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ABSTRACT
Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity

can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization
planes from a spatially extended source. For radio emissionfrom a helical magnetic field, the polarization as
a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speak-
ing, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We
demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dis-
persion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be
detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized
regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized
regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents
with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks
at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization
peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by
a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Fi-
nally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external
galaxies using the Square Kilometre Array.
Subject headings: galaxies: magnetic fields — methods: data analysis — polarization

1. INTRODUCTION

For many decades, polarized radio emission from external
galaxies has been used to infer the strength and structure of
their magnetic field. This emission is caused by relativistic
electrons gyrating around magnetic field lines and producing
the polarized synchrotron emission. The plane of polarization
gives an indication about the electric (and thus magnetic) field
vectors at the source of emission. The line-of-sight compo-
nent of the field can be inferred through the Faraday effect that
leads to a wavelength-dependent rotation of the plane of po-
larization. The resulting change of the angle of the polariza-
tion plane over a certain wavenumber interval gives the rota-
tion measure (RM), whose variation across different positions
within external galaxies gives an idea about the global struc-
ture of the magnetic fields of these galaxies (Sofue et al. 1986;
Beck et al. 1996, 2005; Fletcher 2010; Beck & Wielebinski
2013).

In practice, an observer will always see a superposition of
different polarization planes from different depths, which can
lead to a reduction in the degree of polarization. Firstly, the
orientation of the magnetic field changes, causing different
polarization planes at different positions. Secondly, Faraday
rotation causes the plane of polarization to rotate. The de-
crease in polarized emission resulting from this superposition
is referred to as Faraday depolarization. This was regardedas
a problem that can be alleviated partially by restricting one-
self to observations at shorter wavelengths (Soida et al. 2011).
This situation has changed with the advent of new genera-
tions of radio telescopes that can measure polarized emission
over a broad and continuous range of wavelengths. This al-
lows one to apply the method of Burn (1966) that utilizes the

wavelength-dependent depolarization to determine the distri-
bution of radio sources with respect to Faraday depth (Brent-
jens & de Bruyn 2005; Heald et al. 2009; Gießübel et al. 2013;
Frick et al. 2011). However, the interpretation of distributed
magnetic fields still remains a challenge (Beck et al. 2012;
Bell & Enßlin 2012).

Of particular interest to the present study is the possibil-
ity of detecting helicity of the magnetic field. The helicity
of the magnetic field reflects the linkage of the magnetic
field (Moffatt 1978). In the context of the large-scale mag-
netic field in galaxies, one can think of the linkage between
the poloidal and toroidal magnetic field components. Three-
dimensional visualizations of these two components together,
such as Fig. 5 of Donner & Brandenburg (1990), show that
the magnetic field lines describe a spiralling pattern. An-
other manifestation of a helical field is the rotation of a mag-
netic field vector perpendicular to the line of sight. Deter-
mining the presence of such swirling magnetic field patterns
would be an important step toward understanding the nature
of the underlying dynamo process that is needed to achieve
better agreement between observations and theory of astro-
physical dynamos. A promising result for probing magnetic
helicity in the interstellar medium has been obtained by Vole-
gova & Stepanov (2010), who have shown that a helical tur-
bulent magnetic field produces a nonzero cross-correlationof
RM and the degree of polarization. The sign of the cross-
correlation coefficient permits one to define the sign of the
total magnetic helicity. However, the theoretical background
of this approach was not clearly understood. Subsequent at-
tempts by Junklewitz & Enßlin (2011) and Oppermann et al.
(2011) did not clarify this effect either, because they excluded
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FIG. 1.— Sketch illustrating position of source and observer.

the effect of Faraday depolarization from the beginning. To
explain the results of Volegova & Stepanov (2010), we stress
the fact that, if the magnetic field is helical, i.e., the mag-
netic field lines spiral toward or away from the observer, the
resulting Faraday depolarization can be either enhanced orre-
duced, depending on the relative signs of magnetic helicity
and the line-of-sight component of the magnetic field and thus
RM. In a related paper by Horellou & Fletcher (2014), this
effect was used to study the polarized intensity in selected
wavelength ranges for both signs of helicity. The exploita-
tion of this effect, which was first discussed by Sokoloff et
al. (1998) as an anomalous depolarization due to a twisted
magnetic field, is an important motivation behind the present
paper.

While the effect of a helical magnetic field is easily under-
stood for simple magnetic spirals, it becomes less obvious in
the case of more complicated fields. We are here particularly
interested in helical magnetic fields consisting of constituents
that have large and small length scales with opposite signs of
magnetic helicity. Such fields are called bi-helical and areof
central importance in dynamo theory (for a review, see Bran-
denburg & Subramanian 2005) and have also been detected
in the solar wind (Brandenburg et al. 2011) and on the solar
surface (Zhang et al. 2014). There is now also some evidence
for helical magnetic fields in the jets emanating from active
galactic nuclei (Reichstein & Gabuzda 2012). We first dis-
cuss the observational signatures of singly helical fields and
turn then to the case of bi-helical magnetic fields. Next, we
discuss a method referred to as cross-correlation analysisus-
ing magnetic field configurations similar to those studied in
the first part of the paper. Those fields are used to mimic the
effects of turbulence consisting of randomly oriented patches
with singly helical or bi-helical fields oriented randomly in
the sky. Finally, we present preliminary results from more re-
alistic magnetic field configurations generated by a turbulent
dynamo in the presence of shear. We conclude with a dis-
cussion of the possibilities of detecting helical and bi-helical
magnetic fields in external galaxies using the Square Kilome-
tre Array.

2. COMPENSATING DEPOLARIZATION

The synchrotron emission of magnetized interstellar or in-
tergalactic media is commonly observed through its total in-
tensity,

I(λ2) =

∫ ∞

0

ǫ(z, λ) dz, (1)

and through the StokesQ andU parameters combined into a
complex polarization as

P (λ2) ≡ Q+ iU = p0

∫ ∞

0

ǫ(z, λ)e2i(ψ(z)+φ(z)λ
2) dz, (2)

at a given point in the sky. Herep0 is the intrinsic polariza-
tion (depending on the energy spectrum of the cosmic rays),
ǫ(z, λ) ∝ nc(z)B

σ
⊥(z)f(λ) is the polarized emissivity with

σ ≈ 1.9 being an exponent related to the spectral index

FIG. 2.— Sketch illustrating the combined effects of Faraday rotation and
a helical magnetic field. For a uniform magnetic field, contributions from
different depths lead to different angles of the polarization plane. Thus, Fara-
day rotation alone would lead to Faraday depolarization (sum of the phases
of all contributions from the first row), but whenB⊥ is a helical field rotat-
ing properly about thez-axis (second row), the contributions from different
depths lead to the sameobserved polarization angle (last row) and Faraday
depolarization is thus compensated.

