hydrothermal equilibrium,

dp dT Fmd
- _ - =_ 28
e P9 L K, (28)
which yields
dInT p Fraq Fraa
= =L =V, . 29
dinp ~ Tp gko "™ g, (29)

Such a model is characterized by choosing values fand K.
This is analogous to the case with radiative transfer, whened
Ko are specified, and is related toK, via Eq. (18). Here, it is
convenient to define a non-dimensional radiative conditgtas

9K \Y
- _$K V. (30)
cpOSBT 1o Vad
The radiative flux is then given by
g V 4
Fraq = Ko = = KospTy s 31
d O e Von 058 Tt (31)
so we get the temperature at the top immediately as
Ttop = (E‘ad/USB)1/4 = K1/4Tbot- (32)

Since the temperatures at top and bottom are now known, the3.25

thickness of the layer cannot be chosen independently &and is
stead given by

Cp (Tbot - Ttop)
g v/vad

which is equivalent to Eq. (23) used before. Again, the faat t
the value ofd cannot be chosen independently is analogous
the case with radiative transfer, where the thickness obthe
tically thick layer with nearly constank” emerges as a result

d= (Tbot - Ttop) KO/Frad - (33)

)

of the calculation. In Table 5 we present models for the sarh&n ' cm

As already indicated at the end of Sect. 2.5, an increasg of
by some factor is equivalent to an increase<gfby the same
factor. We note here thak enters both as the initial density at
the bottom and in the definition of opacity through Eq. (16)eT
latter ensures that the opacity only changes through clsange
Ko, and not also through changesiin

3.13. Convection

We now consider two-dimensional convection and compare
again results from the optically thick approximation usangg-
diative upper boundary condition with a calculation usiag r
diative transfer. The control parameter characterizingeband
amplitude of convection is the Rayleigh number,

(&)

Where(—c;1 ds/dz)miqa = (V — Vaa)/H24 is the superadia-
batic gradient of the unstable, non-convecting hydrastatier-
ence solution, an(iHIgnid VadcpTmia/g is the pressure scale
height in the middle of the optically thick layer. Furthemap

_gdt

VXmid

_ds/cp

Ra=
dz

(34)

Table 5. Summary of model parameters as a functiomand <y as
obtained from the optically thick approximation with radiative upper
boundary condition.

n Ko d Ptop Ttop é pbot/ptop
325 107 3.09 8310°° 24600 0.40 4.5
3.25 10° 540 1.3107° 13800 0.13 28.9
325 10° 6.70 2.1107° 7800 0.06 187

107 7.44 3.21077 4400 0.03 1220

1.50 107 1.37 2.210°% 28100 1.04 1.6
1.50 10° 2.93 89107° 15800 0.27 3.9
1.50 10° 3.80 3.8107° 8900 0.12 9.2
1.50 107 4.30 1.6107° 5000 0.06 21.8
1.00 10 094 2810°*% 29700 1.61 1.3
1.00 10° 225 1.4107* 16700 0.38 2.3
1.00 10° 2.99 8.0107° 9400 0.16 4.1

to 1.00 10" 3.41 4510°° 5300 0.08 7.4

Notes.  The units of dimensional quantities arg<s,] =

3g71, [d] = Mm, [prop] = gem ™2, and[T] = K.
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z [Mm] s/c,

Fig. 14. Comparison of velocity and entropy distribution in two-dimensional catweaising the optically thick approximation with a radiative
upper boundary condition (upper panel) and radiative transfer (lpaeel). In both cases we have r100 and/C = 0.01, corresponding to
Ra = 3.6 10*. In the lower panel, the dashed line gives the contout 1. In order to compare similar structures in the two plots, we have
extended the color table of the lower panel to slightly more negative vafuesmd have clipped it at high values, which are dominated by the
strong increase of above ther = 1 surface.

