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ABSTRACT
We analyze the nature of dynamo action that produces horizontally averaged magnetic fields
in two particular flows that were studied by Roberts (1972, Phil. Trans. R. Soc. A 271, 411),
namely his flows II and III. They have zero kinetic helicity either pointwise (flow II), or on
average (flow III). Using direct numerical simulations, we determine the onset conditions
for dynamo action at moderate values of the magnetic Reynolds number. Using the test-field
method, we show that the turbulent magnetic diffusivity is then positive for both flows. How-
ever, we demonstrate that for both flows large-scale dynamo action occurs through delayed
transport. Mathematically speaking, the magnetic field at earlier times contributes to the elec-
tromotive force through the off-diagonal components of theα tensor such that a zero mean
magnetic field becomes unstable to dynamo action. This represents a qualitatively new mean-
field dynamo mechanism not previously described.
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1 INTRODUCTION

The magnetic fields in various astrophysical settings are generally
believed to be produced by dynamo processes, which convert ki-
netic energy into magnetic. Small-scale dynamos produce mag-
netic energy at scales smaller than or equal to that of the under-
lying motions, large-scale dynamos at larger scales. Both types of
dynamos play important roles in astrophysics. We may character-
ize large-scale dynamos by the governing mechanism in the corre-
sponding mean-field description. One of the best known of these
mean-field effectsis theα effect. It quantifies the component of
the mean electromotive force along the direction of the mean mag-
netic field (Parker 1955; Steenbeck et al. 1966), which can lead to
self-excitation. In the presence of shear, theα effect can give rise
to traveling waves – relevant to explaining the solar butterfly dia-
gram. Another important effect is turbulent diffusion, described by
the turbulent diffusivityηt, which quantifies a contribution to the
mean electromotive force along the direction of the mean current
density. In the absence of shear it is the balance ofα effect vs. tur-
bulent and microphysical diffusion that determines the onset of dy-
namo action and, for oscillatory magnetic fields, also their period.
However, this basic picture of astrophysical large-scale dynamos
is a strong simplification. Bothα effect and turbulent diffusivity
are in general described by tensors. This aspect is often ignored,
in particular becauseα effect dynamos work already under simple
conditions, under which these tensor properties are less important.

Dynamos based on theα effect are not the only ones. Well-
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known alternatives include theΩ × J effect (R̈adler 1969a,b;
Krause & R̈adler 1980) and the shear–current effect (Rogachevskii
& Kleeorin 2003, 2004), which rely upon the existence of certain
off-diagonal components of theηt tensor. Another class of large-
scale dynamos whose operation is based upon the turbulent diffu-
sivity tensor alone, is due to negative turbulent diffusivity (Lanotte
et al. 1999; Zheligovsky et al. 2001; Zheligovsky 2012):ηt does not
only become negative, but can even overcompensate the (positive)
microphysical diffusivity. Such dynamos have been studied using
asymptotic analysis and have only recently been confirmed in di-
rect numerical simulations (Devlen et al. 2013). A simple example
of a flow capable of dynamo action of this type is known as the
Roberts-IV flow, which is one of the flows studied in the seminal
paper of Roberts (1972). However, a proper description of such dy-
namos in terms of mean-field theory is not straightforward because
a negative total diffusivity would destabilize modes on all scales
with growth rates diverging with increasing wavenumber. Luckily,
in the case of the Roberts-IV flow it turned out that the turbulent
diffusivity is effectively wavenumber-dependent and negative only
at small wavenumbers (Devlen et al. 2013). Negative diffusivity
dynamos are remarkable in the sense that the evolution of differ-
ent components of the mean magnetic field decouples. This is not
the case forα effect dynamos, nor those based on theΩ × J and
shear–current effects, for which the mutual interaction between two
components of the mean field is essential. By contrast, in a nega-
tive diffusivity dynamo, one component can grow with the other
permanently vanishing.

The dynamos mentioned so far are mean-field dynamos op-
erating via an instantaneous connection between the mean elec-
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tromotive forceE and the magnetic fieldB or its (first) spatial
derivatives. We know, however, that an instantaneous connection
is only an idealization (R̈adler 1976) and that turbulent transport
has in general a memory effect, i.e., the electromotive force de-
pends through a convolution on the values of the mean magnetic
field at all past times (Hubbard & Brandenburg 2009). Although
in isotropic turbulence such effects have been found to be small
(Hubbard & Brandenburg 2009), examples have been given where
they can be important (Hubbard & Brandenburg 2009; Rädler et al.
2011; Devlen et al. 2013).

In his seminal paper, Roberts (1972) studied four simple spa-
tially periodic steady flows in view of their dynamo action. Flow I
gives an often mentioned example for the classicalα effect (e.g.,
Rädler et al. (2002) or R̈adler & Brandenburg (2003)). As Dev-
len et al. (2013) recognized, flow IV constitutes, if considered on
the mean-field level, the above-mentioned dynamo due to negative
magnetic eddy diffusivity. In the present paper we will analyze the
dynamo mechanisms in flows II and III, using direct numerical sim-
ulations (DNS) combined with analytic calculations in the second
order correlation approximation (SOCA) and the test-field method
(TFM) to compute the relevant transport coefficients.

In section 2 we define the flows, introduce the mean-field con-
cept and analyze their dynamo-relevant properties under SOCA. In
section 3 we first present numerical findings on dynamo action in
flows II and III and then provide explanations in mean-field terms
relying upon the results of the TFM. Section 4 is devoted to the
development of a dynamical equation for the mean electromotive
force occurring with flow II, while we draw conclusions in section
5.

2 THE PROBLEM CONSIDERED

2.1 The Roberts flows

Roberts (1972) investigated four incompressible spatially periodic
steady flows with regard to their dynamo properties. More pre-
cisely, the flows vary periodically in thex and y directions, but
are independent ofz. We may write the corresponding velocitiesu
so that the componentsux anduy have in all four cases the form

ux = v0 sin k0x cos k0y , uy = −v0 cos k0x sin k0y , (1)

while the componentsuz are different and given by

uz= w0 sin k0x sin k0y (flow I), (2)

uz= w0 cos k0x cos k0y (flow II) , (3)

uz=
1

2
w0(cos 2k0x+ cos 2k0y) (flow III) , (4)

uz= w0 sin k0x (flow IV) , (5)

wherev0, w0 andk0 are constants. In all four cases, Roberts found
conditions under which dynamo action is possible, that is, magnetic
fields may grow. The resulting magnetic fields survivexy averaging
and are therefore amenable to mean-field treatment.

