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ABSTRACT

Using one-dimensional models, we show that a helical magfietd with an appropriate sign of helicity
can compensate the Faraday depolarization resulting frensuperposition of Faraday-rotated polarization
planes from a spatially extended source. For radio emidsion a helical magnetic field, the polarization as
a function of the square of the wavelength becomes asynuneitti respect to zero. Mathematically speak-
ing, the resulting emission occurs then either at obsegvabht unobservable (imaginary) wavelengths. We
demonstrate that rotation measure (RM) synthesis allowthéreconstruction of the underlying Faraday dis-
persion function in the former case, but not in the lattele Presence of positive magnetic helicity can thus be
detected by observing positive RM in highly polarized regii the sky and negative RM in weakly polarized
regions. Conversely, negative magnetic helicity can bedaletl by observing negative RM in highly polarized
regions and positive RM in weakly polarized regions. Thewiameous presence of two magnetic constituents
with opposite signs of helicity is shown to possess sigeattiat can be quantified through polarization peaks
at specific wavelengths and the gradient of the phase of tfal&a dispersion function. Similar polarization
peaks can tentatively also be identified for the bi-helicagmetic fields that are generated self-consistently by
a dynamo from helically forced turbulence, even though thgmetic energy spectrum is then continuous. Fi-
nally, we discuss the possibility of detecting magnetiadBelith helical and non-helical properties in external
galaxies using the Square Kilometre Array.

Subject headings: galaxies: magnetic fields — methods: data analysis — peitoiz

1. INTRODUCTION wavelength-dependent depolarization to determine the-dis

; ; iaai bution of radio sources with respect to Faraday depth (Brent
For many decades, polarized radio emission from external. i it :
galaxies has been used to infer the strength and structure ofenS & de Bruyn 2005; Heald et al. 2009; Gigfel et al. 2013;
their magnetic field. This emission is caused by relativisti 'K et al. 2011). However, the interpretation of disttdmi
electrons gyrating around magnetic field lines and prodycin magnetic fields still remains a challenge (Beck et al. 2012;
the polarized synchrotron emission. The plane of polddzat ~ Bell & Enflin 2012). . -
gives an indication about the electric (and thus magnesity fi . Of particular interest to the present study is the possibil-
vectors at the source of emission. The line-of-sight compo- 1ty Of detecting helicity of the magnetic field. The helicity
nent of the field can be inferred through the Faraday effettth Of the magnetic field reflects the linkage of the magnetic
leads to a wavelength-dependent rotation of the plane of po-fi€ld (Moffatt 1978). In the context of the large-scale mag-

larization. The resulting change of the angle of the potariz  Netic field in galaxies, one can think of the linkage between
tion plane over a certain wavenumber interval gives the rota 1€ Poloidal and toroidal magnetic field components. Three-

tion measure (RM), whose variation across different porsii dimensional visualizations of these two components tageth
within external galaxies gives an idea about the globakstru S#Ch as Fig. 5f_01|‘dD|9nner(j& Br_%ndenbu'rg”(.1990), show 'tAhat
ture of the magnetic fields of these galaxies (Sofue et ap198 the magnetic field lines describe a spiralling pattern. An-

Beck et al. 1996. 2005: Fletcher 2010: Beck & Wielebinski Other manifestation of a helical field is the rotation of a mag
2013). ' ' ' ' netic field vector perpendicular to the line of sight. Deter-

In practice, an observer will always see a superposition of Mining the presence of such swirling magnetic field patterns
different polarization planes from different depths, whian ~ Would be an important step toward understanding the nature
lead to a reduction in the degree of polarization. Firstig t ©f the underlying dynamo process that is needed to achieve
orientation of the magnetic field changes, causing differen P€t€r agreement between observations and theory of astro-
polarization planes at different positions. SecondlyaBay  Physical dynamos. A promising result for probing magnetic
rotation causes the plane of polarization to rotate. The de-N€licity in the interstellar medium has been obtained byevol
crease in polarized emission resulting from this supetjposi ~ 90Va & Stepanov (2010), who have shown that a helical tur-
is referred to as Faraday depolarization. This was regaased Pulent magnetic field produces a nonzero cross-correlafion
a problem that can be alleviated partially by restrictingon XM and the degree of polarization. The sign of the cross-
self to observations at shorter wavelengths (Soida et a0~ correlation coefficient permits one to define the sign of the
This situation has changed with the advent of new genera_total_magnetlc helicity. However, the theoretical backgd
tions of radio telescopes that can measure polarized amnissi ©f thiS approach was not clearly understood. Subsequent at-
over a broad and continuous range of wavelengths. This al-l€MPLS by Junklewitz & Enf3lin (2011) and Oppermann et al.
lows one to apply the method of Burn (1966) that utilizes the (2011) did not clarify this effect either, because they eded
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FiG. 1.— Sketch illustrating position of source and observer. T~ \ \ / / _—
the effect of Faraday depolarization from the beginning. To - + - + - + B . } . . }

explain the results of Volegova & Stepanov (2010), we stress
the fact that, if the magnetic field is helical, i.e., the mag-
netic field lines spiral toward or away from the observer, the Flo. 2 Sketch illustrating th bined effects of Faradaation and
H H H H 1G. 2.— etcn llustrating the combined elfects ol Faradagtron an

resulting Faradf_iy depOIarlzatlon can be either enhancmﬂ O 4 helical magnetic field. For a uniform magnetic field, contiitns from
duced, depending on the relative signs of magnetic helicity gitterent depths lead to different angles of the polartmapilane. Thus, Fara-
and the line-of-sight component of the magnetic field and thu day rotation alone would lead to Faraday depolarizatiom(stithe phases
RM, In a elated paper by Horellou & Fltcher (2014), tis o o errbuton fom e fs o), b, o el et
effect was used to study the .pOIanzed '.nFenSIty In Sele(.:teddepths lead to the sanubserved polarizatién angle (last row) and Faraday
wavelength ranges for both signs of helicity. The exploita- gepolarization is thus compensated.
tion of this effect, which was first discussed by Sokoloff et
e e o praman(Ginzourg & Syrovatki 1965 s he cosmiay olc

9 ' P P tron density,3, is the strength of the magnetic field perpen-
paper.

