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1 Introduction

In the standard Shakura & Sunyaev (1973) accre-
tion disk solution, the mass accretion rate Ṁ in-

creases with surface density Σ. Since the early
1980s, it is well known that a monotonous increase
of Ṁ with Σ implies viscous stability of the disk,
while a negative dependence where the slope

s ≡ d ln Ṁ/d lnΣ (1)

implies instability (Bath & Pringle, 1981, 1982;
Meyer & Meyer-Hofmeister, 1981, 1982; Cannizzo
et al., 1982). Shakura & Sunyaev (1973) found
s = 10/7 for moderately hot disks in which the
opacity is governed by bound-free transitions, which
is well approximated by the Kramers opacity. For
hotter disks – when the dominant opacity is given
by electron scattering, the slope s is still positive,
but the value is now ??. The slope also depends
on the equation of state. For moderately hot disks,
the perfect gas equation is appropriate, but in hot-
ter disks radiation pressure becomes dominant.
Particularly interesting are cases where the de-

pendence Ṁ(Σ) can be my multivalued, i.e. differ-
ent values of Ṁ are possible for the same value of
Σ. This is relevant for explaining so-called high and
low accretion states. In such a case the dependence
of Ṁ on Σ is S shaped. The different branches are
believed to be associated with the onset of convec-
tion (ref?).
A major uncertainty in modelling accretion discs

is the nature of turbulence. Since the 1990s, the
source of turbulence is generally believed to be the
magnetorotational instability (Balbus & Hawley,
1991, 1992; Hawley & Balbus, 1991, 1992). Here,
a moderately strong magnetic field leads to the de-
velopment of turbulence (Hawley et al., 1995). The
magnetic field can either be external to the disk,
e.g., the field from the central object, or it could be
generated by an internal dynamo within the disk. In
the latter case, the dynamo is driven entirely from
MRI-driven turbulence. This requires a doubly-

positive feedback between the magneto-rotational
and dynamo instabilities. Local numerical simu-
lations using the shearing box approximation have
shown that this mechanism can lead to sustained
turbulence with a finite accretions stress (sum of
Reynolds and Maxwell stresses) of the appropriate
sign for being able to tap energy from the differen-
tial rotation (Brandenburg et al., 1995; Hawley et
al., 1996; Stone et al., 1996). This energy feeds
a turbulent cascade toward progressively smaller
length scales where eventually microphysical vis-
cous and ohmic dissipation convert this energy into
heat. The resulting heating is usually described in
terms of a turbulent viscosity and would thus be
proportional to the square of the shear rate. The
turbulent viscosity is assumed to be proportional
to a certain fraction of the local sound speed and
the local pressure scale height. This assumption is
plausible, but details are not borne out by numer-
ical simulations, which instead suggest significant
corrections to the assumed quadratic dependence of
the shear rate (Abramowicz et al., 1996; Hawley et
al., 1999; Pessah et al., 2007). Also the vertical de-
pendence of the heating rate follows a more compli-
cated profile than what is expected from the simple
parameterization in terms of a turbulent viscosity.
For these reason it is crucial to perform numeri-
cal simulations in suitable settings with radiation
transport included.

In a local model of an accretion disk, owing to
the use of shearing-periodic boundaries, no net mass
enters or leaves the computational domain. Thus,
the mean density and therefore also Σ is on aver-
age constant. In such a simulation, we can there-
fore not expect an evolution of Σ. The shearing-
periodic boundary conditions also do not permit an
accretion flow, because left and right sides of the
box are equivalent, and there is no way of telling
whether the accreting body would lie to the left or
the right of the shearing box. However, there can
still be a turbulent stress and there could also be
corresponding disk solutions that could in principle
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jump between different states.

The goal of the present work is to explore the
nature of high and low accretion state solutions in
a parameter regime that is relevant to cataclysmic
variables. Given the importance of the opacity for
radiation transport and to be able to identify the
dominant physical processes, it is useful to keep cer-
tain properties of the opacity adjustable. We do
this by using a combination of Kramers-like opaci-
ties with adjustable exponents. This has been use-
ful in previous studies of stellar atmospheres, where
it turned out that, at least in the gray approxima-
tion, one naturally obtains polytropic layers when
the exponents of of the Kramers opacity are held
had fixed. To keep the model sufficiently simple,
we also ignore here variable ionization.