In view of mean-field dynamo theory, it is informative to con-
sider the kinetic helicity densityh = u · (∇ × u) of the flows.
In the case of flow I, the volume average ofh is equal tov0w0k0,
that is, in general non-zero. As discussed in various contexts, we
have then anα effect (e.g. R̈adler et al. 2002; R̈adler & Branden-
burg 2003), which enables self-excitation of mean magnetic fields
being of Beltrami type by a so-calledα2 dynamo. Remarkably, in
the case of flow II,h vanishes everywhere (not only on average).
Nevertheless, as we will see, some kind ofα effect occurs, which
explains the existence of mean-field dynamos, showing, however,

independent growth of its field components. In flows III and IV, the
mean kinetic helicity densityh vanishes and we may not have an
α effect. While mean field dynamo action from flow IV has been
demonstrated as being due to negative magnetic eddy diffusivity
(Devlen et al. 2013), we will show in this paper that flow III gives
rise to self-excitation of mean fields as a consequence of turbulent
pumping, i.e., aγ effect. As for flow II, the field components evolve
independently.

2.2 Mean-field modelling

We consider the behavior of a magnetic fieldB in an infinitely
extended homogeneous electrically conducting fluid moving with
a velocityU . ThenB is governed by the induction equation

η∇2
B +∇× (U ×B)− ∂tB = 0 , ∇ ·B = 0 , (6)

whereη is the magnetic diffusivity of the fluid.
We adopt the concept of mean-field electrodynamics, define

mean fields as averages over allx andy, denote them by overbars,
e.g.,B andU , and putB = B + b andU = U + u. Clearly,
mean fields likeB andU may then depend onz andt only. We
exclude here, however, a mean flow of the fluid, i.e.U = 0, and
specifyu to be one of the flows introduced above.

From the induction equation (6) we may derive its mean-field
version

η∇2
B +∇× E − ∂tB = 0 , ∇ ·B = 0 , (7)

with the mean electromotive forceE defined by

E = u× b . (8)

From (6) and (7) we may conclude thatb has to obey

η∇2
b+∇×(u×b)′−∂tb = −∇×(u×B) , ∇·b = 0 , (9)

where(u× b)′ stands foru× b− u× b.
If u is specified according to (1) and one of the relations (2)–

(5), b and thereforeE depend on the magnetic Reynolds numbers
v0/ηk0 andw0/ηk0. For simplicity we define only one magnetic
Reynolds number,Rm, by

Rm = max(v0, w0)/ηk0 . (10)

Note the difference to the more common definition employing
urms.

Given that (9) is linear,b is a linear functional ofB and its
derivatives. Under our assumptions, all spatial derivatives ofB can
be expressed by the mean electric current densityJ = (1/µ)∇×
B, whereµ means the magnetic permeability, and we have sim-
ply Jj = (1/µ)ǫj3l∂zBl, that is,J = (1/µ)(−∂zBy, ∂zBx, 0).
Hence foru independent ofz, the mean electromotive forceE can
be represented in the form

Ei(z, t) =

∫ ∫

(

aij(ζ, τ)Bj(z − ζ, t− τ)

− ηij(ζ, τ)µJj(z − ζ, t− τ)
)

dζ dτ . (11)

Hereaij andηij are tensors, which are symmetric1 in ζ.

1 In order to see this, start from the more general relation
Ei =

∫ ∫
Kij(ζ, τ)Bj(z − ζ, t− τ) dζ dτ , splitKij into a partaij that

is symmetric and another one which is antisymmetric inζ. Represent the
latter one as a derivative of a quantity symmetric inζ. An integration by
parts delivers then a term of the typebij∂zBj in the integrand, withbij
being symmetric inζ. It can easily be rewritten so that it takes the form of
theηijµJj term in the integrand of (11), withηij being symmetric inζ.
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We may subject equations like (7) and (11) to a Fourier trans-
formation with respect toz andt,

F (z, t) =

∫ ∫

F̂ (k, ω) exp
(

i(kz − ωt)
)

dk dω . (12)

Then (7) turn into

(ηk2 − iω)B̂ − ike× Ê = 0 , B̂z = 0 , (13)

with e being the unit vector in thez direction. Here, of course,
only thex andy components of the first equation are of interest.
Equation (11) turns into

Ê i(k, ω) = âij(k, ω)B̂j(k, ω)− η̂ij(k, ω)µĴj(k, ω) . (14)

The aforementioned symmetry ofaij andηij in ζ occurs now as
symmetry of̂aij andη̂ij in k. We restrict therefore all discussions
about these and related quantities tok ≥ 0. The imaginary parts of

âij andη̂ij vanish atω = 0. Further we havêJj = (ik/µ)ǫj3lB̂l,

that is,Ĵ = (ik/µ)(−B̂y, B̂x, 0).
When using the Fourier transformation, we have to exclude

functions that grow exponentially in time. If such functions occur,
we may easily modify our considerations by using a Laplace trans-
formation instead; see Hubbard & Brandenburg (2009) for exam-
ples. Then−iω is replaced by a complex variable, says.

2.3 Second-order correlation approximation

In what follows we will sometimes refer to thesecond-order cor-
relation approximation(SOCA), which is defined by omitting the
term with (u × b)′ in (9). As long asB is steady or does
not vary markedly during the time(v0k0)−1, a sufficient condi-
tion for the applicability of this approximation readsRm ≪ 1.
If B varies more rapidly, this condition has to be replaced by
max(v0, w0)k0τ0 ≪ 1, whereτ0 is a characteristic time of this
variation.

For the determination of̂E under SOCA, we may use the
Fourier-transformed versions of relations (8) and (9), simplified by
omitting the term(u× b)′, that is,

Ê = u× b̂ , (15)
(

η(∂2
x + ∂2

y − k2) + iω
)

b̂ = −(B̂x∂x + B̂y∂y)u+ ik uzB̂ .

We recall here that̂Bz = 0.
A straightforward calculation on the basis of (15) withu spec-

ified as flow I leads to the relation (14) with

â11 = â22 = α̂ , α̂ =
v0w0k0

2
(

η(2k2
0 + k2)− iω

) ,

η̂11 = η̂22 = η̂t , η̂t =
w2

0

4
(

η(2k2
0 + k2)− iω

) .