we define the Prandtl number as Prv/xmia, Wherev is as- orous, which is also reflected by the fact that the- 1 surface
sumed to be constant angd,;q is the radiative diffusivity in the is nearly flat. In the radiative transfer calculation, thedfic
middle of the optically thick layer; see Appendix B for dégai entropy increases sharply with height abovethe 1 surface.
and an example. In Table 6 we list the values of the proddfe note also that the characteristic narrow downdraftsebft
PrRa, as well ag and yuiq for models withn = 1 and dif- tically thick calculation are now much broader when radiati
ferent values ofC. We adopt periodic boundary condition in theransfer is used. Furthermore, the expected entropy mmimu
x direction over a domain with side length.. When we adopt near the surface is virtually absent in the latter case; lsedlze
the diffusion approximation we takg,, = d, whered is calcu- middle panel of Fig. 15. This is because nea# d, the local
lated from Eq. (33) and given in Table 6. The mid-layer is thevalue ofy is rather large (see the lower panel of Fig. 13), so the
atz = d/2, which is also the case when using radiative transfer,

where the value of;,,, (> d) was chosen to be sufficiently large

anda = b = 1 is chosen to yieldh = 1 (see Table 3).

We determine the critical value for the onset of convectiofapie 6. Summary of model parameters as a functioi’dbr n = 1.
by calculating the rms velocity in the domain,,,s, for dif-
ferent values ofC and extrapolate ta,,s — 0. For the final
to initial bottom density ratiopyot/po, We use Eg. (C.5) de- e PrRa a i 70 =
rived in Appendix C. SinceC is proport_lonal tox and ymid, 510°T  7510° 063 5610°F 6610° 6810°
we can compute the product PrRa using Eq. (34). Itturns oub 19-1 71102 131 26107 2610°° 1.7 10%
that for Pr= 1, the critical value is ak’ < 0.2 (corresponding 1 10-1  7710° 173 1.410"' 1.310°° 3.410?
to Ra < 710) in the optically thick approximation. This corre- 5102 5910 208 7.710°2 6.610~7 6.8 10%
sponds tasy = 1.7 10* Mm ' cm® g~ !, which istoo smallto 2102 6.610° 246 33102 26107 1.710°
obtain a proper polytropic lower part. Therefore we chooghé 1102 3.610° 2.70 1.81072 1.310°7 3.410°
following Pr= 100, in which cases the critical value for theon- 51072 1910”7 289 9.110°% 6.610°% 6.810°
set of convection is &€ = 0.02 (corresponding to R& 6600). 2107  1.510% 311 3810°% 2610°°% 1.710°

In the following, we takek = 0.01, so Ra= 3.6 104, 11077 6910° 324 191072 13107  3.410°
d = 2.70Mm, v = 1.8 Mmkms~! (corresponding tos = 51074 3.1 1010 3.35 9.9 1074 6.6 1079 6.8 107
18 10 cm?s 1), andsy = 3.4 10°Mm tem? g see the 21071 22100 34T 41107 261070 L7107
sixth row of Table 6. We choosk, = 14 Mm, which is large ’ ’ : ’ ’
enough to accommodate two convection cells into the domain;
see Fig. 14. The = 1 surface in the radiative transfer calculaNotes. The values discussed and used in this paper are shown in bold
tion agrees approximately with the height expected fronofire face and are valid for any value of Pr. The units &ff = Mm,
tically thick models using a radiative upper boundary ctodi  [Xmia] = Mmkms™', [Ko] = gem *km’s™*MmK™', and
The flow is only weakly supercritical and therefore not veigrv [ro] = Mm™" cm® g™
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4x10*F ' ' ' ' 1 ature at the bottom was a mathematical convenience, butdtis
Ix104E 3 physical motivated.
B o i 4. Increasing the density contrast
4 F =
1x10 i Asalluded to in the introduction, the inclusion of the plugsof
OE ‘ ‘ ‘ ‘ 3 radiation implies the occurrence ofp as an additional phys-
0 1 2 3 4 5 ical constant that couples the resulting temperature anditye
contrasts to changes in the Rayleigh number. Given that wes ha
1oE Z already_made _other simplificatiqns such as the negli.genhg-of
08E 3 drogen ionization, we end up with rather small density asts
. 06EF 3 ofless than ten when = 1, as seen in Table 5. By considering
< 04f 4 osp an adjustable parameter, we can alleviate this constraint.
2 o2k 4 We demonstrate this in Table 7, where we increase the value of
0.0 [ i 3 ogp fromits physical value 05.67 10720 g cm 3 km® s 3 K4
_02kF o 3 by eight orders of magnitude, keeping howevey fixed. We
0 1 5 3 4 5 have chosen her&, = 1.3 1077 = gem 3 km® s 3 Mm K1,

which corresponds to the model in the sixth row of Table 6¢&in
osp enters the definition ofC, its value is now no longer the