. . e . dicular to the line of sightf(\) oc A\“~! is a wavelength-
While the effect of a helical magnetic field is easily under- dependent factorys(z) is the intrinsic polarization angle,

stood for simple magnetic spirals, it becomes less obvious i - Ty T T T

the case of more complicated fields. We are here particularlyfwa) g)\.igsltrﬁle W;I\r/lellétr? h pc™" is a constant (Pacholczyk
interested in helical magnetic fields consisting of couostits ' gth,

that have large and small length scales with opposite sifjns o z

magnetic helicity. Such fields are called bi-helical andadre P(z) = —K/ ne(s)B)(s)ds. 3)
central importance in dynamo theory (for a review, see Bran- 0

denburg & Subramanian 2005) and have also been detecteis the Faraday depth,. is the electron density (dominated by
in the solar wind (Brandenburg et al. 2011) and on the solarthermal electrons)B| is the magnetic field along the line of
surface (Zhang et al. 2014). There is now also some evidencsight, andz is a coordinate along the line of sight in a Carte-
for helical magnetic fields in the jets emanating from active sian coordinate systeniy, y, z). Note that equation (3) im-
galactic nuclei (Reichstein & Gabuzda 2012). We first dis- plies that the Faraday depth is positive when the mean mag-
cuss the observational signatures of singly helical fielus a netic field points toward the observerat= 0; see Figure 1
turn then to the case of bi-helical magnetic fields. Next, we and Appendix A for alternative conventions concerning equa
discuss a method referred to as cross-correlation analgsis tions (1)—(3). Variations across the sky are here ignored, s
ing magnetic field configurations similar to those studied in there is no dependence emandy; see Donner & Branden-
the first part of the paper. Those fields are used to mimic theburg (1990), Elstner et al. (1992), Brandenburg et al. (993
effects of turbulence consisting of randomly oriented pasc  and Urbanik et al. (1997) for early applications to meardfiel
with singly helical or bi-helical fields oriented randomly i  dynamos where this restriction was relaxed. Note thalso
the sky. Finally, we present preliminary results from mae r depends om through a factorf(\), but this term can be
alistic magnetic field configurations generated by a turiule moved outside the integral, so it does not constitute a prin-
dynamo in the presence of shear. We conclude with a dis-ciple problem (Brentjens & de Bruyn 2005; Bell & EnRlin
cussion of the possibilities of detecting helical and Hida 2012), and we shall ignore this complication here. Bhe
magnetic fields in external galaxies using the Square Kilome served polarization angle is

tre Array.
X(\?) = zArctan(U, Q) (4)

_ . . . where Arctan returns all angles in the range frem to r,

The synchrotron emission of magnetized interstellar or in- \ynose tangent yield&/Q. It is not to be confused with the
tergalactic media is commonly observed through its total in jytrinsic polarization angle) (z).
tensity, - SinceB is assumed independentofndy, the divergence-

1002 = / e(2,\) dz, 1) free condition implies thaB = B. = const = Byo. While
0 the assumed independencezofind y may be justified for

large-scale fields, it is certainly problematic for smalkle
fields. This will be addressed in Section 6. We write the
perpendicular magnetic fiel8, = (B,, B,,0) in complex
form,

2. COMPENSATING DEPOLARIZATION

and through the Stok&3 andU parameters combined into a
complex polarization as

P(\?) = Q+iU = po / €(z, NPT 4z (2) _
0 B(z) = B,(z) +iBy(z) = By (2) "5 (5)
at a given point in the sky. Heng, is the intrinsic polariza-
tion (depending on the energy spectrum of the cosmic rays)
€(z,A) «x n.(z)B(z)f(\) is the polarized emissivity with

o =~ 1.9 being an exponent related to the spectral index v =1p—m/2. (6)

with its phase)p = ArctanB,, B,). The intrinsic polariza-
tion angley is related ta)y g by



Here ther /2 term comes from the fact that the plane of polar-
ization is parallel to the electric field and perpendicutattte
magnetic field of the radio wave, which, in turn, is paraltel t
the ambient fieldB, . [Note that this term is sometimes omit-

3

1 g decreases (increases) withvhen the magnetic helicity is
positive (negative). Somewhat surprisingly, this implileat

the tips of the magnetic field vectors describe a left-handed
(right-handed) spiral when magnetic helicity is positived-

ted; see Waelkens et al. (2009) for such an example. Sokoloffative).

et al. (1998) included it, but dropped the resulting mingsmsi
after their equation (16).] Due to the fact®rin the expo-

nent of equation (2), which is a consequence of the definitionpg|ds  that isx2 =

of the Stokes parameters being essentially squared geantit
the phase of the magnetic field hag ambiguity. This is a
serious restriction, because it means that the underlyeg m
netic field cannot be determined fully without additional as
sumptions.

We now want to determine a condition on the structure of
the magnetic field under which the integral in equation (2)
gives maximum contribution, that is, for which the Faraday
depolarization is minimal. As was already shown by Sokoloff
etal. (1998), this is the case when, for a certain valug, tiie
phase2(y(z) + ¢(2)A?) is a constant. For the purpose of the
present discussion we assume constant valués o, and
n., denoted byB_ o, n.o, andn., respectively. Therefore,
#(z) = —KneoB)oz is linear inz, and so the (half) phase
under the integral in equation (2) is given by

¥(2) + d(2)A? = ¥(2) — KneoBjoA*z, ()

which becomes independent ofind equal to a constatit,
giving thus maximum contribution to the integral, when

Vp(2) = o — kz, (8)
whereu is an arbitrary phase shift and
k= —KneoBjo\* (9)

is the required wavenumber of the magnetic field. A simi-
lar condition was also derived by Arshakian & Beck (2011),
without however explicitly making reference to the helioat
ture of the magnetic field.

Equation (8) implies that we haveuaigue solution for the
magnetic field that gives maximum contribution to the inte-
gral in equation (2) by essentially canceling the Faraday de
polarization from thesxp(2i¢pA?) term, as illustrated in Fig-

For agiven magnetic field, that is, prescribédand B o,
P(A\?)| as a function of\ becomes maximal if equation (9)
—k/KneBjo. Obviously, onlyA? >
0 is observable, so only negative (positive) helicities can b
detected via the observation of a maximumBfA?)| if By,
is positive (negative), i.e., the field points away from (tod)
the observer.