(16)

All other components of̂aij and η̂ij are equal to zero. The corre-
sponding result for flow II differs from that only in so far asâ11

andâ22 now vanish and the first relation of (16) has to be replaced
by

â12 = â21 = α̂ . (17)

All other relations (16) remain valid and so also the remark that all
not explicitly mentioned components ofâij and η̂ij are equal to
zero.

As for flows III and IV, all components of̂aij vanish and again
also all ofη̂ij , exceptη̂11 andη̂22. Putting

η̂11 = η̂22 = η̂t , (18)

we now have for flow III

η̂t =
w2

0

4
(

η(4k2
0 + k2)− iω

) (19)

and for flow IV

η̂t =
w2

0

2
(

η(k2
0 + k2)− iω

) . (20)

We conclude from these results that, as long as SOCA applies,
in the case of flow I we have coupled equations forBx andBy. For
flows II–IV, however, the equations forBx andBy are decoupled,
that is,Bx andBy develop independently of each other. The con-
tributions iω to the denominators in (16), (19) and (20) indicate
that memory effects occur, that is,E at a given time depends also
onB at former times; see Hubbard & Brandenburg (2009), and in
particular their Appendix A.

Inserting our results for̂E into the equations (13) governing

B̂, dispersion relations can be obtained. Changing from Fourier
to Laplace transformation with respect tot, we replace−iω by a
complex variablep so that a positive real part ofp means a growing
solution. In the case of flow I the dispersion relation reads

p = ±kα̂− (η + η̂t)k
2 . (21)

In the case of flow II, we have

p = ∓ikα̂− (η + η̂t)k
2 . (22)

In the latter case, the upper and lower signs apply forB̂x andB̂y,
respectively. In the case of flows III and IV, (22) applies withα̂ =
0.

The above dispersion relation (21) for flow I combined with
(16), allows steady or monotonously growing magnetic fields for
arbitrarily smallRm if only k/k0 is sufficiently small. (Decaying
solutions can also be oscillatory.) In the case of flow II, we may
conclude from (22) and (16), modified by (17), that the smallest
value ofRm that allows growing magnetic fields is obtained for
k/k0 → 0. For a marginally stable field andv0 = w0 we have
in this limit Rm = 2

√
2. This field is oscillating with a frequency

ω = 2ηk0k. With this value ofRm, however, we are beyond the
validity range of SOCA. In the case of flows III and IV, we find
no solutions of the above dispersion relations, that is, (22) with
α̂ = 0 and (19) or (20), that would correspond to marginally stable
or growing magnetic fields even if SOCA were valid.

2.4 Possibility of a dynamo from time delay

Let us consider a simple example which shows how the memory
effect makes a dynamo possible. Assume, thinking of flow II, that
a component ofB, sayBx, is independent of the others, depends
only onz andt, and obeys

η∂2
zBx − ∂zEy − ∂tBx = 0 . (23)

Ignoring first the memory effect, we putEy = αBx with α inde-
pendent ofz and t, but ignore for simplicityηt. Without loss of
generality we may restrict ourselves to solutionsBx of (23) that
are proportional toexp(ikz + pt). We have then Rep = −ηk2

and Imp = −αk, that is, there are only decaying solutions of (23),
which are in general oscillatory. Let us next take the memory effect
into account. We assume now thatEy(t) = αBx(t−τ) with a pos-
itive timeτ and, thinking of not too rapid changes ofBx during the
time intervalτ , express this byEy = α(1−τ∂t)Bx. With this rela-
tion for Ey and (23), we find Rep = −(η−α2τ)k2/

(

1+(αkτ)2
)
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Figure 1. Stability diagram for flows II and III. The corresponding result
for flow II under SOCA is shown by the dotted line. (There is no dynamo
action under SOCA for flow III.) The numbers at the curves indicate the
oscillation frequencyω in units ofv0k0.

and Imp = −αk(1 + ηk2τ)/
(

1 + (αkτ)2
)

. That is, forα2τ > η
we havegrowing oscillatory solutions. Now looking at̂α in (16)
and considering that−iω can be replaced byp, we see that for
smallp it can be approximated aŝα = α̂0(1− τp), with k depen-
dentα̂0 andτ > 0. Crossing over to the time domain, replacingp
by ∂t, it becomes clear that̂α indeed contains a memory effect, so
the dynamo efficacy of flow II can with full right be attributed to it.

3 DYNAMO ACTION FROM FLOWS II AND III

In what follows we assume for simplicity alwaysv0 = w0 as far as
numerical results are concerned.

3.1 Stability diagram from DNS

To make progress in studying mean field dynamo action for flows
II and III beyond SOCA, we now turn to numerical solutions of
Eq. (6). We discretize them on a three-dimensional mesh in a
cuboid domain employing sixth-order finite differences in space
and a third-order accurate time-stepping scheme using the publicly
available PENCIL CODE2. In thex, y andz directions the cuboid
is given by the dimensions2π/k0, 2π/k0, 2π/k, wherek defines
the minimum possible wavenumber of a mean field. The boundary
conditions are always periodic in all three directions.

For a given value ofk, we determine a critical valueRcrit
m

such that there are growing solutions forRm > Rcrit
m , but only

decaying ones forRm < Rcrit
m . In Fig. 1 we show the resulting

stability margins for flows II and III in thek–Rm plane; see also
Fig. 2 for higherRm in flow III. For comparison, we also show the
corresponding result from SOCA, where growing solutions are sug-
gested only for flow II. As mentioned above, the resulting stability
line is already outside the domain of validity of SOCA.

In the limit k → 0, we findRcrit
m ≈ 4.58 and≈ 2.9 for

flows II and III, respectively. ForRm ≤ 10, growing solutions are
only possible fork/k0 <∼ 0.64 and<∼ 0.78, respectively. Note that
for Rm ≤ 10, in contrast to dynamos with flows I and IV, growing
solutions are ruled out in cubic domains, that is fork = k0. Instead,

2 http://pencil-code.googlecode.com/

Figure 2. Stability diagram for flow III showing the margins of large scale
and small scale dynamo action. The vertical dotted line atRm = 15 in-
dicates the smallest value for which we have observed small-scale dynamo
action.