(Ginzburg & Syrovatskii 1965),nc is the cosmic-ray elec-
tron density,B⊥ is the strength of the magnetic field perpen-
dicular to the line of sight,f(λ) ∝ λσ−1 is a wavelength-
dependent factor,ψ(z) is the intrinsic polarization angle,
K = 0.81m−2 cm3 µG−1 pc−1 is a constant (Pacholczyk
1970),λ is the wavelength,

φ(z) = −K

∫ z

0

ne(s)B‖(s) ds. (3)

is the Faraday depth,ne is the electron density (dominated by
thermal electrons),B‖ is the magnetic field along the line of
sight, andz is a coordinate along the line of sight in a Carte-
sian coordinate system,(x, y, z). Note that equation (3) im-
plies that the Faraday depth is positive when the mean mag-
netic field points toward the observer atz = 0; see Figure 1
and Appendix A for alternative conventions concerning equa-
tions (1)–(3). Variations across the sky are here ignored, so
there is no dependence onx andy; see Donner & Branden-
burg (1990), Elstner et al. (1992), Brandenburg et al. (1993),
and Urbanik et al. (1997) for early applications to mean-field
dynamos where this restriction was relaxed. Note thatǫ also
depends onλ through a factorf(λ), but this term can be
moved outside the integral, so it does not constitute a prin-
ciple problem (Brentjens & de Bruyn 2005; Bell & Enßlin
2012), and we shall ignore this complication here. Theob-
served polarization angle is

χ(λ2) = 1
2Arctan(U,Q), (4)

where Arctan returns all angles in the range from−π to π,
whose tangent yieldsU/Q. It is not to be confused with the
intrinsic polarization angleψ(z).

SinceB is assumed independent ofx andy, the divergence-
free condition implies thatB‖ = Bz = const ≡ B‖0. While
the assumed independence ofx and y may be justified for
large-scale fields, it is certainly problematic for small-scale
fields. This will be addressed in Section 6. We write the
perpendicular magnetic fieldB⊥ = (Bx, By, 0) in complex
form,

B(z) ≡ Bx(z) + iBy(z) = B⊥(z) e
iψB(z) (5)

with its phaseψB = Arctan(By, Bx). The intrinsic polariza-
tion angleψ is related toψB by

ψ = ψB − π/2. (6)
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Here theπ/2 term comes from the fact that the plane of polar-
ization is parallel to the electric field and perpendicular to the
magnetic field of the radio wave, which, in turn, is parallel to
the ambient fieldB⊥. [Note that this term is sometimes omit-
ted; see Waelkens et al. (2009) for such an example. Sokoloff
et al. (1998) included it, but dropped the resulting minus sign
after their equation (16).] Due to the factor2 in the expo-
nent of equation (2), which is a consequence of the definition
of the Stokes parameters being essentially squared quantities,
the phase of the magnetic field has aπ ambiguity. This is a
serious restriction, because it means that the underlying mag-
netic field cannot be determined fully without additional as-
sumptions.

We now want to determine a condition on the structure of
the magnetic field under which the integral in equation (2)
gives maximum contribution, that is, for which the Faraday
depolarization is minimal. As was already shown by Sokoloff
et al. (1998), this is the case when, for a certain value ofλ, the
phase2(ψ(z) + φ(z)λ2) is a constant. For the purpose of the
present discussion we assume constant values ofB⊥, ne, and
nc, denoted byB⊥0, ne0, andnc0, respectively. Therefore,
φ(z) = −Kne0B‖0z is linear inz, and so the (half) phase
under the integral in equation (2) is given by

ψ(z) + φ(z)λ2 = ψ(z)−Kne0B‖0λ
2z, (7)

which becomes independent ofz and equal to a constantψ0,
giving thus maximum contribution to the integral, when

ψB(z) = ψ0 − kz, (8)

whereψ0 is an arbitrary phase shift and

k = −Kne0B‖0λ
2 (9)

is the required wavenumber of the magnetic field. A simi-
lar condition was also derived by Arshakian & Beck (2011),
without however explicitly making reference to the helicalna-
ture of the magnetic field.

Equation (8) implies that we have aunique solution for the
magnetic field that gives maximum contribution to the inte-
gral in equation (2) by essentially canceling the Faraday de-
polarization from theexp(2iφλ2) term, as illustrated in Fig-
ure 2. Inserting equation (8) into equation (5) and assuming
B⊥ = const, we have

B =
(

B⊥0 cos(kz − ψ0),−B⊥0 sin(kz − ψ0), B‖0

)

. (10)

Such a twisted magnetic field withψB(z) ∝ z is a Beltrami
field and has been considered by Sokoloff et al. (1998) for the
demonstration of anomalous depolarization.

As motivated above, we are interested in the magnetic he-
licity of the field. It is defined as〈A · B〉, where angu-
lar brackets denote volume averaging andA is the mag-
netic vector potential withB = ∇ × A and components
A = (Bx/k,By/k + xB‖0, 0). Here the linearly varying
componentxB‖0 is needed to give the constantB‖ = B‖0,
but this contribution averages out in the calculation of the
magnetic helicity,

〈A ·B〉 = k−1B2
⊥0. (11)

Another quantity of interest, which is based on the current
densityJ = ∇ × B/µ0 with µ0 being the vacuum perme-
ability, is the current helicity,〈J · B〉 = kB2

⊥0/µ0. In the
present example, it has the same sign as〈A·B〉 and is positive
(negative) for positive (negative) values ofk. Note also that

ψB decreases (increases) withz when the magnetic helicity is
positive (negative). Somewhat surprisingly, this impliesthat
the tips of the magnetic field vectors describe a left-handed
(right-handed) spiral when magnetic helicity is positive (neg-
ative).