To give an example for typical values of the radio wave-
length expected from magnetic fields in the interstellar
medium and in external galaxies, let us take: 27/ kpc for
the wavenumber of a field of one kpc scatgy = 0.03 cm =3
(Taylor & Cordes 1993), an8 o = 3 uG, then| P(\?)| peaks
at A\ =~ 30cm. To probe fields with larger (smaller) length
scales, one would need shorter (longer) wavelengths of the
radio emission.

3. FARADAY DISPERSION FUNCTION

To characterize the observational signature of a helical
magnetic field, we compute the corresponding complex po-
larization as a function ak? using equation (2). For the pur-
pose of further analysis the polarization can be expressed a
Fourier integral,

o

F(¢) = f(¢) e?¥(?) (13)

is called the Faraday dispersion function (Burn 1966) with
f(¢) = |F(¢)|. Provided that equation (3) defines a strictly
monotonous functiony(z), we haved¢/dz # 0 and can
change variables fromto ¢ in equation (2), and we write

f(9) = —poe(¢)/ Kne(6) By (), (14)

where the denominator is judt)/dz resulting from the trans-

F(¢) €29 dg, (12)

where

ure 2. Inserting equation (8) into equation (5) and assumingformation fromz to 4. The factor2 in the exponent of equa-

B, = const, we have
B = (BLO COS(]CZ — 1/)0), —BLO sin(kz — 1/)0), BHO) . (10)

Such a twisted magnetic field with(z) « z is a Beltrami

tion (13) results in ther ambiguity. It is therefore useful to
characterize signatures of helical magnetic fields diyeictl
terms of F(¢). This is particularly important, because there
is, at least in principle, the chance to reconstrki¢t) from

field and has been considered by Sokoloff et al. (1998) for the P(\?) using Fourier transformation with respect to the conju-

demonstration of anomalous depolarization.

gate variabl@\? (Burn 1966). Given the lack of any informa-

As motivated above, we are interested in the magnetic he-tion aboutP()\?) for A\? < 0 we define the synthesized Fara-

licity of the field. It is defined agA - B), where angu-
lar brackets denote volume averaging aAdis the mag-
netic vector potential withB = V x A and components
A = (B./k,By/k + xB),0). Here the linearly varying
componentz B, is needed to give the constaBl; = B,

but this contribution averages out in the calculation of the
magnetic helicity,

(A-B)=k"'B%,. (11)

day dispersion function (Burn 1966; Brentjens & de Bruyn
2005),

_
T or
which is supposed to be a reasonable approximation of the
actualF(¢), which would be obtained if the integral in equa-

tion (15) were from—oo to oc.
We now consider a concrete example using equation (10)

Fayn(9) /0 - P(A\%) 729 q(2)2),  (15)

Another quantity of interest, which is based on the current with & = &, to construct a magnetic field in a slab of thickness

densityJ = V x B/ug with uo being the vacuum perme-
ability, is the current helicity{J - B) = kB3 ,/uo. In the
present example, it has the same sign4isB) and is positive
(negative) for positive (negative) values faf Note also that

L with 0 < z < L. In the following, we takek,| = 27 /L,

i.e., we have within the slab just two nodes in each of the two
components ofB, . Outside this range, we assua. = 0,

but we keepB By, everywhere. The Faraday depth,
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¢ = —KneoBjoz, is a uniformly varying coordinate and o8 (a) PO/ pol 3
R = ¢(L) = —KneoBjoL is the equivalent intrinsic Faraday 0.6 3
rotation measure or simply the Faraday thickness of the slab 0.4 E
Thene(p) # 0 is the rangd < ¢/R < 1. For normalization 0.2 E
purposes we introduce here the wavelengthlt is given by 0.0 -
-1 0 1 2 ?\2/\?\§\ 3
A} = —k1/KneoB)o (16) /2
and determines the peak of the modulus of the resulting com- ~ 7/4° .= . . . = x(2) 7
plex polarization, o ’ ’ ) ’ . B
. —7/4 ) -
P(X2) = pol P (R(X? = \2)), (17) —my2 (b) -
where A ' - 0 ! @/ B
P& = (1—¢%%)/2i¢ (18)

is Burn’s non-dimensional depolarization function, iratid
by a hat. It applies in the absence of magnetic helicity toia un
form slab of Faraday thickne$. Note that in our normaliza-

tion, P(0) = —1, where the minus sign is a consequence of 0 5 4 6 o)
then /2 term in equation (6). Note also thaarg(f?)/dg =1,
in spite of the factor in the exponential function in equa- 1.5 (d) 7(¢)|
tion (18). 1ok R — i
The resulting polarizatior?(\?) is characterized by two 051 Fogn(9)] R B
independent parameters of the magnetic fiégldand By, ’ i
which are represented by andR in equation (17). To an- 0-0—— o ; ; . —
alyze the form ofP()?), we consider its modulus and half- $INl
phasey(\?) and compare the corresponding functidn@) /2 @ I
and F.y,(¢) for a helical magnetic field with positive heli- /4 ! Veyn(9) 7
city (k; > 0) and different signs oA? (Figure 3 forA? > 0 oF ¥(¢) -
and Figure 4 fo\} < 0). We see that, as expectdd?(\?)] —m/4 :
shows a peak ax?> = )2, and the sign of\? depends only mm/Rbe (;‘ : " ;

on that of the product of; and Bj,. The polarization an-

gle increases (decreases) with for k; > 0 as shown in
Figure 3b (Figure 4b). This means that the observed rota-

tion measureRM = dy/d\?, is positive (negative). Indeed, ~_F!¢- 3— @|P(A)], (b) x(A\?) = arg(P)/2, (c) real and imaginary

parts of F(¢), (d) |F(¢)|, and (e)(¢) for a magnetic field with positive

2
the case\ik; > 0 Co”eslponds t®’M > 0 (Bjp <0, B to- helicity k1 > 0 and positiveA? > 0. In panels (a) and (b), the unobservable
ward the observer), whilg@?k; < 0 corresponds tRRM < 0 rangeA2 < 0 is marked in gray. In panels (c)—(e), the quantities for the
(BHO >0, BH points away from the observer). synthesized Faraday dispersion function are overplotedcdashed lines.