Table 1.Oscillation frequency, transport coefficients and resulting complex
growth ratep according to (22) for the points(Rcrit

m , kcrit) on the marginal
curve for flow II, see Fig. 1;̃kcrit = kcrit/k0, ω̃ = ω/(v0k0).

Rcrit
m k̃crit ω̃ 10α̂/v0 10η̂/(v0/k0) p/(v0k0)

4.56 0.025 0.0218.310−0.197i 5.628−0.094i 4×10−6+0.021i
4.69 0.162 0.1348.177−1.268i 5.688−0.627i 3×10−5+0.134i

5.00 0.260 0.2158.009−2.034i 5.819−1.032i 3×10−5+0.215i
5.50 0.356 0.2957.757−2.803i 6.051−1.491i 6×10−5+0.295i
6.00 0.423 0.3517.497−3.355i 6.280−1.904i −3×10−4+0.351i
8.00 0.567 0.4766.441−4.666i 6.977−3.443i 7×10−5+0.476i

10.00 0.633 0.5365.448−5.219i 7.244−4.784i 4×10−5+0.537i

the z extent of the computational domain must be larger than the
horizontal extents. On the other hand, the limitk → 0 is difficult
to perform numerically, because the growth rate vanishes atk = 0.
To study dynamos near onset, we choosek/k0 = 0.025 so that a
finite growth rate can still be easily determined.

It turns out that all solutions on the marginal lines are oscil-
latory. All growing and decaying solutions encountered in deter-
mining them are also oscillatory. Tables 1 and 2 show the oscil-
lation frequencies for the points on the marginal curves indicated
in Fig. 1. These tables also give the values ofα̂, η̂t, and the re-
sulting growth ratesp obtained using the test-field method (TFM)
explained in Sect. 3.2.1 below.

For flow III, a secondk interval with dynamo action is ob-
served forRm & 15 (see Fig. 2), where in the DNS initially both
the mean and the total fields are decaying to very low values. While
Brms starts to grow again att ≈ 90(v0k0)

−1, B continues to fall.
However, att ≈ 170(v0k0)

−1, many orders of magnitude below
Brms, alsoB starts to grow again and the growth rates ofBrms

andB turn out to be equal. Moreover, both the totalB andB are
oscillatory with the same frequency, differing though from the one
detected inB during the initial decay. AsB is clearly dominated
by b, we may identify the growing field as a small-scale dynamo
mode, given that the horizontal scales ofb andu are the same al-
beit the vertical scale ofb is just the same as that ofB; see Fig. 3.
Regarding the nature of the growingB, see the discussion at the
end of Sect. 3.2.4.
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bx by bz

Figure 3. Small-scale dynamo forRm = 25 andk = 1.25. Left, middle, right: isolines ofbx, by andbz , respectively. Top, bottom: planesy = 0 andz = 0,
respectively. In the lower left panel, isolines ofuz are overplotted and in the lower middle and right ones streamlines ofux,y .

Table 2.As Table 1, but for flow III, hencep from (30); k̃crit = kcrit/k0,
ω̃ = ω/(v0k0).

Rcrit
m k̃crit ω̃ 10γ̂/v0 10η̂/(v0/k0) p/(v0k0)

2.90 0.065 0.0375.70−0.309i 1.29+0.0219i 9×10−6+0.037i
2.94 0.132 0.0755.69−0.622i 1.31+0.0430i 3×10−6+0.075i
3.00 0.184 0.1045.68−0.861i 1.34+0.0580i 4×10−5+0.104i
3.40 0.371 0.2075.62−1.65i 1.51+0.0954i −9×10−7+0.207i
4.00 0.512 0.2845.60−2.17i 1.73+0.111i 1×10−4+0.284i

5.00 0.638 0.3575.69−2.57i 2.03+0.136i −3×10−5+0.357i
5.50 0.676 0.3825.76−2.69i 2.17+0.153i −2×10−4+0.382i
6.00 0.703 0.4025.84−2.79i 2.30+0.170i 1×10−4+0.402i

8.00 0.761 0.4566.16−3.05i 2.76+0.233i 2×10−4+0.455i
10.00 0.782 0.4886.44−3.25i 3.15+0.255i 8×10−5+0.488i

3.2 Mean-field interpretation

3.2.1 Test-field method

The test-field method (TFM) is a tool for identifying the complete
set of transport coefficients that defineE for a given flowu. It
does not suffer from restrictions like SOCA as the full Eq. (9) is
solved numerically forb. This is done for a number of different
mean fields, called thetest fields, which must be prescribed prop-
erly such that the wanted coefficients can be obtained unambigu-
ously (Schrinner et al. 2007). We choose here the four linearly in-
dependent fields

B
pc = B0ep e

−iωt cos kz, B
ps = B0ep e

−iωt sin kz, (24)

p = 1, 2, with the unit vectors inx andy direction,e1,2 and a real
ω describing a frequency. Since the flow is steady, we can solve for
the time dependence in Fourier space by assuming the solutions to
be proportional toe−iωt, that is, purely oscillatory. As mentioned
above, we may also employ the Laplace transform, then replacing
−iω by the complex time increments = λ− iω. Equation (9) thus
results in the following system for the real and imaginary parts of
the complex amplitude ofb, b̂(x, s) = b̂

r + i b̂i (cf. Eq. (15))

η∇2
b̂
r +∇×(u×b̂

r)′ − λb̂r − ωb̂i = −∇×
(

u×B̂
r
)

,

η∇2
b̂
i +∇×(u×b̂

i)′ − λb̂i + ωb̂r = −∇×
(

u×B̂
i
)

,
(25)

whereB is any out of the set defined by (24). In general we then
determine coefficientŝαij(z, k, s) and η̂ij(z, k, s) such that they
obey the equations

Ê
pq

i = α̂ijB̂
pq

j − η̂ijµĴ
pq

j , (26)

wherei, j, p = 1, 2, the superscriptq is either c or s,µĴ
pq

j =

∇ × B̂
pq

j , and a common argument(z, k, s) on all functions has
been dropped. Given that we are asking for eight coefficients,α̂ij

andη̂ij , and that the test fields are linearly independent, the system
(26) is just sufficient to yield a unique result. For thez invariant
Roberts flows the coefficients are also independent ofz, hence we
will drop this argument in the following.

3.2.2 Test-field results for flow II

For a first verification of the TFM we have calculated the transport
coefficients for the points(Rcrit

m , kcrit) on the marginal curve of
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Figure 4.ω dependence of̂α(k, ω) andη̂t(k, ω) for flow II with k/k0 =
0.025 andRm = 4.6.