We begin by constructing one-dimensional hy-
drostatic equilibrium solutions. These can be ob-
tained by simple integration from the surface in-
wards. However, it is at least equally insightful to
obtain such solutions using the same timestepping
method as the one used for obtaining MRI solutions
in the shearing box approximation.

2 Governing equations

We solve the hydrodynamic equations for logarith-
mic density ln ρ, velocity u, and specific entropy s,
in the form

D ln ρ

Dt
= −∇ · u,

ρ
Du

Dt
= −∇P − 2Ω× ρu+ ρgeff +∇ · (2νρS),

ρT
DS

Dt
= −∇ · Frad + 2νρS2 +H,

where P is the gas pressure, g is the gravita-
tional acceleration, ν is the viscosity, S = 1

2 [∇u +
(∇u)T ]− 1

3 I∇ ·u is the traceless rate-of-strain ten-
sor, I is the unit tensor, T is the temperature, and
Frad is the radiative flux. For the equation of state,
we assume a perfect gas with p = (R/µ)Tρ, where
R is the universal gas constant and µ is the mean
molecular weight. The pressure is related to ρ and
S via P = ργ exp(S/cv), where the adiabatic in-
dex γ = cp/cv is the ratio of specific heats at con-
stant pressure and constant volume, respectively,
and cp − cv = R/µ. To obtain the radiative flux,
we adopt the gray approximation, ignore scatter-
ing, and assume that the source function S (not
to be confused with the rate-of-strain tensor S)

is given by the frequency-integrated Planck func-
tion, so S = (σSB/π)T

4, where σSB is the Stefan–
Boltzmann constant. The negative divergence of
the radiative flux is then given by

−∇ · Frad = κρ

∮

4π

(I − S) dΩ, (2)

where κ is the opacity per unit mass (assumed
independent of frequency) and I(x, t, n̂) is the
frequency-integrated specific intensity correspond-
ing to the energy that is carried by radiation per
unit area and per unit time in the direction n̂

through a solid angle dΩ. We obtain I(x, t, n̂) by
solving the radiative transfer equation,

−n̂ ·∇I = κρ (I − S), (3)

along a set of rays in different directions n̂ using
the method of long characteristics.
To explore different solutions, it is useful to be

able to control the value and functional form of the
opacity. We therefore choose a Kramers-type opac-
ity given by

κ = κ0ρ
aT b, (4)

where a and b are considered as free parameters that
characterize the relevant radiative processes. We
compute the radiative conductivity K(ρ, T ), which
is given by

K(ρ, T ) =
16σSBT

3

3κρ
=

16σSBT
3−b

3κ0ρa+1
. (5)

We note that, in a plane-parallel polytropic atmo-
sphere, T (z) varies linearly with height z and in the
stationary state, K(ρ, T ) is constant in the optically
thick part. This implies that ρ is proportional to
Tn, where

n =
3− b

1 + a
(6)

is the polytropic index (not to be confused with the
direction of a ray n̂).

3 Comparison with vertically

integrated disks

Use
4σSBT

4−b
c

3κ0Σ1+a
H = 1

2νtΣ(
3
2Ω)

2 (7)

or

4σSB(R/µ)−(4−b)c
2(4−b)
s

3κ0Σ1+a
H = 1

2νtΣ(
3
2Ω)

2 (8)
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which leads to

c2(4−b)
s H = KνtΣ

2+aΩ2 (9)

where

K =
27κ0

32σSB

(

R
µ

)4−b

(10)

Eliminate sound speed and νt, so

Ω2(4−b)H2(4−b)H = KαSSΩH
2Σ2+aΩ2 (11)

collect
Ω5−2bH7−2b = KαSSΣ

2+a (12)

Combine with angular momentum conservation
νtΣ = ṁ, so

αSSΩH
2Σ = ṁ ≡ Ṁ/3π (13)

to eliminate Σ, so we find

Ω5−2bH7−2b = KαSS(ṁ/αSSΩH
2)2+a (14)

or

Ω2+aH2(2+a)Ω5−2bH7−2b = Kṁ2+aα
−(1+a)
SS (15)

so

Ω7+a−2bH11+2a−2b = Kṁ2+aα
−(1+a)
SS (16)

Using Ω(r) = r3/2/
√
GM , we haveH = H(r), given

by

H11+2a−2b = Kṁ2+aα
−(1+a)
SS Ω−(7+a−2b) (17)

Alternatively, using Eq. (13), we can determine Σ =
Σ(r) as

(ṁ/αSSΩΣ)
(11+2a−2b)/2 = Kṁ2+aα

−(1+a)
SS Ω−(7+a−2b)