For agiven magnetic field, that is, prescribedk andB‖0,
|P (λ2)| as a function ofλ becomes maximal if equation (9)
holds, that isλ2 = −k/Kne0B‖0. Obviously, onlyλ2 >
0 is observable, so only negative (positive) helicities can be
detected via the observation of a maximum of|P (λ2)| if B‖0

is positive (negative), i.e., the field points away from (toward)
the observer.

To give an example for typical values of the radio wave-
length expected from magnetic fields in the interstellar
medium and in external galaxies, let us takek = 2π/ kpc for
the wavenumber of a field of one kpc scale,ne0 = 0.03 cm−3

(Taylor & Cordes 1993), andB‖0 = 3µG, then|P (λ2)| peaks
at λ ≈ 30 cm. To probe fields with larger (smaller) length
scales, one would need shorter (longer) wavelengths of the
radio emission.

3. FARADAY DISPERSION FUNCTION

To characterize the observational signature of a helical
magnetic field, we compute the corresponding complex po-
larization as a function ofλ2 using equation (2). For the pur-
pose of further analysis the polarization can be expressed as a
Fourier integral,

P (λ2) =

∫ ∞

−∞

F (φ) e2iφλ
2

dφ, (12)

where
F (φ) = f(φ) e2iψ(φ) (13)

is called the Faraday dispersion function (Burn 1966) with
f(φ) = |F (φ)|. Provided that equation (3) defines a strictly
monotonous functionφ(z), we havedφ/dz 6= 0 and can
change variables fromz to φ in equation (2), and we write

f(φ) = −p0ǫ(φ)/Kne(φ)B‖(φ), (14)

where the denominator is justdφ/dz resulting from the trans-
formation fromz to φ. The factor2 in the exponent of equa-
tion (13) results in theπ ambiguity. It is therefore useful to
characterize signatures of helical magnetic fields directly in
terms ofF (φ). This is particularly important, because there
is, at least in principle, the chance to reconstructF (φ) from
P (λ2) using Fourier transformation with respect to the conju-
gate variable2λ2 (Burn 1966). Given the lack of any informa-
tion aboutP (λ2) for λ2 < 0 we define the synthesized Fara-
day dispersion function (Burn 1966; Brentjens & de Bruyn
2005),

Fsyn(φ) =
1

2π

∫ ∞

0

P (λ2) e−2iφλ2

d(2λ2), (15)

which is supposed to be a reasonable approximation of the
actualF (φ), which would be obtained if the integral in equa-
tion (15) were from−∞ to∞.

We now consider a concrete example using equation (10)
with k = k1 to construct a magnetic field in a slab of thickness
L with 0 ≤ z < L. In the following, we take|k1| = 2π/L,
i.e., we have within the slab just two nodes in each of the two
components ofB⊥. Outside this range, we assumeB⊥ = 0,
but we keepB‖ = B‖0 everywhere. The Faraday depth,
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φ = −Kne0B‖0z, is a uniformly varying coordinate and
R ≡ φ(L) = −Kne0B‖0L is the equivalent intrinsic Faraday
rotation measure or simply the Faraday thickness of the slab.
Thenǫ(φ) 6= 0 is the range0 ≤ φ/R ≤ 1. For normalization
purposes we introduce here the wavelengthλ1. It is given by

λ21 = −k1/Kne0B‖0 (16)

and determines the peak of the modulus of the resulting com-
plex polarization,

P (λ2) = p0I P̂
(

R(λ2 − λ21)
)

, (17)

where
P̂ (ξ) =

(

1− e2iξ
)/

2iξ (18)

is Burn’s non-dimensional depolarization function, indicated
by a hat. It applies in the absence of magnetic helicity to a uni-
form slab of Faraday thicknessR. Note that in our normaliza-
tion, P̂ (0) = −1, where the minus sign is a consequence of
theπ/2 term in equation (6). Note also thatd arg(P̂ )/dξ = 1,
in spite of the factor2 in the exponential function in equa-
tion (18).

The resulting polarizationP (λ2) is characterized by two
independent parameters of the magnetic field,k1 andB‖0,
which are represented byλ21 andR in equation (17). To an-
alyze the form ofP (λ2), we consider its modulus and half-
phaseχ(λ2) and compare the corresponding functionsF (φ)
andFsyn(φ) for a helical magnetic field with positive heli-
city (k1 > 0) and different signs ofλ21 (Figure 3 forλ21 > 0
and Figure 4 forλ21 < 0). We see that, as expected,|P (λ2)|
shows a peak atλ2 = λ21, and the sign ofλ21 depends only
on that of the product ofk1 andB‖0. The polarization an-
gle increases (decreases) withλ2 for k1 > 0 as shown in
Figure 3b (Figure 4b). This means that the observed rota-
tion measure,RM = dχ/dλ2, is positive (negative). Indeed,
the caseλ21k1 > 0 corresponds toRM > 0 (B‖0 < 0, B‖ to-
ward the observer), whileλ21k1 < 0 corresponds toRM < 0
(B‖0 > 0, B‖ points away from the observer).

We note thatRM does not depend onλ2 and that its value
is half the Faraday thickness of the slab, i.e.,RM = R/2.
As mentioned above, the reason for the 1/2 factor lies in the
mathematical fact that the gradient of the phase ofP̂ in equa-
tion (18) is1 and not2. It is in agreement with the interpre-
tation that for|F (φ)| = const, RM is the average value ofφ
across the source with0 ≤ φ/R ≤ 1.

Looking at Figs. 3b and 4b, we confirm that at the position
of the peak atλ2 = λ21 the value ofχ(λ2) is π/2. Again,
this is a consequence of theπ/2 term in equation (6) resulting
from the phase shift between magnetic and electric fields of
the radio wave and the resulting effect on the plane of polar-
ization. Note also thatχ(λ2) jumps byπ/2 whenP (λ2) = 0,
which is the case whenλ2−λ21 is a non-vanishing half-integer
multiple of |λ21|. Unlike the jump atλ2 = λ21 by π because
of π ambiguity, theπ/2 jumps are physical singularities in
the polarization angle as a function ofλ2. Theseπ/2 dis-
continuities were also noted by Burn (1966) and are a natural
consequence of decomposing a complex function with zeros
such as equation (18) into modulus and phase.