Figure 5. Dependence of1/α̂(k, ω) and1/η̂t(k, ω) on k for flow II with
ω/v0k0 = 0.5 andRm = 4.6. The Lorentzian fits are obtained with
k0ℓ = 1.0 for Re α̂ and with1.14 for Re η̂t, respectively. In the second
panel, Imη̂t is not a constant (blue solid line) and a Lorentzian withk0ℓ =
0.55 fits better (blue dotted line).

Fig. 1 employingkcrit and the detected oscillation frequency in
(25). It turned out that to high accuracy,α̂ij andη̂ij have the same
structure as obtained under SOCA, that is,α̂12 = α̂21 = α̂, η̂11 =
η̂22 = η̂ with all other components vanishing. When inserting the
results in the thus valid dispersion relation (22) the outcome should
be p = 0 − iω. Indeed this was confirmed with high accuracy,
see Table 1, where we list̂α and η̂ along with p obtained from
them. Note that the marginal points were determined by an iterative
procedure and their oscillation frequency by a fit, so the achievable
agreement of the two results forp is limited already by the quality
of the input data to the TFM.

Table 3.Parameters of the fits (27) to the data points shown in Fig. 4. Here,
α0 is normalized byv0, ηt0 by v0/k0, and allτ∗ by (v0k0)−1. Normal-
ization is indicated by tildes.

σ σ̃0 τ̃σ1 τ̃σ τ̃σ2

α 0.83 0.904 2.05 1.296
η 0.56 0.643 1.49 1.414

Next, we use the TFM to study theω dependence of the trans-
port coefficients in the neighborhood of the lowest point on the
marginal curve,k/k0 = 0.025 andRm ≈ 4.56, but fixingλ = 0
in (25). For simplicity we writêα(k, ω) andη̂t(k, ω), dropping the
imaginary unit in the second argument. The results are shown in
Fig. 4

These data can be utilized to infer the dependences of the co-
efficients on thecomplexincrements which opens the way for pre-
dicting growth (or decay) rates also for points in theRm–k plane
distant from the marginal curve. To accomplish this, we have to find
an approximation of̂α andη̂ as analytic functions ofiω, in which
we are allowed to replaceiω subsequently bys. Employing these
functions in Eq. (22) withs = p, enables us to solve consistently
for p.

For small values ofω, the resulting functionŝα andη̂t are pro-
portional to(1− iωτ)−1, in qualitative agreement with the SOCA
result Eq. (16). However, the values ofτ are no longer the same
for α̂ and η̂t. For larger values ofω, the resultingω dependences
become more complicated and can be fitted to expressions of the
form

α̂(s) = α0

1 + τα1s

1 + ταs− (τα2s)2
,

η̂t(s) = ηt0
1 + τη1s

1 + τηs− (τη2s)2
,

(27)

wheres = −iω with real coefficientsτ∗, α0, ηt0; see Table 3. Note
that α̂ and η̂t are real only whens is so. The result is shown in
Fig. 4 as continuous lines.

We have also identified thek dependence of̂α andη̂t which,
for ω = 0, prove to be roughly compatible with that of a
Lorentzian,

(

1+ (kℓ)2
)−1

, again in qualitative agreement with the
SOCA result Eq. (16), but with different valuesℓα andℓη of ℓ for
α̂ and η̂t. In Fig. 5 we show the result forRm = 4.6 and the ar-
bitrarily chosen valueω/v0k0 = 0.5, where the fits (overplotted
lines) are obtained withk0ℓα = 1.0 andk0ℓη = 1.14. Note that
the SOCA result Eq. (16) forω 6= 0 suggestsk independent imag-
inary parts of1/α̂ and1/η̂t. From Fig. 5 one can see that this is
well satisfied for1/α̂, but not for1/η̂t.

3.2.3 Self-consistent growth rate from test-field method

In order to predict the growth rate at a given point in theRm − k
plane, one could proceed as exemplified above: determine theω
dependence of̂α and η̂t, establish analytical approximations for
α̂(s) and η̂t(s), s = −iω, via a fit procedure, employ them in
Eq. (22) withs = p and finally solve forp.

A less cumbersome way is offered by an iterative approach
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Figure 6. Bx andBy in a zt diagram as obtained from DNS forRm =

6, k/k0 = 0.3, using random initial conditions. The growth rate is
0.00408 v0k0 and the frequencyω = 0.2567 v0k0, cf. the predicted val-
ues in Table 4.∆t = t − t0 with t0 defined by dominance of the fastest
growing mode fort > t0.

defined schematically by

p0 = initial guess

do while stop criterion6= TRUE

α̂(pn), η̂t(pn) := TFM(pn)

pn+1 := p
(

α̂(pn), η̂t(pn)
)

n := n+ 1

enddo

(28)

where TFM(pn) stands for the application of the TFM, see
Sect. 3.2.1, with the complexpn as input andp(α̂, η̂t) for the rhs of
the dispersion relation Eq. (22). Of course both major steps in (28)
have to be carried out with the chosenRm andk and an appropriate
stop criterion has to be applied.

We demonstrate this now for flow II in the special case of
Rm = 6 andk/k0 = 0.3, which is well outside the domain of
validity of SOCA. We adoptp0 = 0 as the initial guess and obtain
after seven iterations, a four-digit converged result with growth rate
λ = 0.00408v0k0 and the frequencyω = 0.2582v0k0. Table 4
lists all iterations needed. For comparison we have performed a
DNS, again withRm = 6 and random initial conditions, and an as-
pect ratio of the cuboid corresponding tok/k0, which for periodic
boundary conditions allows harmonic mean fields with the desired
k to evolve. We are also interested in the eigenfunction correspond-
ing to the fastest growing mode. This means that the DNS has to
run long enough (untilt = t0, say) so that all other modes have be-
come subdominant. We observe indeed both components ofB to
be growing with just the predicted growth rate and frequency, see
Fig. 6. A corresponding experiment with non-vanishing initial con-
ditions in only one of the components confirms their independent
growth.