(18)
so

ṁ7/2−b = Kα
9/2−b
SS Ω−3/2+bΣ11/2+a−b (19)

or

Σ11/2+a−b = ṁ7/2−bK−1α
−9/2+b
SS Ω3/2−b (20)

The important relation is νt versus Σ, so now we
find

ṁ ∝ Σ(11+2a−2b)/(7−2b) (21)

For Kramers’ opacity, a = 1 and b = −7/2, the
exponent is (11+2a−2b)/(7−2b) = 20/14 = 10/7,
which is the familiar result. The exponent becomes
negative when 11 + 2a− 2b < 0, i.e.,

b > 11/2 + a = 13/2 = 6.5 (for a = 1) (22)

which is just a bit less than the value for H− opacity,
or

b > 6 (for a = 1/2), (23)

which is more appropriate for H− opacity.

Figure 1: Slopes (11+2a−2b)/(7−2b) as a function
of a and b (upper panel) and polytropic index n =
(3− b)/(1 + a) (lower panel).

Table 1:

variable code units cgs units
Σ g cm−3 Mm 108 g cm−2

Ṁ g cm−3 Mm2 km s−1 1021 g s−1

≈ 1.5−5M⊙ yr−1

4 Simulation strategy

In a local model of an accretion disk, the domain is
(shearing-) periodic in the horizontal directions and
the boundaries in the vertical direction are closed,
so the mass in the domain is conserved and equal
to the value given by the initial condition.
relative hydro stress:

ρuxuy/
√

ρu2
x ρu2

y (24)

is around −0.34
Alpha:

αK
SS = ρuxuy/

3
2ρΩ

2H2 (25)

αM
SS = −BxBy/µ0/

3
2ρΩ

2H2 (26)

or
αK
SS = uxuy/

3
2Ω

2H2 (27)

αM
SS = −BxBy/ρµ0/

3
2ρΩ

2H2 (28)
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Figure 2: Analytic radiative equilibrium solutions

5 Hydrostatic, non-turbulent

disk structure

dF

dz
= H(z) (29)

dT

dz
= −F/K (30)

dP

dz
= −ρg (31)

where g = Ω2z is the local gravitational accelera-
tion.
Assume H = const for z ≤ Lheat and 0 otherwise,

so F = Hmin(z, Lheat). Then

dT

dz
= −Hmin(z, Lheat)/K (32)

dP

dz
= −ρΩ2z (33)

Divide by each other

dT

dP
=

H
KρΩ2

min(Lheat/z, 1) (34)

d lnT

d lnP
=

HP

KρTΩ2
min(Lheat/z, 1) (35)

Use P = RTρ/µ, and define

∇rad =
HR/µ

KΩ2
min(Lheat/z, 1). (36)

So we would need to solve d lnT/d lnP = ∇rad, but
with convection we have mixing, so the actual tem-
perature gradient becomes equal to the adiabatic
one and therefore

d lnT

d lnP
= min(∇rad,∇ad) (37)

and ∇ad = 1− 1/γ.
In Fig. 14 we show the magnetic field at the pe-

riphery of the computational domain. Note that the
magnetic field is strongest some distance away from
the midplane where the density is lower. While this
results agrees with earlier findings (?) the magnetic
field is here unrealistically weak near the midplane,
This could be an artifact having used moderately
low resolution and correspondingly larger overall
magnetic diffusion.

6 Disk parameters

H = cmax
s /Ω (38)

Ṁ = 3π
2H0LH

( 32Ω)
2

(39)

factor 2?
αSS = Ṁ/3π ΣΩH2 (40)

σSBT
4
eff = (Ṁ/3π) ( 32Ω)

2 (41)

7 Comparison with time inte-

gration

In Figs. 6 and 7 we verify solutions with Pencil 1D.
∆P = ∆z2/2H2

P and HP =
√

RT/µ/Ω.

8 Problems with vertical disk

integration

−16σSBT
3−b

3κ0ρ1+a

dT

dz
=

∫

H dz (42)

4σSBT
4−b

3κ0Σ1+a
Ha = νtΣ(

3
2Ω)

2 (43)
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Figure 5: Comparison of solutions for Σ = 3.6 ×
10−7. κ0 = 2 × 1012, with Kramers/H− opacity
using aH− = 1, bH− = 4, and T0 = 2× 104 K, ρ0 =
10−5 g cm−3. Note that the models on the upper
and middle branches are convectively unstable (top-
heavy and negative vertical entropy gradient).