Since the product ofk1 andRM is positive in Figure 3, po-
larized emission occurs now in the range0 < λ2 < ∞ and
would therefore be observable. As expected, the synthesized
Fsyn(φ) agrees therefore fairly well with the originalF (φ);

FIG. 3.— (a) |P (λ2)|, (b) χ(λ2) = arg(P )/2, (c) real and imaginary
parts ofF (φ), (d) |F (φ)|, and (e)ψ(φ) for a magnetic field with positive
helicity k1 > 0 and positiveλ2

1
> 0. In panels (a) and (b), the unobservable

rangeλ2 < 0 is marked in gray. In panels (c)–(e), the quantities for the
synthesized Faraday dispersion function are overplotted as red dashed lines.

compare the black with the red dashed lines in Figure 3. Real
and imaginary parts ofF (φ) andFsyn(φ) are phase-shifted
by π/2 relative to each other, which is indicative of a heli-
cal field; see equation (10). Note also that|F (φ)| is constant
andψ(φ) is decreasing with increasingφ, as seen from equa-
tion (8). Again, the agreement betweenF (φ) andFsyn(φ) is
rather good.

If k1RM < 0, the peak occurs at negative values ofλ2

and is thus unobservable. In that case, there would be essen-
tially no polarized emission and the RM-synthesized Faraday
dispersion function is very poor; see Figure 4c–e. A quanti-
tative analysis of the reconstruction of the Faraday dispersion
function for different wavelength ranges and radio telescopes
is given by Horellou & Fletcher (2014). The width of the
polarization peaks depends onR. It is sharper for a thicker
emitting region and broader for a thinner one. In the limit of
an infinitely thick slab,P (λ2) becomes aδ function with no
side lobes, so the remaining discrepancy betweenF (φ) and
Fsyn(φ) in Figure 3c–e would disappear. Perfect reconstruc-
tion of a non-helical magnetic field in a slab can be achieved
only with additional assumptions about the symmetry of the
source (Frick et al. 2010).

4. BI-HELICAL MAGNETIC FIELDS
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FIG. 4.— Same as Figure 3, but forλ2
1
< 0, keeping howeverk1 > 0.

In galaxies, magnetic fields are thought to be produced and
maintained by a turbulent dynamo involving a so-calledα
effect. This leads to helical large-scale magnetic fields (e.g.
Moffatt 1978). However, since magnetic helicity is an invari-
ant in ideal magnetohydrodynamics (Woltjer 1958), no net
magnetic helicity can be produced. Instead, a bi-helical mag-
netic field is generated, which has an additional small-scale
constituent of opposite magnetic helicity. This is an idealized
situation, because in reality there will be magnetic helicity
fluxes (Kleeorin et al. 2000) that influence the local helicity
balance. Nevertheless, to study this idealized case in more
detail, we consider as a simple example the following one-
dimensional, bi-helical magnetic field:

B =

(

B1 cos k1z +B2 cos(k2z + ϕ)
−B1 sin k1z −B2 sin(k2z + ϕ)

B‖0

)

, (19)

wherek1 is the wavenumber of the constituent with amplitude
B1 k2 is that of the constituent with amplitudeB2, andϕ is an
arbitrary phase shift between the two constituents. The mag-
netic and current helicities of the total field are respectively
given by

〈A ·B〉 = k−1
1 B2

1 + k−1
2 B2

2 , µ0〈J ·B〉 = k1B
2
1 + k2B

2
2 .

(20)
Thus, the field has zero magnetic helicity when−k2/k1 =
B2

2/B
2
1 and zero current helicity whenB2

2/B
2
1 is −k1/k2,

which is just the inverse scale ratio. The latter situation is
realized in a periodic domain after a resistive timescale (Bran-
denburg 2001), while the former is expected to hold on short
timescales (Field & Blackman 2002; Blackman & Branden-
burg 2002). As alluded to above, in reality there are magnetic
helicity fluxes. In practice, they tend to lead to a situationthat
is between these two extreme cases (Brandenburg et al. 2009).

We emphasize that the sign ofki (with i = 1 or 2) deter-
mines also the sign of the helicity of the corresponding field
constituent. In the following we takek1 > 0 andk2 < 0
with |k2| > k1, so the field with amplitudeB1 is a large-
scale field with positive helicity, and that with amplitudeB2

is a small-scale one with negative helicity. This is also the
situation expected to be applicable to the upper disk plane of
galaxies, i.e., where the angular velocity vector points inthe
opposite direction as gravity.

We vary k1 and k2 to identify features in the results for
P (λ2) andF (φ) that can be related to these wavenumbers.
We define corresponding wavenumbers in Faraday space

λ2i = −ki/Kne0B‖0, (21)

which we use to define the two quantities

λ2p = (λ21 + λ22)/2 and ∆λ2 = (λ21 − λ22)/2. (22)

Note that, even though each of the two constituents of the bi-
helical field has a constant modulus, the modulus of the sum
is not constant. Instead, it is seen from the example shown in
Figure 6 that it varies periodically like

|B̂|2 ∼ cos(2φ∆λ2 − ϕ). (23)

Under the assumption that the exponent of the polarized emis-
sivity is σ = 2, an analytic solution equation (2) can be given
in terms of Burn’s depolarization function (18) as

P (λ2)/p0I= ǫ1P̂
(

R(λ2 − λ21)
)

+ ǫ2P̂
(

R(λ2 − λ22)
)

+ ǫpP̂
(

R(λ2 − λ2p)
)

, (24)

whereǫ1 = B2
1/B

2
∗ , ǫ2 = B2

2/B
2
∗ , andǫp = 2B1B2/B

2
∗ ,

withB2
∗ = B2

1 +B
2
2 +2B1B2 sinc(2∆λ2), are normalization

constants. There are three peaks ofP (λ2): two peaks are
located atλ21 andλ22 and a third one appears atλ2p. They are
shown in Figure 5 for the caseB2/B1 = 1. As is clear from
equation (24), the separation between adjacent peaks is given
by |∆λ2|. This solution is independent of the phase shiftϕ
between the two constituents.