3.2.4 Pumping effect in flow III

We recall that, under SOCA, the dispersion relation (22) for flow
III applies with α̂ = 0, so only decaying solutions are predicted.
However, this is no longer true beyond SOCA: Using the TFM, we
find that for allRm, k andω considered

−α̂12 = α̂21 ≡ γ̂ 6= 0, still with α̂11 = α̂22 = 0, (29)

Table 4. Iteration steps of the procedure (28) withRm = 6 andk/k0 =
0.3 for flow II.

n α̂/v0 η̂t/(v0/k0) p/(v0k0)

1 0.8696 + 0.0001i 0.5367− 0.00003i −0.063280− 0.2609i

2 0.9095 + 0.2747i 0.6846− 0.04088i 0.005796− 0.2765i
3 0.8261 + 0.2698i 0.6337− 0.10560i 0.008907− 0.5730i
4 0.8294 + 0.2487i 0.6212− 0.09044i 0.003702− 0.2570i

5 0.8349 + 0.2501i 0.6253− 0.08747i 0.003753− 0.2583i
6 0.8345 + 0.2514i 0.6260− 0.08857i 0.004080− 0.2583i
7 0.8341 + 0.2513i 0.6257− 0.08874i 0.004077− 0.2582i
8 0.8341 + 0.2513i 0.6257− 0.08874i 0.004077− 0.2582i

Figure 7. Rm dependence of̂γ (solid) andη̂t (dashed) for flow III with
k = k0 andω = 0. Red lines: Scalings∼ R2

m andRm for γ̂ and η̂t,
respectively.

where we have chosen the symbolγ̂, recognizing that this effect
corresponds to an advection of the mean magnetic field with the
velocity γ̂e (but without mean material transport). This is often
referred to asturbulent pumpingor turbulent diamagnetism. As for
flow II, the equations forBx andBy decouple, and we have here
the only slightly different dispersion relation

p = −ikγ̂ − (η + η̂t)k
2 (30)

for both B̂x andB̂y. Clearly, the pumping effect, if acting instan-
taneously, that is, with a realγ̂, does not lead to dynamo action on
its own, but gives merely rise to oscillations. However, forω 6= 0
we find always complex values ofγ̂ indicating the presence of the
memory effect. Like the imaginary part of̂α for flow II, the one
of γ̂ has the potential to overcome the negative real contribution to
p from the second term in (30). Table 2 presentsγ̂ and η̂t for the
points on the marginal curve of flow III shown in Fig. 1. In the last
column one finds the value of the complex growth rate obtained
when inserting the transport coefficients into (30). As in the case of
flow II, the agreement withp, observed in the DNS, is excellent.

In Fig. 7 we show that for flow III at small values ofRm, γ̂/v0
is proportional toR2

m, which is steeper than the in general linear
scaling of the components ofαij/v0 in SOCA. Hence, the found
γ̂ cannot be captured by this approximation. We recall here a re-
lated result for the Galloway–Proctor flow (Rädler & Brandenburg
2009), whereγ/urms turned out to be proportional toR5

m. Just like
for flow II, we can determine self-consistent values ofγ̂ andη̂t for
givenk andRm in an iterative manner such that they obey the dis-
persion relation (30). As demonstrated in Table 5 forRm = 6 and
k/k0 = 0.4 the procedure converges, but requires somewhat more
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Table 5. Iteration steps of the procedure (28) withRm = 6 andk/k0 =
0.4 for flow III.

n α̂/v0 η̂t/(v0/k0) p/(v0k0)

1 0.8035− 0.0001i 0.1609− 0.00000i 0.05245− 0.3214i

2 0.8374 + 0.3268i 0.2188 + 0.06709i 0.06905− 0.3242i
3 0.7018 + 0.2972i 0.2189 + 0.01903i 0.05719− 0.2777i
4 0.7265 + 0.2543i 0.2062 + 0.02417i 0.04206− 0.2867i

5 0.7395 + 0.2669i 0.2088 + 0.02846i 0.04671− 0.2912i
6 0.7337 + 0.2704i 0.2101 + 0.02706i 0.04788− 0.2891i
7 0.7330 + 0.2680i 0.2095 + 0.02673i 0.04701− 0.2889i
8 0.7339 + 0.2680i 0.2094 + 0.02699i 0.04702− 0.2893i

9 0.7338 + 0.2683i 0.2095 + 0.02699i 0.04714− 0.2892i
10 0.7337 + 0.2683i 0.2095 + 0.02695i 0.04711− 0.2892i

steps than for flow II. The normalized growth rate and frequency
resulting from the dispersion relation are0.04711 and0.2892, re-
spectively, and are in very good agreement with the result of DNS;
see Fig. 8.

Naturally, the question arises how the polar vectorγe can be
constructed from any directions detectable inu. Superficially, there
seems to be only one such direction, namely just that ofe, but no
preferred sense of it (up or down) is identifiable. Indeed, from this
argument one can correctly conclude that flow I does not show a
pumping effect. This is possible, because for this flow all second-
rank transport tensors can be shown to be symmetric about thez
axis under the planar average adopted here (Rädler et al. 2002). In
contrast, flow III does not show the underlying symmetry property.
Consequently, it can imprint preferred directions different frome
into its relevant averages and has therefore the potential of show-
ing a pumping effect. Indeed, with the vorticityω = ∇ × u, a
polar vector can be constructed asω × (ω × u), having only a
non-vanishingz component equal to−k2

0v
2
0w0/2. This finding also

supports the quadratic scaling ofγ/v0 with Rm for v0 = w0.
It remains to clarify the nature of the mean field that grows

along with the small-scale dynamo mode described in Sect. 3.1.
For that, we have applied the TFM with the relevant values ofRm

andk as well as the growth rate and frequency measured in the
DNS. Subsequently employing the obtained transport coefficients
in the dispersion relation (30) yields a prediction of decay instead
of growth, along with a frequency differing from the one used as
input to the TFM. An attempt to determine the complex growth
(or decay) rate ofB consistently by the iterative method fails due
to lack of convergence. We conclude that the growingB is not an
eigenmode, but enslaved by the growingb. The only possible cause
seems to be a non-vanishingE0 ≡ u× b0 whereb0 stands for the
small-scale field which would evolve in the absence of the mean
field.E0 represents an inhomogeneity in the equation governingB

and, asu is stationary, bothb andB would have the same tem-
poral dependence asb0 (after all transients having decayed). We
have calculated at firstu× b finding that it is more than six or-
ders of magnitude smaller thanurmsbrms. Given thatb contains,
along withb0, necessarily also a contribution from the tangling of
B byu, one has to remove that part, which can be derived from the
TFM values ofα̂ andη̂t. The resultingE0, although being only a
fraction ofu× b and anyway tiny compared tourmsbrms, does not
vanish. However, given its decrease with increasing resolution, we
conclude that it is likely a numerical artifact.