1 same, eventhough) is. The Rayleigh numbers change slightly,
4 because they depend on the values of density and tempeirature
1 the middle of the domain, which do of course change.

3 Large density contrasts are one of the important ingreslient
4 in modeling the physics of sunspot formation by surfacectdfe
such as the negative effective magnetic pressure indtalsée

; ; ; ; Brandenburg et al. (2013) for a recent model. Includingathon
0 1 2 3 4 5 into such still rather idealized models and to study thetiaia
z [Mm] to other competing or corroborating mechanisms such asihe o
of Kitchatinov & Mazur (2000) was indeed an important moti-

Fig. 15. Comparison of vertical temperature, entropy, and velocity pre{-at'on behind the work of the present paper.
files at differentz positions for the model shown in Fig. 14. The black
dotted lines refer to the run with diffusion approximation and radiatiy;
upper boundary condition and the red solid lines to the run with radi

. Conclusions

tive transfer. The inclusion of radiative transfer in a hydrodynamic code p
vides a natural and physically motivated way of placing an up
P per stably stratified layer on top of an optically thick layeat
0.01 may be stably or unstably stratified, which of the two depends
q 0% on the opacity. Using a Kramers-like opacity law with freat}
:gjg; justable exponents on density and temperature yieldsnopigt
-0.03 solutions for certain combinations of the exponengndb. The

prefactor in the opacity law determines essentially theeslof

the Feclet and Rayleigh numbers. However, in contrast to earlier
studies of convection in polytropic layers, the tempeton-

, o , ) trast is no longer a free parameter and increases with isiciga
Fig. 16. Similar to the lower panel of Fig. 14, but at a later time< pavieigh number—unless one considers the Stefan—Boltzmann
500 ks), when the solution has switched into a single-cell Conf'gurat'orl’:onstant' as an adjustable parameter. The physical valitee
prefactor on the opacity are much larger than those used here
but larger prefactors lead to values of the radiative difitys

thickness of the thermal boundary layer becomes comparabléhat become eventually so small that temperature fluctustio
d itself.

In the. mlodel using the diffusion apprOX|mat|on, the t.em.peﬁ"able 7. Density contrast and other model parameters as a function of
ature variations are much larger than in the model with ta@ia . for,, — 1 andk, = 1.3 x 10~ 7.
transfer; see Fig. 15. In the latter case, the velocitiesstwmt
into the upper stably stratified layer, and the downflows arelm
broader and therefore slower than in the diffusion apprexim

s/c,

X OsB PrRa d Xmid Pbot/ Prop Ko

tion. 56710 2° 3.6310° 2.70 1.810 2 32 3.410°
It turns out that the solution with radiative transfer showns g7 10-%  9.4510° 3.55 2.1 102 10.0  3.4107

in Fig. 14 is quasi-stable until aboB%0 ks (=~ 4days) and then 56710~ 1.23107 3.82 22102 31.6 3.4 10°

switches into a single-cell configuration with a fairly ias@d up-  5.67 1074 1.3310° 3.90 2.2 102 100.0 3.4 10!
draft; see Fig. 16. We have seen similar behavior in othegsass.67 1072 1.36 10 3.93 2.2102 316.2 3.410'3
with radiation too, and it is possible that this is a consegeef

our setup. Firstly, the restriction to two-dimensionaleection Notes. The units arfosg] = gem *km’s * K™, [d] = Mm,

is a serious artifact. Secondly, the assumption of a fixeghegm [Xmia] = Mmkms™", and[fo] = Mm ™' cm® g™ .
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on the mesh scale cannot be dissipated by radiative difiusiof the manuscript. This work was supported in part by the EemopResearch
In previous work (Nordlund, 1982; Steffen et al., 198%gler Council under the AstroDyn Research Project No. 227952 bgritie Swedish
et al., 2005; Heinemann et al., 2007: Freytag et al., 20]]3, tResearch Council under_the project grants 621-2011-50d62amh2-5797. We