9 Mixing-length treatment

A relatively simple treatment of convection is to
set ∇ equal to ∇ad when ∇rad > ∇ad and equal
to ∇rad otherwise. A shortcoming of this approach
is that the energy flux balance is ignored: the ra-
diative flux is now too low and now expression for

Figure 6: Comparison between analytic solution
(dashed, black) and Pencil Code solution (solid,
red) for the H state solution with H0 = 1.4× 10−5.

Figure 7: Same as Fig. 6, but for the M solution
with H0 = 6 × 10−6. Note that the parameters Σ
and αSS are the same in both cases.

the convective energy flux is adopted. In standard
mixing length theory (MLT), the convective energy
flux is proportional to the superadiabatic gradient,
∇−∇ad, which would obviously be zero in the prim-
itive approach of setting ∇ = ∇ad in the convection
zone. Instead, we now set the total flux equal to
the sum of radiative and convective energy fluxes.
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Figure 8: Comparison of different ∇ as a function
of z for H0 = 10−3, Ṁ = 5.8 × 10−5, and Σ =
6.3× 10−6.

Figure 9: Ratio ∇/∇rad, which corresponds to the
ratio of radiative to total flux when ∇/∇rad < 0.
(back) and ratio of convective to total flux (red) in
the improved mixing length model.

The kinetic energy flux is usually neglected in stan-
dard MLT, but simulations of solar convection have
shown that it is about 30% of the total flux in the
bulk of the convection zone. Since both the en-
thalpy flux and the kinetic energy flux scale in the
same way, it is possible to subsume both into a com-
mon expression for the convective energy flux such
that

Ftot = Frad + Fconv. (44)

The radiative flux is still given by Eq. (??) and ∇
is still the actual logarithmic temperature gradient,
but now it is no longer equal to ∇rad. Instead, ...

• what is the KH time scale for given κ0? How

Figure 10: Growth of Alfvén speed in a turbulent
MRI simulation. (Different solutions are patched
together.)

Figure 11: Energy dissipation (magnetic red, and
kinetic blue) as a function of t. No external heating
has been applied.

does it depend on ρ?

• How is Tmid related to Σ?

• Discuss strategy of fixing H.

• Plot T vs τ .
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Torkelsson, U. 1995, ApJ, 446, 741

Cannizzo, J. K., Ghosh, P., & Wheeler, J. C. 1982,
ApJ, 260, L83

Cannizzo, J. K. 1992, ApJ, 385, 94

Figure 14: Visualization of Bz on the periphery of
the computational domain.

Figure 15: Mean temperature versus t and z.

Hawley, J. F. & Balbus, S. A. 1991, ApJ, 376, 223

Hawley, J. F., Balbus, S. A. 1992, ApJ, 400, 595

Hawley, J. F., Balbus, S. A., &Winters, W. F. 1999,
ApJ, 518, 394

Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995,
ApJ, 440, 742

Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996,
ApJ, 464, 690

7



Figure 16: Total, magnetic (red), and kinetic (blue)
stresses.

Hirose, S., Blaes, O., Krolik, J. H., Coleman, M. S.
B., & Sano, T. 2014, ApJ, 787, 1

Meyer, F. & Meyer-Hofmeister, E. 1981, A&A, 104,
L10

Meyer, F. & Meyer-Hofmeister, E. 1982, A&A, 106,
34

Pessah, M. E., Chan, C.-k., & Psaltis, D. 2007, ApJ,
668, L51

Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24,
337

Shaviv, G., & Wehrse, R. 1991, A&A, 251, 117

Stone, J. M., Hawley, J. F., Gammie, C. F., & Bal-
bus, S. A. 1996, ApJ, 463, 656

$Header: /var/cvs/brandenb/tex/helena/SSdisk/notes.tex,v 1.37 2020/03/18 18:01:56 brandenb Exp $

8



Figure 3: S curve for αSS = 5× 10−3 (red), 2× 10−3 (black), and 10−1 (blue). The slope for the unstable
branch is close to −5, while those for the stable branches are close to 10/7. The red vertical line denotes
Σ = 3× 10−7 g cm−3 Mm = 0.3 g cm−2.
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Figure 4: S curve for αSS = 5 × 10−3 (red), 2 × 10−3 (black), and with convection and αSS = 5 × 10−3

(blue), The dash-dotted lines indicate the slopes 10/7 for the two stable branches without convection,
5/2 with convection, ad −5 for the unstable branch.
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