Figure 8. Similar to Fig. 6, but for flow III atRm = 6, k/k0 = 0.4. The
growth rate is0.0471 v0k0 and the frequencyω = 0.2877 v0k0, cf. the
predicted values in Table 5.

4 EVOLUTION EQUATION FOR THE MEAN
ELECTROMOTIVE FORCE

4.1 Real space-time formulation

So far we have demonstrated how flows II and III can be repre-
sented in a mean-field model if the temporal behavior of the mean
field is an oscillation with exponentially growing or decaying am-
plitude, that is,B ∼ exp(pt) with a complexp. It is highly desir-
able to overcome this limitation and to allow general time behav-
ior, e.g., when transient processes are to be considered. This can be
accomplished by establishing analytical approximations for thek
andω dependences of̂α andη̂t and Fourier-backtransforming them
into the spacetime domain for obtaining the convolution kernels in
Eq. (11). This integral representation ofE thus becomes practically
handleable.

However, performing a convolution in time is cumbersome
from a numerical point of view, because one would need to store
the magnetic field at sufficiently many previous times. Moreover,
the spatial integral represents a global operation requiring global
communication in parallelized codes. Thus a differential equation
governingE instead of an integral one would be a major benefit.
Such a model would also open the gateway to include nonlineari-
ties due to magnetic quenching of the transport coefficients, which
otherwise must be kept out.

For isotropically forced turbulence, Rheinhardt & Branden-
burg (2012) found that the kernels of theα andηt tensors, which
are then isotropic, can both well be approximated in Fourier space
by

σ̂ =
σ0

1 + (kℓ)2 − iωτ
(31)

with σ standing forα or ηt; see also Brandenburg et al. (2004) for

passive scalars. Multiplying noŵE = α̂B̂−η̂tµĴ with the denom-
inator of (31) and returning from thekω domain to the spacetime
domain, we arrive at a diffusion-type operator acting onE and thus
at the simple evolution equation

(

1− ℓ2∂2
z + τ∂t

)

Ei = α0Bi − ηt0µJ i , (32)

which closes the mean-field induction equation (7). In this section,
we ask how useful such an approach is to model the dynamo action
of flow II qualitatively and perhaps even quantitatively.
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Table 6.Rm dependence ofα0, ηt0, ℓ andτ for flow II.

Rm α0/v0 ηt0k0/v0 ℓαk0 ταv0k0 ℓηk0 τηv0k0

1.00 0.249 0.138 0.743 0.495 0.772 0.560

2.00 0.481 0.313 0.808 0.908 0.854 1.108
3.00 0.664 0.465 0.844 1.128 0.859 1.273
4.58 0.832 0.559 0.814 1.133 0.734 0.725
6.00 0.901 0.546 0.737 0.998 0.576 −0.001

4.2 A model for flow II

If SOCA were applicable to flow II, Eq. (31) would agree with
Eq. (16) forα̂ andη̂t. However, to explain dynamo action we have
to go beyond SOCA, so (31) can only be regarded as an approxi-
mation. The differential equations forBx andBy decouple, which
is most easily formulated by employing the mean vector potential
A, with B = ∇×A:

(

1− ℓ2∂2
z + τ∂t

)

Ei = ±a0∂zAi + b0∂
2
zAi (33)

which has to be solved along with

∂tAi = Ei + η∂2
zAi , (34)

i = 1, 2. In Eq. (33), the upper and lower signs apply respectively
to i = 1 and 2. If SOCA were valid, we would have

a0 = Rmv0/4, b0 = Rmv0/8k0,

ℓ = 1/
√
2k0, τ = Rm/2v0k0,

(35)

which implies thatℓ2/τ = η. In the following, our corresponding
non-SOCA results will sometimes be normalized by these values.

When taking the ansatzes (31) for valid, but allowing nowℓ
andτ to be different forα̂ and η̂t, all parameters can be obtained
from the TFM–identified dependencieŝα(k, ω) and η̂t(k, ω) via
the following recipes

α0 = lim
k→0

Reα̂(k, 0),

ℓα =
1

k

[

Re
(

1/α̂(k, 0)
)

Re
(

1/α̂(0, 0)
) − 1

]1/2

for any fixedk 6= 0, (36)

τα = − lim
ω→0

k→0

[

1

ω

Im
(

1/α̂(k, ω)
)

Re
(

1/α̂(k, ω)
)

]

,

and analogously forηt0, ℓη, andτη. The results are listed in Table 6
and plotted in Fig. 9 in dependence onRm, along with the resulting
growth rate, which can be obtained by inserting (31) withτα =
τη = τ andℓα = ℓη = ℓ into (22) and solving forp:

p± =
τ−1 + (ηE + η)k2

2
(37)

×







−1±
[

1− 4
ηEηk

4 + τ−1
(

∓iα0k + ηT0k
2
)

(

τ−1 + (ηE + η)k2
)2

]1/2






.

Here we have setηT0 = ηt0 + η andηE = ℓ2/τ . We have scaled
the coefficients with their respective SOCA values atRm = 1, see
Eqs. (35).

We now employ the resulting mean-field coefficients to solve
the underlying system of mean-field equations. For that purpose we
use again the PENCIL CODE, which comes with a corresponding
mean-field module to solve Eqs. (33) and (34). In Fig. 10 we show
the resulting mean-field components,Bx andBy, in azt diagram.

Figure 9. Rm dependence ofα0, ηt0, ℓσ , andτσ for σ = α or η, flow
II. In the last panel, we plot the resulting growth ratep as obtained from
Eq. (37) fork/k0 = 0.025.

Note that there are propagating waves traveling in opposite direc-
tions forBx andBy. This result agrees qualitatively with that of
the DNS (Fig. 6), but the growth rate is too small (0.00184 v0k0 in-
stead of0.00408 v0k0) and also the (for the chosenz extent) most
unstable wavenumber is too low (0.2 k0 instead of0.3 k0).