. . - . . acknowledge the allocation of computing resources provigedhe Swedish
_prObIem h_as been avoided by_ap_plylng numerical diffusiamser National Allocations Committee at the Center for Parallel Coteps at the
ing numerical schemes that dissipate the energy when angwhgoyal Institute of Technology in Stockholm and the NatioBajpercomputer
needed. However, this may also suppress the possibilitiiysfp Centers in Linkping, the High Performance Computing Center North in @me
ical instabilities that we are ultimately interested ini§'moti- and the Nordic High Performance Computing Center in Reykjavik
vates the investigation of models with prefactors in therkees
opacity law that are manageable without the use of numeri
procedures to dissipate energy artificially.

It turns out that in all cases withhandb such that» > —1,  The purpose of this appendix is to show that for one-dimeragio
the stratification corresponds to a polytrope with indelielow temperature perturbations, the correct cooling rates latared
the photosphere and to an isothermal one above it. This was @gth just two rays if theD/3 correction factor in Eq. (15) is
tually expected given that such a solution has previousgnbeapplied. Similar considerations apply also to the case of tw
obtained analytically in the special case of constarftorre- dimensional problems. Cooling rates are important for unde
sponding tax = b = 0); see Spiegel (2006). On the other handstanding temporal aspects such as the approach to the fitel st
the isothermal part was apparently not present in the stioi  (Sect. 3.1) or the thermal adjustment time (Sect. 3.7). Ttnes
of Edwards (1990). equilibrium solutions discussed in the other sections atef:

Contrary to the usual polytropic setups (e.g., Brandenbtirgfected by the following considerations.
al., 1996), the temperature contrast is now no longer arpeite  The source of the problem lies in the fact that teangu-
dent parameter but it is tied essentially to the Rayleighem |ar integration in Eq. (4) becomes inaccurate in one dinmnsi
Significant temperature contrasts can only be achieved@e laand dependent on the optical thickness. In the opticallgkthi
Rayleigh numbers, which corresponds to a large prefactorriggime, the diffusion approximation holds, so the cooliater
front of the opacity. While this aspect can be reproducedde is proportional tofs, which has al/3 factor in Eq. (7). In one
with polytropic models using the radiative boundary coiedi$, dimension, one uses only the two rays in the vertical dioecti
there are some surprising differences between the two. Mest so one misses the/3 factor and has to apply it afterwards to
portant is perhaps the fact that the specific entropy must@se account for the “redundant” rays in the other two coordirtite
above the unstable layer, while with a radiative boundary- corections that show no variation. This is what is done in E§).(1
dition the specific entropy always decreases. Although the dHowever, in the optically thin limit, the mean free path bees
ferences in the resulting temperature profiles are smallethre jnfinite and cooling is now possible in all three directiofrs.
major differences in the flows speeds in the two cases. We ajf@t case, the one-dimensional approximation is not us@tul
find that at late times the convection cells in simulationghwi explain this in more detail, we begin by considering first the
full radiative transport tend to merge into larger ones. Weet general case of three-dimensional perturbations with were
or not this is an artefact of our restriction to two-dimemsib tor k (Spiegel, 1957). In that case, one can use the Eddington
flows remains open. In this connection, we should also paitt gapproximation to solve the transfer equation for the mesemin
the presence of a geometric correction factor in front ofrthe sijty, J = [ 1d9/4r,
diative heating and cooling term in Eq. (15) that is neede@+to
produce the correct cooling rate, but it does not affect thady % (4v)2j =J-28, (A.1)
state solution.