_ We note thaRM does not depend ok? and that its value  compare the black with the red dashed lines in Figure 3. Real
is half the Faraday thickness of the slab, iRM = R/2. and imaginary parts of (¢) and Fi,,(¢) are phase-shifted
As mentioned above, the reason for the 1/2 factor lies in theby 7/2 relative to each other, which is indicative of a heli-
mathematical fact that the gradient of the phas€ @f equa-  cal field; see equation (10). Note also thét¢)| is constant
tion (18) is1 and not2. It is in agreement with the interpre-  andq)(¢) is decreasing with increasing as seen from equa-
tation that for| F'(¢)| = const, RM is the average value ¢f tion (8). Again, the agreement betweelf¢) and Fi,(¢) is

across the source with< ¢/R < 1. rather good.
Looking at Figs. 3b and 4b, we confirm that at the position  |f x,RM < 0, the peak occurs at negative values)3f
of the peak at\” = A} the value ofy(\?) is 7/2. Again,  and is thus unobservable. In that case, there would be essen-

this is a consequence of th¢2 term in equation (6) resulting tially no polarized emission and the RM-synthesized Farada
from the phase shift between magnetic and electric fields ofdispersion function is very poor; see Figure 4c—e. A quanti-
the radio wave and the resulting effect on the plane of polar-tative analysis of the reconstruction of the Faraday disipar
ization. Note also thag(\?) jumps byr/2 whenP(\*) = 0, function for different wavelength ranges and radio telesso
which is the case whek? — A\ is a non-vanishing half-integer is given by Horellou & Fletcher (2014). The width of the
multiple of |\?|. Unlike the jump at\> = A\? by = because  polarization peaks depends @ It is sharper for a thicker
of = ambiguity, therr/2 jumps are physical singularities in  emitting region and broader for a thinner one. In the limit of
the polarization angle as a function af. Theser /2 dis- an infinitely thick slab,P(\?) becomes a function with no
continuities were also noted by Burn (1966) and are a naturalSide lobes, so the remaining discrepancy betwgén) and
consequence of decomposing a complex function with zerosFsyn(#) in Figure 3c—e would disappear. Perfect reconstruc-
such as equation (18) into modulus and phase. tion of a non-helical magnetic field in a slab can be achieved
Since the product of; andRM is positive in Figure 3, po-  only with additional assumptions about the symmetry of the
larized emission occurs now in the ran@e< A\?> < oo and  source (Frick et al. 2010).
would therefore be observable. As expected, the synthisize

Fiyn(¢) agrees therefore fairly well with the origindl(¢); 4. BI-HELICAL MAGNETIC FIELDS
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3o (a) E which is just the inverse scale ratio. The latter situation i
0.6 E realized in a periodic domain after a resistive timescateiiB
04 3 denburg 2001), while the former is expected to hold on short
0.2 [P(A®)|/pol E timescales (Field & Blackman 2002; Blackman & Branden-
0.0 . burg 2002). As alluded to above, in reality there are magneti
-1 0 1 2 a%/A% 38 helicity fluxes. In practice, they tend to lead to a situatioat
/2 - is between these two extreme cases (Brandenburg et al..2009)
/4 (b) . . . . e e We emphasize that the sign bf (with i = 1 or 2) deter-
o T mines also the sign of the helicity of the corresponding field
x(X) constituent. In the following we takg;, > 0 andks < 0
::72* | with |ka| > k1, so the field with amplitude3; is a large-

scale field with positive helicity, and that with amplitudi
is a small-scale one with negative helicity. This is also the
situation expected to be applicable to the upper disk pléne o

galaxies, i.e., where the angular velocity vector pointth
opposite direction as gravity.
We vary k; and ko to identify features in the results for
E P()\?) and F(¢) that can be related to these wavenumbers.
6 4 —2 0 ¢]A? We define corresponding wavenumbers in Faraday space
1.5 A? = —ki/KneoBo, (21)
L@ F($)] | _ = k/ o
: which we use to define the two quantities
0.5 | ‘ _
N T S L A=(AT+A3)/2 and AN =(A\]—)A3)/2.  (22)
-6 4 = O Al Note that, even though each of the two constituents of the bi-
/2 — helical field has a constant modulus, the modulus of the sum
/4 | () ) i is not constant. Instead, it is seen from the example shown in
B IR Figure 6 that it varies periodically like
oF \ Y(¢)
Al 7 Yon(®) ] B ~ cos(20AN — ). (23)
—6 —4 -2 0 s\ Under the assumption that the exponent of the polarized-emis

sivity is ¢ = 2, an analytic solution equation (2) can be given
in terms of Burn’s depolarization function (18) as

FiG. 4.— Same as Figure 3, but fa# < 0, keeping howevek; > 0. R
P(X?)/pol =e1 P (R(A* — AY))

In galaxies, magnetic fields are thought to be produced and 3 2 2
maintained by a turbulent dynamo involving a so-calted +€2]? (R(/\ )‘2))
effect. This leads to helical large-scale magnetic fieldg. (e +e P (R()\2 — Af,)) , (24)

Moffatt 1978). However, since magnetic helicity is an invar

ant in ideal magnetohydrodynamics (Woltjer 1958), no net wheree; = B}/B2, e2 = B3/B?, ande, = 2B Bsy/B?,
magnetic helicity can be produced. Instead, a bi-helica-ma with B2 = B? + B2 + 2B, B, sing2A\?), are normalization
netic field is generated, which has an additional smallescal constants. There are three peaksR{f\2): two peaks are

situation, because in reality there will be magnetic hslici shown in Figure 5 for the casé,/B, — 1. As is clear from

fluxes (Kleeorin et al. 2000) that influence the local heficit o aiion (24), the separation between adjacent peaksds giv
balance. Nevertheless, to study this idealized case in morg |AN2] This solution is independent of the phase shift
detail, we consider as a simple example the following one- b)étween.the two constituents P P

dimensional, bi-helical magnetic field: To understand the signatures of a bi-helical magnetic field
Bj coskiz + Bgcos(kez + ) in the Faraday dispersion function, let us recall that the
B = | —Bysink;z — Bysin(kez +¢) |, (19) wavenumbers of each of the two constituents pontrlbute to
By, the gradiendy /d¢. It is therefore plausible that in the case
By = Bs theresult is just the average of the two, i.e.,

wherek; is the wavenumber of the constituent with amplitude

B ko is that of the constituent with amplitude,, andy is an dy/de = —/\127. (25)

arbitrary phase shift between the two constituents. Themag _ ]

netic and current helicities of the total field are respetyiv  This property ofdy /d¢ is preserved regardless of theam-

given by biguity. To demonstrate this, we compare in Figure 6 both
Yp = Arctan(B,, B,) (all angles in the range from= to 7
(A-B) =k 'B? +k;'B2, po(J-B) =k B} +k,B2. that yield B,/ B,) andv); = arctar{B, /B, ), which is con-
(20) fined to the range from-7/2 to 7/2. As stated in Section 2,
Thus, the field has zero magnetic helicity whek, /k, = dip/d¢ is negative when the produkB, is positive. This