To understand the signatures of a bi-helical magnetic field
in the Faraday dispersion function, let us recall that the
wavenumbers of each of the two constituents contribute to
the gradientdψ/dφ. It is therefore plausible that in the case
B1 = B2 the result is just the average of the two, i.e.,

dψ/dφ = −λ2p. (25)

This property ofdψ/dφ is preserved regardless of theπ am-
biguity. To demonstrate this, we compare in Figure 6 both
ψB ≡ Arctan(By, Bx) (all angles in the range from−π to π
that yieldBy/Bx) andψ′

B = arctan(By/Bx), which is con-
fined to the range from−π/2 to π/2. As stated in Section 2,
dψB/dφ is negative when the productkB‖0 is positive. This
is indeed in agreement with Figure 6.
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FIG. 5.— |P (λ2)| for different values ofk1 andk2 andB2/B1 = 1 using
RM > 0. The unobservable rangeλ2 < 0 is marked in gray.

Interestingly,ψ′
B is simpler thanψB in that the former has

no phase jumps other than those required forψ′
B to remain

in the range from−π/2 to π/2. By contrast,ψB shows
phase jumps byπ at all locations where|B| vanishes; com-
pare Figs. 6(a) and (b). Ignoring these phase jumps, i.e., re-
constructing the field from|B| andψ′

B , instead ofψB , would
render the underlying magnetic field discontinuous.

Our statements can be confirmed by evaluating equa-
tion (24) or by computing numerically examples for different
combinations ofk1 andk2; see also Figure 5. Thus, we can
summarize that a bi-helical magnetic field with wavenumbers
k1 andk2 results in a clear signature in the Faraday dispersion
function in that the frequency of its modulus is given by2∆λ2

(Figure 6a), while indeeddψ/dφ = −λ2p (Figure 6b).
To appreciate the features of a bi-helical magnetic field in

the complex polarizationP , let us note that a Fourier transfor-
mation of the complex functionB, defined in equation (5) and
now applied to the bi-helical field defined in equation (19),
would produce peaks at wavenumbersk1 andk2. However,
in the Fourier transformation defined through equation (12),
wavenumbers correspond to the Fourier variable2λ2. Thus, if
the Faraday dispersion function was given byB(φ) the corre-
sponding Fourier transform̂B(2λ2) shows peaks at2λ2/λ21 =

FIG. 6.— (a)|B|2(φ), (b)ψB(φ) andψ′
B
(φ), (c) B̂(2λ2), and (d)P (2λ2)

for a bi-helical magnetic field withk2/k1 = −5 usingRM > 0. In panel
(b), the dashed blue lines correspond toπ/2− φ|λ2

1
| and3π/2− φ|λ2

1
| and

mark the points where the phase ofψB(φ) jumps.

1 andk2/k1 = −5; see Figure 6c. In reality, the Faraday dis-
persion function is given byB2 (assuming hereσ = 2). A
Fourier transformation of such a squared function has a peak
atk1+k2 and side lobes atk1+k2±|k1−k2| = 2k1 or 2k2.
Thus, the corresponding Fourier transform, which we can now
call P (2λ2), has peaks at2λ2/λ21 = 2 and2k2/k1 = −10,
together with a larger one in between; see Figure 6d.

The above considerations assume that the amplitudes of the
two constituents are approximately equal. WhenB2/B1 is
either very small or very large, the type of the resulting po-
larization signal will be determined by the dominating one
of the two constituents. Figure 7 confirms that the peak at
λ2 = λ2p diminishes whenB2/B1 becomes either much larger
than unity or much smaller than unity. Not surprisingly, a
peak atλ2 = λ22 begins to emerge whenB2 becomes large
(bottom panels of Figure 7), and one atλ2 = λ21 emerges
whenB1 becomes large (top panels of Figure 7). In the latter
case, however, most of the polarized emission occurs formally
for λ2 < 0.

Figure 7 suggests that two of the peaks have a similar height
when〈J ·B〉 = 0 (second row of Figure 7) or when〈A·B〉 =
0 (fourth row of Figure 7). While this is not a general result,
there is, however, a tendency for those two peaks to survive
even in the limits of very large or very small ratios of|k1/k2|.
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FIG. 7.— Dependence of|P (λ2)| for different values ofB1/B2 andk2/k1 = −5 usingRM > 0 (left column) andRM < 0 (right column). The region
with λ2 < 0 is marked in gray. The analytic solutions withσ = 2 are shown as red dotted lines, while the numerical one forσ = 1.9 is shown as a black solid
line. ForB2/B1 = 0.45 in the second row we have〈J ·B〉 = 0 while for 2.24 in the fourth row we have〈A ·B〉 = 0.

Our considerations of helical and bi-helical magnetic fields
have shown that the distributions ofP (λ2) are asymmetric
with respect toλ = 0. This underlines again that the re-
construction of missing data for negative values ofλ2 from
symmetry arguments, e.g., thatP (−λ2) = P ∗(λ2), would
be impossible when the magnetic field is helical and the he-
licity is of unsuitable sign (i.e.,k1RM < 0) for a given sign
of RM. This is because the phase of the Faraday dispersion
function shows then significant dependence on Faraday depth,
so the termψ(z) cannot be pulled outside the integral of equa-

tion (2), which is a critical assumption often made in this con-
nection (Burn 1966).

It is remarkable that in all cases with helical magnetic fields,
there is a particular valueλ2 for which the polarization ap-
proaches the maximum value of|P |/p0I = 1. Depending on
the relative strengths ofB1 andB2, this peak can be either
at λ2 = λ21, λ22, or atλ2p = (λ21 + λ22)/2; see Figure 7 and
equation (24).

5. CROSS-CORRELATION ANALYSIS OF|P | VERSUSRM
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Our present investigations have implications that help un-
derstand earlier work in the field. Recent surveys of polarized
emission in the interstellar medium have provided continu-
ous distributions ofQ andU on the sky for certain ranges of
wavelengths. Due to finite beam size, only a small number of
independent lines of sight are available for analysis. Probing
magnetic helicity with a cross-correlation analysis between
RM and the polarization degreeP ≡ |P |/p0I had been sug-
gested by Volegova & Stepanov (2010) using simulated data.
While the numerical demonstration of the method was con-
vincing, no theoretical proof or explanation had been avail-
able yet.