Comparing with realistic simulations of the Sun, there is n¢0 the cooling rate (for three-dimensional perturbatioiss)
really an isothermal part, but a pronounced sudden dropin te(Unno & Spiegel, 1966; Edwards, 1990)
perature followed by a continued decrease in temperatees (s 5 )

e.g., Stein & Nordlund, 1998). On the other hand, in our simg\-3 _ 160sT rpk (A.2)
lations there is no jump in the temperature profile near the su pep  3KZp% + k2 |

face and the atmosphere changes smoothly from polytropic to i ) o

isothermal. We suspect that the reason for this differentieat It is convenient to introduce here a photon diffusion speed a

in our models ionization effects are ignored, while in thaso 160« T A3
atmosphere the degree of ionization of hydrogen increaitas w> ~ "°7SB /pep (A-3)
depth. In the Sun, the density decreases significantly fiwen t;,4 1o write Eqg. (A.2) in the form

upper part of the convection zone as we go to the photosphere.

This makes the opacity smaller and the atmosphere in th@phot e, 0k?/3

sphere becomes transparent. At the height where the i@rnizat\sp = 1T 2k2/3 (A.4)
temperature of hydrogen is reached, fie opacity becomes

important, which is not included in our simulations. Theigad where e, /3 = x is the radiative diffusivity, as defined in
tive heat conductivity in our simulations is found to be dan$ Eq. (25), and’ = 1/kp is the local mean-free path of photons.
throughout the optically thick part and then increasespiiar  Selving Eq. (5) for two rays corresponds to solving Eq. (A.1)
in the optically thin part. Solving this in the optically th ap- without the1/3 factor. We would then obtain Eq. (A.4) without
proximation, which has sometimes been done, becomes comiiétwol /3 factors. This would evidently violate the well-known
tationally expensive and even unphysical, so radiativesfe&x cooling rateyk? in the optically thick limit, but in the optically
becomes a viable alternative for studying layers that dneret thin limit it would be in agreement with Eq. (A.4), because th
wise polytropic in the lower part of the domain. two 1/3 factors would cancel for large values &f However,
Acknowledgements. We are indebted to Tobi Heinemann for his engagemetWe have to remember that temper_ature perturbatlons arcatgere
in implementing the radiative transfer module into trenRIL Cope. We also  SUmed one-dimensional, so the intensity can only vary in the
thank the referee for many helpful comments that have led to wepnents z direction, while the rays still go in all three directionshi¥

%fopendix A: Cooling rate and correction factor
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' (no corllection) cooli_ng rate is_now ob_tained W_ith a one-dimensional caloora
1.00F 7 3-p . 4 bothin the optically thin and thick regimes.
. L g"‘ pert/ -7 \-"\,_\». |
~ Appendix B: Expressions for PrRaand ymiq
N
fh In Table 6 we listed the values of PrRa argiq in the mid-
< 0.10F 3 dle of the layer. The purpose of this appendix is to give the
< ~J explicit expressions and to demonstrate the calculatioiih wi
X 2-D, 4 rays 1 the help of an example. Sinee = 1 was assumed, we have
o 2-D, B rays V = (1 +n)"' = 1/2. Considering the cask€ = 0.01,
0.01[ ©Pt thick + 37D, 6 rays opt thin Egs. (31)~(33) yieldaa = 0.00131gem 3 km®s ™2, Tiop =
0.1 10 10.0 12320K, andd = 2.70 Mm. Next, given that the tempera-
: l'k ’ ture varies linearly, we compute the mid-layer temperaage

Tmia = %(Tmp + Thot) = 25600 K. This allows us to compute
Pmid = Pbot (Tmid/Tbot)” = 2.2 10_4gcm_31 Wherepbot =

Fig.A.1. Dependence of the cooling rates computed from models with3 10~* gecm ™3 is smaller thanp, by a factor py,.:/po
different values of (from 10° to 10° Mm ™" cm®g™") andk. (=1, 0.83; see Appendix C. ThuS(mia = Frad/(PmiagV/Vaa)
2, and 4 indicated by diamonds, triangles, and squares, respectlvqyy@175 Mmkms~!, as well angnd = VadpTmia/g =

2-D models with four and eight rays are indicated by crosses and cjr- S 47 92 d
cles, respectively, while 3-D models with six rays are shown as pl 530 Mm. This yields PrRa= gd*/x;,q(V — Vad)/H;-m -

signs. The red solid line corresponds to Eq. (A.5), the dashed blue li#é 10°, whereV — V.4 = 0.1.
to Eqg. (A.4), and the dotted line with open circles to the case without
correction factor.