We chooseRm = 5 and, interpolating in Table 6,α0 =
0.87v0, ηt0 = 0.562v0/k0, τ = τα = 1.1/v0k0, andℓ = ℓα =
0.799/k0, where the latter choices are somewhat arbitrary given
that τα 6= τη andℓα 6= ℓη. In Fig. 11 we show the resultingzt
diagram forBx andBy. Again, for both components there are
propagating waves, but traveling in opposite directions. The re-
sult agrees qualitatively with that of the DNS when restricting it
to k = 0.1k0 (Fig. 12), but the growth rate is somewhat too big,
5.45 × 10−4 v0k0 vs. 4.4 × 10−4 v0k0 from DNS, whereas the
oscillation frequencies match well:0.0861 v0k0 vs. 0.0854 v0k0
from DNS. However, for az extent of20π/k0, the fastest grow-
ing mode has twice the wavenumber,k = 0.2k0, along with
λ = 7.4 × 10−4 v0k0 andω = 0.168 v0k0, which are also al-
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Figure 10. Bx (top) andBy (bottom) in azt diagram as obtained from
the mean-field model (33), (34) for flow II withRm = 6 and az extent
of 20π/k0, using the parameters of Table 6 and random initial conditions.
The (for the chosenz extent) fastest growing mode hask/k0 = 0.2, the
growth rate is0.00184 v0k0 and the frequency is0.17 v0k0.

Figure 11. Bx (top) andBy (bottom) in azt diagram as obtained from
the mean-field model (33), (34) for flow II withRm = 5 and az extent
of 20π/k0, using interpolated parameters and random initial conditions.
The (for the chosenz extent) fastest growing mode hask = 0.1k0 while
growth rate and oscillation frequency are0.000545 v0k0 and0.0861 v0k0,
respectively. For the definition of∆t see Fig. 6.

most twice as large. The corresponding prediction from a mean-
field simulation isλ = 2.9× 10−4 v0k0, ω = 0.168 v0k0.

5 CONCLUSIONS

The present work has demonstrated a qualitatively new mean-field
dynamo behavior that works chiefly through a memory effect.
Without it, the examples of flows II and III studied in this paper
would yield just decaying oscillatory solutions. Remarkable is also
the fact that flow II has zero kinetic helicity pointwise. This, to-
gether with the fact that the two relevant components of the mean
magnetic field evolve completely independently of each other (one
can be zero, for example), might lead one to the suggestion that
the mean-field dynamo behavior of flow II could be due to negative
eddy diffusivity. However, unlike flow IV, where the real part of the

Figure 12.Bx andBy in a zt diagram as obtained from DNS for flow II
with Rm = 5 and az extent of20π/k0, using random initial conditions.
The (for the chosenz extent) fastest growing mode hask = 0.2k0 while
growth rate and frequency are0.00074 v0k0 and0.168 v0k0, respectively.
The corresponding values for the mode withk = 0.1k0 are0.00044 v0k0
and0.0854 v0k0.

total diffusivity (sum of turbulent and microphysical magnetic dif-
fusivities) is indeed negative when dynamo action occurs, it is for
flows II and III not only positive, but turbulent and microphysical
contributions have the same order of magnitude. The sum of these
two positive contributions has to be overcome by additional induc-
tive effects to produce growing solutions. These inductive effects
come from the symmetric off-diagonal components of theα tensor
combined with the memory effect.

It is unclear how generic this qualitatively new mean-field
dynamo behavior is. Off-diagonal components of theα tensor
are commonly found in inhomogeneous turbulence, but then they
are usually antisymmetric and thus correspond to turbulent pump-
ing. Not much attention has yet been paid toward symmetric off-
diagonal contributions ofα. However, we do know that in con-
vection such contributions do exist in all the cases with shear; see
Figs. 9 and 12 of K̈apyl̈a et al. (2009). Dynamos owing to a combi-
nation of memory effect and otherwise non-generative or even dif-
fusive effects might not be restricted to off-diagonal components of
α. It is more generally connected with oscillatory behavior of a sys-
tem combined with the memory effect. Two other examples have
been considered in the work of Rheinhardt & Brandenburg (2012),
where oscillatory solutions of both an inhomogeneousα2 dynamo
and a homogeneousαΩ dynamo have produced significantly lower
critical dynamo numbers in comparison with the model without
memory effect.

The present work has highlighted the importance of using the
test-field method to diagnose the nature of large-scale dynamos.
Even without taking the memory effect into account, i.e., if the
test fields were assumed constant in time, it would have deliv-
ered the information about the unusual occurrence of symmetric
off-diagonal components ofα in flow II and of aγ effect in flow
III.

Finally, let us emphasize the usefulness of taking spatio-
temporal nonlocality even to lowest order into account. Techni-
cally, this is straightforward by replacing the usual equation of
the mean electromotive force by a corresponding evolution equa-
tion. This automatically ensures that the response to changes in the
mean magnetic field is causal and does not propagate with a speed
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faster than the rms velocity of the turbulence, as was demonstrated
by Brandenburg et al. (2004) in connection with turbulent passive
scalar diffusion. It also guarantees that there is no mean-field re-
sponse to structures varying on small length scales that could oth-
erwise be artificially amplified; see a corresponding discussion in
Chatterjee et al. (2011).

Although for flow II the lowest-order nonlocal representation
employed in our mean-field calculations breaks down for relatively
small values ofRm, there are reasons to believe that this is a pe-
culiarity of the prescribed laminar flows. In this respect, turbulent
flows tend to be better behaved, as has been demonstrated on sev-
eral other occasions in comparison with the Galloway-Proctor flow
(Courvoisier et al. 2006), where complicated, non-asymptoticRm

dependences ofα andγ occur that are not found for turbulent flows
(cf. Sur et al. 2008; R̈adler & Brandenburg 2009).
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Steenbeck M., Krause F., Rädler K.-H. 1966, Z. Naturforsch., 21a,
369

Sur S., Brandenburg A., Subramanian K. 2008, MNRAS, 385,
L15

Zheligovsky V. A., Podvigina O. M., Frisch U. 2001, Geophys.
Astrophys. Fluid Dyn., 95, 227

Zheligovsky V. A., 2012, Large-Scale Perturbations of Magneto-
hydrodynamic Regimes, Springer Lecture Notes in Physics829,
Springer, Berlin, 2011.

$Header: /var/cvs/brandenb/tex/karl-heinz/Roberts_other/paper.tex,v 1.132 2014/01/20 19:03:01 brandenb