To study this idea further, we imagine turbulence being ap-
proximated by a set of cells possessing locally a homogeneous
helical magnetic field as in equation (10). The dominating
scale of the turbulence can be attributed to the size of the
cells. The direction of each helix is taken to be random, but
for a large number of cells there are always some for which it
is almost parallel to the line of sight (top right panel of Fig-
ure 8). Only such cells are considered in the following. In
Volegova & Stepanov (2010), the cross-correlation coefficient
between synthetic maps ofRM and the polarization degree
P was found to be positive (negative) when the total mag-
netic helicity in the domain was prevailingly positive (nega-
tive). Since the direction ofB‖ is random, the average value
of RM over all cells is zero. Then the cross-correlation coeffi-
cient is determined by the average value of the productRMP,
which can be considered as a weighted average ofRM with
the weightP. Having in mind equation (11), we recall that
the maximum polarization corresponds to cells with positive
helicity and positiveRM or, alternatively, negative helicity
and negativeRM. Minimum polarization comes from cells
with opposite sign of helicity andRM. Thus, if the number
of cells with positive and negative helicity is about the same,
then positive and negativeRMs are weighted equally and the
cross-correlation is zero. If the cells with positive (negative)
helicity are dominant, then〈RMP〉 is positive (negative).

In the following, another test is suggested for the cross-
correlation diagnostics. We consider the averaged polariza-
tion 〈|P |/p0I〉 by averaging overλ2, using however only one
cell. In Figure 9 we show first the dependence of〈|P |/p0I〉
onRM for different wavenumbers using a singly helical mag-
netic field. Here we have averaged over wavelengths in the
range0 < λ2 ≤ λ21. We see that, for positive (negative) he-
licities, the averaged polarization is largest for positive (nega-
tive) values ofRM.

Next, in Figure 10 we show correlation plots using data
from Figure 7 for the case of a bi-helical field, where we take
the average value of|P (λ2)|/p0I for 0 < λ2/λ21 ≤ 10. We
also compute the corresponding results for 1/2 and 1/10 of
the reference value ofRM, namelyRM/RM0 = 1, 0.5, and
0.1, whereRM0λ

2
1 = π. In the cases shown in Figure 7, the

current helicity〈J ·B〉 is negative, so the resulting polarized
emission is small for positive values ofRM, but large for neg-
ative values ofRM. This results in a negative correlation (see
right-hand panel of Figure 10), as expected from the analysis
of Volegova & Stepanov (2010). Conversely, when we change
the signs ofk1 andk2, which corresponds to positive current
helicity, the correlation is positive. Thus, our present results
support the findings of Volegova & Stepanov (2010) at a qual-
itative level and demonstrate, furthermore, that for bi-helical
magnetic fields their method is more sensitive to current heli-
city than to magnetic helicity, which has the opposite sign in

FIG. 8.— Set of cells each with a singly helical magnetic field of positive
helicity. The tips of the vectors describe a left-handed spiral.

FIG. 9.— Dependence of〈P/p0I〉 on RM for different wavenumbersk
(relative to a reference wavenumberk1) and cases with positive and negative
current helicities (positive and negative values ofk) using an average over
0 < λ2/λ2

1
≤ 10.

FIG. 10.— Correlation betweenRM and〈P/p0I〉 for cases with positive
and negative current helicities. The size of the symbols reflects the value of
B2/B1 in Figure 7.

the example considered in Figure 10.

6. TURBULENCE-GENERATED MAGNETIC FIELDS

In this paper we have analyzed an extremely simple model
of astrophysical magnetic fields. One potential problem is
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FIG. 11.— B̂(2λ2) (upper row) andP (2λ2) (lower row) for turbulence-generated magnetic fields withk2/|k1| = 5, ignoring line-of-sight variations ofB‖

(left column), and including variations, shown in regions whereR is positive (middle column) and negative (right column). The arrows with numbers indicate
particular peaks that are discussed in the text.

the fact that the actual magnetic field possesses not just two
scales, but there is a continuous spectrum of scales. The other
problem is that the line-of-sight magnetic field is not constant,
so φ(z) becomes nonlinear and is different for each line of
sight. To assess how the results from our idealized models are
affected by these issues, we now analyze a snapshot from a
turbulence simulation exhibiting large-scale dynamo action.

In our model, turbulence is driven through helical forcing,
as was also done in Brandenburg (2001), where the forcing
acts only in a narrow band of wavenumbers with an average
valuekf that is five times larger than the smallest wavenumber
that fits into the computational domain,|k1|. Thus,k2/|k1| =
5. The resulting kinetic energy spectrum is, however, con-
tinuous fork > kf and extends until the dissipative cutoff
wavenumber, whose value depends on the Reynolds number;
see Fig. 1b of Brandenburg et al. (2012) for a higher resolution
simulation. To model the effects of a significant line-of-sight
magnetic field in a physically meaningful way, we include
shear. Our model is thus similar to that of Käpyl̈a & Branden-
burg (2009), where dynamo waves are found to travel in the
span-wise direction. The boundary conditions are (shearing)
periodic and the kinetic helicity has the same sign through-
out the computational domain, so there is no equator in this
model.

Our simulation has been carried out using the PENCIL

CODE1 with a resolution of1923 mesh points and is char-
acterized by the magnetic Reynolds and Prandtl numbers,
Rm ≡ urms/ηkf = 120 and PrM ≡ ν/η = 1, respectively,
as well as the shear parameter Sh= S/urmskf = 0.16. Here
urms is the rms velocity of the turbulence,η is the magnetic
diffusivity, ν is the kinematic viscosity, andS = |∇U | is the
shear rate of the mean flowU .