B3/B? and zero current helicity wheB3/B? is —k1 /ko, is indeed in agreement with Figure 6.
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[P(N*)1/pol

[P(N*)1/pol

B(\?)|/B,

-10 -5 0 5 2 1.2 10
1.0 ' ' 202/ IN%
k=2 1.0F ¢ ‘ ‘ ‘ ]
L 2 4
~ k:2=—6 0.8 (d) \P(N)I/pol E
§ 5 0.6 E 3
0. 2 . 0.4F E
% AA C ]
A 0.2F 3
0.0 J
—10 -5 0 5 Y
0.0 22%/IN
-6 —4 -2 0 2 R
A2 FiG. 6.— (a)| B|>(¢)., (0) ¥ (¢) andy/y (9), (c) B(2A%), and (d)P(2A?)
for a bi-helical magnetic field withs /k1 = —5 usingRM > 0. In panel

(b), the dashed blue lines corresponarit® — $|A?| and3r/2 — ¢|A%| and

FIG. 5.—|P(\2)] for different values ok, andks andBs/B; = 1 using mark the points where the phasevof (¢) jumps.

RM > 0. The unobservable rangé < 0 is marked in gray.

1 andks/k; = —5; see Figure 6c. In reality, the Faraday dis-

Interestingly,; is simpler thany s in that the former has  persion function is given bys? (assuming here = 2). A
no phase jumps other than those requiredyfgrto remain  Fourier transformation of such a squared function has a peak
in the range from—=/2 to 7/2. By contrast,v)z shows atk; + ko and side lobes at; + ko + |ky — ko| = 2k or 2ks.
phase jumps byr atall locations wherg| vanishes; com-  Thus, the corresponding Fourier transform, which we can now
pare Figs. 6(a) and (b). Ignoring these phase jumps, i€., recall P(2\?), has peaks @\2/\? = 2 and2ky/k; = —10,
constructing the field fromi3| and+/};, instead of)z, would together with a larger one in between; see Figure 6d.
render the underlying magnetic field discontinuous. The above considerations assume that the amplitudes of the

Our statements can be confirmed by evaluating equa-two constituents are approximately equal. WHeyy B is
tion (24) or by computing numerically examples for differen either very small or very large, the type of the resulting po-
combinations ofc; andk,; see also Figure 5. Thus, we can |arization signal will be determined by the dominating one
summarize that a bi-helical magnetic field with wavenumbers of the two constituents. Figure 7 confirms that the peak at
ky andks results in a clear signature in the Faraday dispersion \2 — A2 diminishes wherB, / B; becomes either much larger
function in that the frequency of its modulus is givenZaiy\* than unity or much smaller than unity. Not surprisingly, a
(Figure 6a), while indeedyy/d¢ = —\? (Figure 6b). peak at\> = )2 begins to emerge wheB, becomes large

To appreciate the features of a bi-helical magnetic field in (hottom panels of Figure 7), and one & = A2 emerges
the complex polarizatiof?, let us note that a Fourier transfor- - when B, becomes large (top panels of Figure 7). In the latter
mation of the complex functiofi, defined in equation (5) and  case, however, most of the polarized emission occurs feymal
now applied to the bi-helical field defined in equation (19), for \2 < 0.
would produce peaks at wavenumbeéisandk,. However, Figure 7 suggests that two of the peaks have a similar height
in the Fourier transformation defined through equation ,(12) when(J-B) = 0 (second row of Figure 7) or whe- B) =
wavenumbers correspond to the Fourier variabe Thus,if ¢ (fourth row of Figure 7). While this is not a general result,
the Faraday dispersion function was giveniify) the corre-  there is, however, a tendency for those two peaks to survive
sponding Fourier transforifi(2\?) shows peaks @\?/\? = even in the limits of very large or very small ratios|6f /k2|.



[P(N)/pol
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[P(N)/pol
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Fic. 7.— Dependence dfP(\?)| for different values of3, /B2 andkz/k1 = —5 usingRM > 0 (left column) andRM < 0 (right column). The region
with A2 < 0 is marked in gray. The analytic solutions with= 2 are shown as red dotted lines, while the numerical one fer 1.9 is shown as a black solid
line. ForB2 /By = 0.45 in the second row we havgZ - B) = 0 while for 2.24 in the fourth row we hav¢A - B) = 0.

Our considerations of helical and bi-helical magnetic Beld tion (2), which is a critical assumption often made in thisco
have shown that the distributions &f(\?) are asymmetric nection (Burn 1966).
with respect toA = 0. This underlines again that the re- Itis remarkable that in all cases with helical magnetic 8eld
construction of missing data for negative values\éffrom there is a particular valug? for which the polarization ap-
symmetry arguments, e.g., thB&(—\?) = P*(\?), would proaches the maximum value |d?| /pol = 1. Depending on
be impossible when the magnetic field is helical and the he-the relative strengths aB; and B, this peak can be either
licity is of unsuitable sign (i.ek;RM < 0) for a given sign  atA\? = A}, A3, or atA? = (A7 + \3)/2; see Figure 7 and
of RM. This is because the phase of the Faraday dispersiorequation (24).
function shows then significant dependence on Faraday depth

so the term)(z) cannot be pulled outside the integral of equa- 5. CROSS-CORRELATION ANALYSIS ORP| VERSUSRM
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Our present investigations have implications that help un-
derstand earlier work in the field. Recent surveys of potatiz
emission in the interstellar medium have provided continu-
ous distributions of) andU on the sky for certain ranges of
wavelengths. Due to finite beam size, only a small number of
independent lines of sight are available for analysis. b
magnetic helicity with a cross-correlation analysis betwe
RM and the polarization degré@ = | P|/pyI had been sug-
gested by Volegova & Stepanov (2010) using simulated data.
While the numerical demonstration of the method was con-
vincing, no theoretical proof or explanation had been avail
able yet. ;