Appendix C: Final to initial bottom density ratio

means that under the sum in Eq. (15) only one third ofithes  Initially, the stratification is isothermal, so the densgygiven
terms give a contribution, and that the cooling rate is logee  bY p(2) = po exp(—2/H°") and the initial surface density is

e k23

A =
1D 1+62]€§7

d
(AB) X = / p(z)dz = poH}};Ot 1- exp(—d/HS’Ot)] . (C.1)
0
which has now only a singlé/3 factor. Likewise, if we had In the final state, the stratification is polytropic, so theslty is
two-dimensional perturbations such as in two-dimensicoal  given byp(z) = puot[T'(2)/Thet)” and the surface density is
vection considered in Sect. 3.13, orly3 of the terms un- J n
der the sum in Eq. (15) would contribute. However, in a twg;ﬁ = b t/ {T(z)} %dT. (C.2)
dimensional radiative transfer calculation, the adddiot/3 " “Jo | Toot | dT

woul nt, which explain rrection f r with . . .
ould be absent, ch explains tii#/3 correction factor wit Here,pot is the bottom density of the final state, which is differ-

D = 2in this case. nt from the initial valugy, as explained in Sect. 2.6. Integrating
We have verified that with the correction factor in place, tth‘ (C.2) and usingz /AT — Ko/ Fraq from Eq. (28) yields

code now yields the same cooling rates in both the optichitkt

and thin regimes, regardless of the numbers of rays used. Thi T nt1] oo
is shown in Fig. A.1, where we plot cooling rates for differeny;, — #bot |1 _ < t0p> 0Tbot (C23)
values ofx, in a domain of siz&xr (in Mm), so the smallest n+1 Thot Flaa

wavenumber ig Mm ™', With p = 4 x 10~* g cm—? the photon

mean-free path varies from 0.025 to 3m as« is decreased Using Eq. (29) together withv = 1/(1 4+ n) and H}*' =
from 10° to 102 Mm ™' cm?® g~'. For the Kramers opacity, we Vaa¢pThot/g, We have
use the exponents= 1 andb = 0. (No gravity is included here, i1
so there would be no convection.) The temperatuB8j968 K, S = bt |1 _ & (C.4)
as before, which yields, = 3.87kms~! for the photon diffu- ~fi» = PPottp ' '
sion speed. There is excellent agreement between 1-D citbes w

correction factor and the 3-D calculation (with one-dimienal Using mass conservation, we ha¥g, = Xi,;, SO we obtain
perturbation). However, the 2/3 correction factor in thB 2al- from Egs. (C.1) and (C.4)

culation (both with four and with eight rays) seems to beeyst ot

atically off and should instead by around 0.8 for better agrepnor 1 —e ¥/ .
ment. However, as discussed before, the correction factes d? T 1 — (Thop/Toot)™ (C.5)
not affect the steady state and therefore also not the segstdt

sented in Sect. 3.13. The diffusion approximation wouldljmpfor the final to initial bottom density ratio.

A = (cyk/3)¢k = xk?, which corresponds to the diagonal in

Fig. A.1 and agrees with the red solid line fr < 0.5.

For three-dimensional perturbations, the correct coalatg
in the optically thin regime is three times faster than foe-on Brandenburg, A. 2005, ApJ, 625,539 _
dimensional perturbations. This is because now the radiatiB“’iT”de“F’UfgvI"\igg%”g'”glsncﬁw'-whNosfg'éJ”gz»SR'e“tOfdv M., Stein, R. F., &
goes in all three directions. Solutions to three-dimeresiqper- Branudoen;gﬁg', A Klesorin, N, &elgoéachévskii, 1. 2013, Ap376, L23
turbations clearly cannot be reproduced in less than thineerd  cattaneo, F., Brummell, N. H., Toomre, J., Malagoli, A., & Huri N. E. 1991,
sions. However, for one-dimensional perturbations, theect ApJ, 370, 282
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