It turns out that the nonlinearity ofφ(z) is a much more
serious problem than the existence of a continuous spectrum
of scales. To demonstrate this, we begin with the best-case

1 http://pencil-code.googlecode.com/

scenario assumingB‖ = const, soφ(z) is linear inz. As
in Figure 6, we consider first the complex variableB, which
characterizes the perpendicular magnetic field component in
the projected plane of the sky; see left column of Figure 11.
Its Fourier transform along the line of sight,B̂(2λ2), averaged
over all points in the plane, shows clearly the small-scale mag-
netic field with positive helicity at2λ2/|λ21| = +5 and the
large-scale magnetic field with negative magnetic helicityat
2λ2/|λ21| = −1, corresponding to the lowest wavenumber of
the domain. ForB‖ = const andσ = 2, we can compute
|P (2λ2)| as the Fourier transform ofB2. Its average over all
points in the plane shows peaks at2λ2/|λ21| = −3 (which is
slightly lower than the expected value−2) and at+9 (which is
slightly below the expected value of+10). Thus, we may ten-
tatively conclude that the presence of a continuous spectrum
of scales in the magnetic field has a less serious effect on the
polarization peaks than the nonlinearity ofφ that will be dis-
cussed next. There is, however, a peak atλ2 = 0, which we
have not seen in the two-scale model. A more detailed inspec-
tion shows that the overall depolarization is generally rather
strong when the field is turbulent. This weakens the compen-
sation of depolarization by helicity (Section 2), leaving be-
hind the finite polarization atλ2 = 0 due to the contribution
of a meanB⊥ along the line of sight. We have verified that
the removal of a meanB⊥ by replacingB⊥ → B⊥−〈B⊥〉‖
can reduce the peak atλ2 = 0 in most cases.

Next, we consider the effect of the nonlinearity ofφ(z). It
results in regions in the plane of the sky whereR is now either
positive or negative. Therefore, we present the results forB̂
andP by averaging over only those points whereRλ21 is in a
certain interval (2π±0.6 and−2π±0.6; which is the case for
about 6% of all lines of sight); see middle and last columns of
Figure 11. In those points the rms value of the mean magnetic
field is about 2.5 times larger than that of the fluctuating field.
The resulting spectrum still shows some of the characteristic
peaks, but those corresponding to the large-scale field now
occur at longer wavelengths (−2 or +4 for R ≷ 0) and those
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FIG. 12.— Three-dimensional magnetic energy and rescaled helicity spec-
tra for the snapshot analyzed in Figure 11. The red plus signsindicate positive
helicity and the blue asterisks negative helicity.

corresponding to the small-scale field at shorter wavelengths
(+7.5 or−7 for R ≷ 0). Thus, the overall result is much less
clear than in the idealized model, but some basic features ofa
bi-helical field can still be identified.

In Figure 12 we show the three-dimensional magnetic
energy and helicity spectra,EM (k) and HM (k), respec-
tively. These spectra are normalized such that

∫

EM (k) dk =
1
2 〈B

2〉 and
∫

HM (k) dk = 〈A · B〉. The relative magnetic
helicity is defined asrM = kHM (k)/2EM (k), whose mod-
ulus is between−1 and+1 (Moffatt 1978; Brandenburg &
Subramanian 2005). As expected, the field is bi-helical with
negative magnetic helicity atk = |k1| and a positive one at
k = kf = 5|k1|, but rM is only about∓0.1, respectively.
Contributions fromk > kf are not expected to be important
because of the rapid decline of spectral power proportionalto
k−2. However, unlike the case without shear (Fig. 1b of Bran-
denburg et al. 2012), there is no clear separation of scales and
the local peak atk = kf is barely noticeable.

Based on the results of this section, we can conclude that
the reason for the departure of|P (λ2)| from the ideal case is
partly the low degree of relative magnetic helicity. However,
another important reason is the occurrence of a polarization
peak at zero wavelength. It can interfere with the other peaks
and thereby contaminate the polarization signal also at other
wavelengths.

7. CONCLUSIONS

Our present investigations have shown that a helical mag-
netic field with a suitable sign of helicity can compensate
Faraday depolarization and shift the polarized emission into
the observable range. In practice, the magnetic field has con-
tributions from a superposition of magnetic fields with dif-
ferent wavenumbers and helicities. For bi-helical magnetic
fields, the bulk of the polarized emission is shifted to wave-
lengths whose value depends on the average wavenumber of
the magnetic field. Thus, even though one of the two con-
stituents in isolation might not be detectable (see, e.g., the
top right panel of Figure 7), it could become observable be-
cause the signature of its presence would have been carried
into the observable range (rows 3–5 on the right of Figure 7).
However, it is equally well possible that most of the polarized
emission would have been shifted out of the observable range
(lower panels on the left of Figure 7). In that case, very little
polarized emission can be expected.

When a galaxy is viewed edge-on, one can expect that its
toroidal magnetic field can provide the line-of-sight compo-
nent needed to detect helicity of field vectors in the perpen-
dicular components. Dynamo theory predicts that this toroidal
field has the same orientation above and below the midplane
(Beck et al. 1996). However, the magnetic helicities of both
large-scale and small-scale fields would change sign about the
equatorial plane. Thus, it is conceivable that signatures of bi-
helical magnetic fields would be detectable on only one of the
two sides around the midplane for a fixed direction ofB‖.
For edge-on galaxies, this would correspond to two opposite
quadrants of detectability in the projection on the sky.

Radio emission at long (short) wavelengths would give in-
formation about magnetic fields with large (small) wavenum-
bers, corresponding to small (large) length scales. In galax-
ies, the typical scales of large-scale and small-scale mag-
netic fields are1 kpc and<∼ 0.1 kpc, respectively. The cor-
responding wavenumbers are6 kpc−1 and>∼ 60 kpc−1, re-
spectively. With the numbers given at the end of Section 2,
the corresponding radio wavelengths would beλ1 = 30 cm
for the large-scale field andλ2 >∼ 1m for the small-scale
field; see Horellou & Fletcher (2014) for more detailed esti-
mates. However, to resolveP (λ2) sufficiently well, it is nec-
essary to sample both shorter and longer wavelengths. With
the Square Kilometre Array, we expect to obtain polarization
measurements in the range from2 cm to 6m. With our es-
timate of λ1 = 30 cm for k1 = 6kpc−1, this would al-
low access toλ2/λ21 from 0.004 to 400, corresponding tok
from 0.03 kpc−1 to 2400 kpc−1 (= 2.4 pc−1) and thus spa-
tial scales between240 kpc and 3 pc. This would well be
compatible with the requirements for the detection of mag-
netic fields with helical and bi-helical properties in external
galaxies by a safe margin. On the other hand, our estimates
are still quite rough and not yet based on actual turbulent dy-
namo simulations such as those of Gressel et al. (2008). For
example, if the value ofneB‖ was smaller by a factor of 10 or
more, this would easily necessitate access to the longer wave-
length range. More importantly, contributions of the small-
scale magnetic field toB‖ would substantially weaken the de-
pendence of polarization onλ2. Preliminary turbulence sim-
ulations suggest that this is indeed the case, although the ba-
sic features of the bi-helical magnetic field resulting froma
turbulent dynamo can still be identified even then. Further
studies of such more realistic models will be needed to assess
the critical value of small-scale contributions that can still be
tolerated inB‖. There are also constraints from limited sensi-
tivity and confusion of the signal due to turbulence affecting
all spatial scales corresponding to radio wavelengths above
λ2. One might speculate that this might have a tendency of
reducing the radio wavelength of the peak resulting from the
small-scale magnetic field and enhancing the wavelength of
the peak resulting from the large-scale field.