To study this idea further, we imagine turbulence being ap-
proximated by a set of cells possessing locally a homogeneou
helical magnetic field as in equation (10). The dominating
scale of the turbulence can be attributed to the size of the
cells. The direction of each helix is taken to be random, but
for a large number of cells there are always some for which it
is almost parallel to the line of sight (top right panel of +ig
ure 8). Only such cells are considered in the following. In
Volegova & Stepanov (2010), the cross-correlation coefiiti
between synthetic maps ®M and the polarization degree
P was found to be positive (negative) when the total mag-
netic helicity in the domain was prevailingly positive (aeg
tlve)' Since the dlre.Ctlon OBH is random, the average Value. FIG. 8.— Set of cells each with a singly helical magnetic field ofifiee
of RM over all cells is zero. Then the cross-correlation coeffi- helicity. The tips of the vectors describe a left-handedapi
cientis determined by the average value of the proBOd@tP,
which can be considered as a weighted averagaNfwith
the weightP. Having in mind equation (11), we recall that
the maximum polarization corresponds to cells with positiv
helicity and positiveRM or, alternatively, negative helicity
and negativeRM. Minimum polarization comes from cells
with opposite sign of helicity an®M. Thus, if the number
of cells with positive and negative helicity is about the sam
then positive and negatiigMs are weighted equally and the
cross-correlation is zero. If the cells with positive (g
helicity are dominant, thefRM P) is positive (negative).

In the following, another test is suggested for the cross- RM/RM, RM/RM,
correlation diagnostics. We consider the averaged palariz
tion (| P|/poI) by averaging ovei?, using however only one Fic. 9.— Dependence ofP/pol) on RM for different wavenumbers
cell. In Figure 9 we show first the dependence|d?|/poI) (relative to a reference wavenumbar) and cases with positive and negative
onRM for different wavenumbers using a singly helical mag- curreth he2l|cmes (positive and negative valueskdfusing an average over
netic field. Here we have averaged over wavelengths in thel <A°/A1 <10
range0 < A% < \?. We see that, for positive (negative) he-

<J-B> positive <J:B> negative

<|P|/pol>

licities, the averaged polarization is largest for posiiimega- <JB> positive <JB> negative

tive) values ofRM. 047" ' ' 047" ' '
Next, in Figure 10 we show correlation plots using data , ¢ 3! e 1 o3l e

from Figure 7 for the case of a bi-helical field, where we take & b b

the average value 9P (\2)|/pol for 0 < A2/A2 < 10. We < 0.2} . 1 02} .

also compute the corresponding results for 1/2 and 1/10 of% . . ‘ ‘ . H

the reference value &M, namelyRM/RM, = 1,0.5,and v 91/, o o . 0.1r. e * 4]

0.1, whereRMoA? = 7. In the cases shown in Figure 7, the oold 8 @ ‘ 0.0 L. 8 §

current helicity(J - B) is negative, so the resulting polarized -1 0 1 -1 0 1

emission is small for positive values BM, but large for neg- RM/RM, RM/RM,

ative values oRM. This results in a negative correlation (see

right-hand panel of Figure 10), as expected from the arglysi ¢ 19 _ correlation betweeRM and(P/po1) for cases with positive

of Volegova & Stepanov (2010). Conversely, when we changeand negative current helicities. The size of the symbolsatsfithe value of

the signs oft; andks, which corresponds to positive current Bz/Bi in Figure 7.

helicity, the correlation is positive. Thus, our presersutes ) o

support the findings of Volegova & Stepanov (2010) at a qual- the example considered in Figure 10.

itative level and demonstrate, furthermore, that for Hielad

magnetic fields their method is more sensitive to currerit hel 6. TURBULENCE-GENERATED MAGNETIC FIELDS

city than to magnetic helicity, which has the opposite sign i In this paper we have analyzed an extremely simple model
of astrophysical magnetic fields. One potential problem is



B,=const, R\*=2n RAZ = 2m+0.6 RN = —2m+0.6
1 E 0.7
+5 : ]
_ o8l -2 +5 P
= 0.4 \ /
& 0.3
— 0.2
0.1
0.0

-10 -5 O 5 10 -10 -5 O 5 10 -10 -5 O 5 10

0.020 0.020 0.030
__ 0.015 0.015 0.025
& 0.020
« 0.010 0.010 0.015
@
= 0.005 0.005 0.010
0.005
0.000 0.000 0.000
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

2A%/ %] NN 2A%/IN3

FIG. 11.—B(2)2) (upper row) andP(2X2) (lower row) for turbulence-generated magnetic fields Viigh|k1| = 5, ignoring line-of-sight variations 0B
(left column), and including variations, shown in regionsaendiR is positive (middle column) and negative (right column). Thewas with numbers indicate
particular peaks that are discussed in the text.

the fact that the actual magnetic field possesses not just twescenario assumingg = const, S0 ¢(z) is linear inz. As
scales, but there is a continuous spectrum of scales. Tke oth in Figure 6, we consider first the complex varialfiewhich
problem is that the line-of-sight magnetic field is not canst characterizes the perpendicular magnetic field compoment i
S0 ¢(z) becomes nonlinear and is different for each line of the projected plane of the sky; see left column of Figure 11.
sight. To assess how the results from our idealized models ar |ts Fourier transform along the line of sigltfi(2>\2), averaged
affected by these issues, we now analyze a snapshot from @ver all points in the plane, shows clearly the small-scagm

turbulence simulation exhibiting large-scale dynamocacti netic field with positive helicity aeA?/|\?| = +5 and the
In our model, turbulence is driven through helical forcmg, |arge-sca|e magne[ic field with negati\/e magnetic he||any
as was also done in Brandenburg (2001), where the fOI‘CIHQQ)\Q/‘)\ﬂ = —1, corresponding to the lowest wavenumber of

acts only in a narrow band of wavenumbers with an averagethe domain. FoB| = const ando = 2, we can compute
valuek; that is five times larger than the smallest wavenumber |P(2)?)| as the Fourier transform @2. Its average over all

that fits into the computational domaii; |. Thus,ks/|k1| = points in the plane shows peaks2a /[\?| — —3 (which is

b. The resulting kinetic energy spectrum is, however, con- slightly lower than the expected valu€) and at+9 (which is

b e s sb o 1 Bolgs aape BIGNIY Delo e expected value o). Thus, we may ten-
! P y tatively conclude that the presence of a continuous spmctru

zsnfulzl;% Olnb ﬁfﬁggg?ﬁgrgﬁéi (Ozfogi?ggirfﬁzgg;ﬁ]g%ﬂw of scales in the magnetic field has a less serious effect on the
magnetic field in a physically meaningful way, we include polarization peaks than the nonllnearlty¢?z§hat will be dis-
shear. Our model is thus similar to that chpyla & Branden- ﬁussed PeXt' Thﬁ:e 'I(\?v howellver, %pleik . OaV\,I[h'-fdee
burg (2009), where dynamo waves are found to travel in the 1ave Not Seen in In€ wo-sca'e Model. /A more detared INspec-
span-wise direction. The boundary conditions are (shggrin tion shows that the overall depolarization is generaliyeat
periodic and the kinetic helicity has the same sign through- strtqng V\?hgn thle f!elti_|s t%rblrj]lelmit-rh'ss wsakezns }he cpmgen—
out the computational domain, so there is no equator in thig>aton of depofarization by ge icity (Section 2), leaving-

’ hind the finite polarization at¢ = 0 due to the contribution

model. of a meanB along the line of sight. We have verified that

Our simulation has been carried out using thenBiL B inaB
CobpE! with a resolution 0fl92% mesh points and is char- the removal of a meas, by replacm L= B - (B
can reduce the peak at = 0 in most cases.

acterized by the magnetic Reynolds and Prandtl nhumbers, Next, we consider the effect of the nonlinearityd:). It

fsmwilIuarglstézkéh:aiioara;rgeﬁg ;rs%n :kfl ,:r%s.?gc'ﬂiv:rlg, results in regions in the plane of the sky wh&és now either

urms 1S the rms velocity of the turbulence,is the magnetic ~ Positive or negative. Therefore, we present the r2e_su_|t£for
diffusivity, v is the kinematic viscosity, anfl = VU | is the ~ @ndP by averaging over only those points whetaj is in a
shear rate of the mean o certain interval Z_7r:i:0.6 and—%iO.Q; which is the case for

It turns out that the nonli'nearity af(z) is a much more about 6% of all lines of sight); see middle and last columns of

seious poblenthan e oxiience of & coninueus SPeCifS about 2. s argr than it of e il
' ' 9 he resulting spectrum still shows some of the characterist

peaks, but those corresponding to the large-scale field now

1 http://pencil-code.googlecode.com/
PP 9009 occur at longer wavelengths-2 or +4 for R = 0) and those
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When a galaxy is viewed edge-on, one can expect that its
toroidal magnetic field can provide the line-of-sight compo
nent needed to detect helicity of field vectors in the perpen-
dicular components. Dynamo theory predicts that this ttzdoi
field has the same orientation above and below the midplane
(Beck et al. 1996). However, the magnetic helicities of both
large-scale and small-scale fields would change sign abeut t
equatorial plane. Thus, it is conceivable that signatufés-o
helical magnetic fields would be detectable on only one of the
two sides around the midplane for a fixed direction/f.

For edge-on galaxies, this would correspond to two opposite
quadrants of detectability in the projection on the sky.

Radio emission at long (short) wavelengths would give in-

10 100 formation about magnetic fields with large (small) wavenum-
k/k,| bers, corresponding to small (large) length scales. Inxgala
ies, the typical scales of large-scale and small-scale mag-

L < . §
FIG. 12.— Three-dimensional magnetic energy and rescaled tyedjoec- netic fields arel kpe ands 0.1kpe, respectively. The cor

. 1 -1
tra for the snapshot analyzed in Figure 11. The red plus $iglisate positive reSpO.ndlng W_aVenumberS ab&pc andz 60kpc™ ", re-
helicity and the blue asterisks negative helicity. spectively. With the numbers given at the end of Section 2,

corresponding o the smallscale field at shorter waveleng! (o7 1 rCe Scale eld anty = I for e small-scale
+7.5 or —7 for R = 0). Thus, the overall result is much less 2" < ) .
clear than in the idealized model, but some basic featuras of ];'neell?é sselio:'voer\?(lel:)l:og;gslg}%f)&()zgl}f?ilig:tlr;(\)/\;glIdiettéiis”ﬁgce-su-
bl_Irrllelllzciglljfrlc(:Idlga\?vgtlgr?gvxid?hnémt%?ée—dimensional magnetic €SSary to sample both shorter and longer wavelengths. With
energy and helicity spectraZy; (k) and Hy(k), respec- the Square Kilometre Array, we expect to obtain polarizatio

tively. These spectra are normalized such that, (k) dk = [pnf:feuroefrients ig Othe r:)r;g: frcﬁnénkto 0 O 'th\./:ithomf; ij’_
1(B2) and [ Hy (k) dk = (A - B). The relative magnetic 1 =, onen 1 = bkpc -, WIS would al-
ﬁé|icit>y is dgfingd( a)gM _ IiHM(k>) /2E (), whose o :‘0"" aoeess tcﬁf@iggg‘gQ?“ fo ;ZO' E?rreszotrr‘]d'”g fo
ulus is between-1 and+1 (Moffatt 1978; Brandenburg & /oM Y.Uokpc 10 pc ~ (= 2.4pc ) and thus spa-

Subramanian 2005). As expected, the field is bi-helical with tid! scales betweed40 kpc and 3pc. This would well be
negative magnetic helicity at — |k, and a positive one at ~compatible with the requirements for the detection of mag-
k = ki = 5|k, butry is only about0.1, respectively. netic fields with helical and bi-helical properties in exiair

Contributions fromk > k¢ are not expected to be important galaxies by a safe margin. On the other hand, our estimates

because of the rapid decline of spectral power proportitmal "€ Still quite rough and not yet based on actual turbulent dy
k2. However, unlike the case without shear (Fig. 1b of Bran- N2MO simulations such as those of Gressel et al. (2008). For

denburg et al. 2012), there is no clear separation of scats a €*@mMPple, if the value at. B was smaller by a factor of 10 or
the local peak ak — k; is barely noticeable. more, this would easily necessitate access to the longex-wav