An alternative diagnostic for the presence and sign of he-
licity in the case of a continuous spectrum of scales is the
cross-correlation analysis of Volegova & Stepanov (2010).
Surveys of polarized emission from diffuse turbulent sources
in the magnetized interstellar medium could provide appro-
priate data. The presence of positive current helicity can be
detected by observing positive RM in highly polarized regions
in the sky and negative RM in weakly polarized regions. Con-
versely, negative magnetic helicity can be detected by observ-
ing negative RM in highly polarized regions and positive RM
in weakly polarized regions. The cross-correlation coefficient
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between the degree of polarization and RM provides the rele-
vant statistical diagnostics. Alternatively, polarization can be
used instead of polarization degree. However, in that case a
nonzero cross-correlation coefficient would be harder to dis-
tinguish.

Other possible targets where one can search for helical
magnetic fields include the ejecta from active galactic nuclei,
where evidence for swirling magnetic fields has been pre-
sented recently (Reichstein & Gabuzda 2012), and supernova
remnants, which can accelerate cosmic-ray protons across the
shock, leading to a current with a component parallel to the
magnetic field, which drives current helicity and anα effect
(Rogachevskii et al. 2012). The typical radio wavelengths as-
sociated with helical magnetic fields can be estimated based
on their estimated Faraday depths. For the supernova rem-
nant G296.5+10.0, Harvey-Smith et al. (2010) found regions
with RM = −14 radm−2 and 28 radm−2, corresponding
to λ =

√

N/2πRM ≈ 8–10 cm, where we have assumed
N = 2 for the number of nodes in the slab. However,RM can
show large variations and values of130 radm−2 have been
suggested for G152.4-2.1 (Foster et al. 2013), which would
correspond toλ = 3.4 cm. This would still be within the
limits of what is feasible with present and future facilities.
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APPENDIX

A. CONCERNING EQUATIONS (1)–(3)

The purpose of this appendix is to clarify alternative definitions of equations (1)–(3) in the literature. They are related to the
position of the observer, the direction of the line-of-sight magnetic field, and the sign of the Faraday depth. We discussthree
variants, referred to as I, II, and III. A commonly adopted variant is to place the observer atz → ∞ and write equation (2) as
(e.g. Donner & Brandenburg 1990; Brandenburg et al. 1993; Sokoloff et al. 1998)

P (λ2) = p0

∫ ∞

−∞

ǫ(z)e2i(ψ(z)+φ(z)λ
2) dz (variant I). (A1)

Another convenient variant is to place the observer atz = 0 and write equation (2) instead as

P (λ2) = p0

∫ ∞

0

ǫ(z)e2i(ψ(z)+φ(z)λ
2) dz (variants II and III). (A2)

A second more crucial point concerns definition of the Faraday depthφ(z). For variant I (e.g. Donner & Brandenburg 1990;
Brandenburg et al. 1993; Sokoloff et al. 1998), the choice isobvious

φ(z) = K

∫ ∞

z

ne(s)B‖(s) ds (variant I). (A3)

However, when the observer is atz = 0, one can define

φ(z) = K

∫ z

0

ne(s)B · k ds (variants II and III), (A4)

wherek is a unit vector pointing either toward the source (Burn 1966) or toward the observer (Frick et al. 2001). Thus, we have
either (Burn 1966; Frick et al. 2010, 2011)

φ(z) = K

∫ z

0

ne(s)B‖(s) ds (variant II), (A5)

or, as in the present paper and in many others (Frick et al. 2001; Brentjens & de Bruyn 2005; Heald et al. 2009),

φ(z) = K

∫ 0

z

ne(s)B‖(s) ds = −K

∫ z

0

ne(s)B‖(s) ds (variant III). (A6)
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This formulation is also equivalent to the now-common notation where one writes (e.g. Heald 2009; Braun et al. 2010; Gießübel
et al. 2013)

φ(z) = K

∫ observer

source

neB · dl (variant III), (A7)

becauseB · dl is the same as ourB‖(s) ds, while source and observer correspond toz and0, so the integral goes fromz to 0.
Concerning the definition ofφ(z), we emphasize that Faraday rotation of the polarization plane is a physical process that does

not depend on the coordinate system or the position of the observer. Apparently, the sense of clockwise or counterclockwise
rotation depends on the position of the observer with respect to the polarization plane. Consider two observers, Observer A at
z = 0 looking in the direction of+∞ and Observer B atz = +∞ looking towardz = 0. The Faraday rotation corresponds then
to an increase (decrease) of the polarization angle in the(x, y) plane with increasing (decreasing)z, i.e., for a wave approaching
Observer B (Observer A). However, both observers will see counterclockwise rotation of the polarization plane of the waves. A
common convention is that positive RM means that the line-of-sight magnetic field between the source and the observer points
toward the observer. This is the case for equation (A3) and equation (A6) withRM = dχ/dλ2. On the other hand, with
equation (A5) one would need to writeRM = −dχ/dλ2, which is mathematically correct, but not recommended in view of
RM synthesis techniques where Faraday depth is used with thesame convention as RM. We conclude therefore that the only
meaningful definitions are either equation (A1) with equation (A3) (variant I) or equation (A2) with equation (A6) (variant III).
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