{ength range. More importantly, contributions of the small

Based on the results of this section, we can conclude thal i ic field & Id sub al ken the d
the reason for the departure|df(A\?)| from the ideal case is Scale magnetc fie | would substantially weaken the de-

partly the low degree of relative magnetic helicity. Howgve Pendence of polarization ok’. Preliminary turbulence sim-
another important reason is the occurrence of a polarizatio ulations suggest that this is indeed the case, althoughahe b
peak at zero wavelength. It can interfere with the other peak Sic features of the bi-helical magnetic field resulting fram

and thereby contaminate the polarization signal also aroth turbulent dynamo can still be identified even then. Further
wavelengths. studies of such more realistic models will be needed to asses

the critical value of small-scale contributions that cah lsé
7. CONCLUSIONS tolerated inB)|. There are also constraints from limited sensi-

Our present investigations have shown that a helical mag-iivity and confusion of the signal due to turbulence affegti
netic field with a suitable sign of helicity can compensate all spatial scales corresponding to radio wavelengths e@bov
Faraday depolarization and shift the polarized emissiém in A2 One might speculate that this might have a tendency of
the observable range. In practice, the magnetic field has conreducing the radio wavelength of the peak resulting from the
tributions from a superposition of magnetic fields with dif- Small-scale magnetic field and enhancing the wavelength of
ferent wavenumbers and helicities. For bi-helical magneti the peak resulting from the large-scale field. )
fields, the bulk of the polarized emission is shifted to wave- _ An alternative diagnostic for the presence and sign of he-
lengths whose value depends on the average wavenumber dicity in the case of a continuous spectrum of scales is the
the magnetic field. Thus, even though one of the two con- Cross-correlation analysis of Volegova & Stepanov (2010).
stituents in isolation might not be detectable (see, ehg, t Surveys of pol_anze_d emission from_ diffuse turbule_nt sesrc
top right panel of Figure 7), it could become observable be- N the magnetized interstellar medium could provide appro-
cause the signature of its presence would have been Carriegr'a\te data. The presence of positive current helicity can b
into the observable range (rows 3-5 on the right of Figure 7). detécted by observing positive RM in highly polarized regio
However, it is equally well possible that most of the poladz ~ i the sky and negative RM in weakly polarized regions. Con-
emission would have been shifted out of the observable range/€rsely, negative magnetic helicity can be detected byrobse

(lower panels on the left of Figure 7). In that case, verjelitt  nd negative RM in highly polarized regions and positive RM
polarized emission can be expected. in weakly polarized regions. The cross-correlation coieffic

1072
1078
107
107°
107°
1077
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between the degree of polarization and RM provides the rele-for providing an inspiring atmosphere, where the present
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to A = \/N/27RM ~ 8-10cm, where we have assumed National Allocations Committee at the Center for Parallel

N = 2 for the number of nodes in the slab. Howeughi can ~ Computers at the Royal Institute of Technology in Stock-
show large variations and values B§0rad m—2 have been  holm and the National Supercomputer Centers in bjikg,
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APPENDIX
A. CONCERNING EQUATIONS (1)—(3)

The purpose of this appendix is to clarify alternative définis of equations (1)—(3) in the literature. They are eab the
position of the observer, the direction of the line-of-gigiagnetic field, and the sign of the Faraday depth. We disttuss
variants, referred to as I, Il, and Ill. A commonly adoptediaat is to place the observer at— oo and write equation (2) as
(e.g. Donner & Brandenburg 1990; Brandenburg et al. 199BoIB& et al. 1998)

P(\?) :po/ €(2)e2 TN 4 (variant 1) (A1)
Another convenient variant is to place the observer-at0 and write equation (2) instead as
oo
P()\?) :po/ e(2)e2 TN 4 (variants Il and I11) (A2)
0

A second more crucial point concerns definition of the Fayatpthe(z). For variant | (e.g. Donner & Brandenburg 1990;
Brandenburg et al. 1993; Sokoloff et al. 1998), the choiabigous

o(z) = K / n.(s)By(s)ds (variant I) (A3)
However, when the observer isat= 0, one can define
6(z) = K / ne(s)B - kds (variants Il and 11l (A%)
0

wherek is a unit vector pointing either toward the source (Burn )3figtoward the observer (Frick et al. 2001). Thus, we have
either (Burn 1966; Frick et al. 2010, 2011)

o(z) = K/Ozne(s)B|(s) ds (variant II), (A5)

or, as in the present paper and in many others (Frick et all;@ntjens & de Bruyn 2005; Heald et al. 2009),

0 z
6(x) = K / ne(s)By(s)ds = —K /0 ne(s)By(s)ds  (variant Il) (6)
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This formulation is also equivalent to the now-common riotatvhere one writes (e.g. Heald 2009; Braun et al. 2010; @el3
etal. 2013)

observer

o(z) =K neB - dl (variant Ill), (A7)

source

becauseB - dl is the same as ous|(s) ds, while source and observer correspond &ndo, so the integral goes fromto 0.

Concerning the definition af(z), we emphasize that Faraday rotation of the polarizationgisa physical process that does
not depend on the coordinate system or the position of therabs Apparently, the sense of clockwise or counterclas&w
rotation depends on the position of the observer with resjpethe polarization plane. Consider two observers, Olesefvat
z = 0 looking in the direction of-oco and Observer B at = +oco looking towardz = 0. The Faraday rotation corresponds then
to an increase (decrease) of the polarization angle ifuithg) plane with increasing (decreasing)i.e., for a wave approaching
Observer B (Observer A). However, both observers will sagtarclockwise rotation of the polarization plane of theves A
common convention is that positive RM means that the linsigiit magnetic field between the source and the observatspoi
toward the observer. This is the case for equation (A3) andhtmn (A6) withRM = dy/dA?. On the other hand, with
equation (A5) one would need to writM = —dy/d\?, which is mathematically correct, but not recommended awof
RM synthesis techniques where Faraday depth is used withatime convention as RM. We conclude therefore that the only
meaningful definitions are either equation (A1) with eqoatfA3) (variant 1) or equation (A2) with equation (A6) (vanit III).
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