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ABSTRACT

We analyze the nature of dynamo action that produces hdaltpmaveraged magnetic fields
in two particular flows that were studied by Roberts (1972l. Hnans. R. Soc. A 271, 411),
namely his flows Il and Ill. They have zero kinetic helicitytar pointwise (flow I1), or on
average (flow Il1). Using direct numerical simulations, wetetmine the onset conditions
for dynamo action at moderate values of the magnetic Regraldhber. Using the test-field
method, we show that the turbulent magnetic diffusivityhisrt positive for both flows. How-
ever, we demonstrate that for both flows large-scale dynastioraoccurs through delayed
transport. Mathematically speaking, the magnetic fieldadiex times contributes to the elec-
tromotive force through the off-diagonal components of dheensor such that a zero mean
magnetic field becomes unstable to dynamo action. Thissepts a qualitatively new mean-
field dynamo mechanism not previously described.
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1 INTRODUCTION known alternatives include th@ x J effect (Radler 1969a,b;
Krause & Radler 1980) and the shear—current effect (Rogachevskii
& Kleeorin 2003, 2004), which rely upon the existence of certain
off-diagonal components of thg, tensor. Another class of large-
scale dynamos whose operation is based upon the turbulent diffu-
sivity tensor alone, is due to negative turbulent diffusivity (Lanotte
etal. 1999; Zheligovsky et al. 2001; Zheligovsky 202)does not

only become negative, but can even overcompensate the (positive)
microphysical diffusivity. Such dynamos have been studied using
asymptotic analysis and have only recently been confirmed in di-
rect numerical simulations (Devlen et al. 2013). A simple example
of a flow capable of dynamo action of this type is known as the
Roberts-1V flow, which is one of the flows studied in the seminal
paper of Roberts (1972). However, a proper description of such dy
namos in terms of mean-field theory is not straightforward because
a negative total diffusivity would destabilize modes on all scales
with growth rates diverging with increasing wavenumber. Luckily,
in the case of the Roberts-IV flow it turned out that the turbulent
diffusivity is effectively wavenumber-dependent and negative only
at small wavenumbers (Devlen et al. 2013). Negative diffusivity
dynamos are remarkable in the sense that the evolution of differ-
ent components of the mean magnetic field decouples. This is not
the case forv effect dynamos, nor those based on fhex J and
shear—current effects, for which the mutual interaction between two
components of the mean field is essential. By contrast, in a nega-
tive diffusivity dynamo, one component can grow with the other
permanently vanishing.

The magnetic fields in various astrophysical settings are generally
believed to be produced by dynamo processes, which convert ki-
netic energy into magnetic. Small-scale dynamos produce mag-
netic energy at scales smaller than or equal to that of the under-
lying motions, large-scale dynamos at larger scales. Both types of
dynamos play important roles in astrophysics. We may character-
ize large-scale dynamos by the governing mechanism in the corre-
sponding mean-field description. One of the best known of these
mean-field effectss the o effect. It quantifies the component of
the mean electromotive force along the direction of the mean mag-
netic field (Parker 1955; Steenbeck et al. 1966), which can lead to
self-excitation. In the presence of shear, theffect can give rise
to traveling waves — relevant to explaining the solar butterfly dia-
gram. Another important effect is turbulent diffusion, described by
the turbulent diffusivityn;, which quantifies a contribution to the
mean electromotive force along the direction of the mean current
density. In the absence of shear it is the balance effect vs. tur-
bulent and microphysical diffusion that determines the onset of dy-
namo action and, for oscillatory magnetic fields, also their period.
However, this basic picture of astrophysical large-scale dynamos
is a strong simplification. Botlx effect and turbulent diffusivity
are in general described by tensors. This aspect is often ignored,
in particular because effect dynamos work already under simple
conditions, under which these tensor properties are less important.
Dynamos based on the effect are not the only ones. Well-

The dynamos mentioned so far are mean-field dynamos op-
* E-mail:mreinhardt@nordita.org erating via an instantaneous connection between the mean elec-
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tromotive force€ and the magnetic field3 or its (first) spatial

independent growth of its field components. In flows Ill and IV, the

derivatives. We know, however, that an instantaneous connectionmean kinetic helicity densityt vanishes and we may not have an

is only an idealization (Rdler 1976) and that turbulent transport

has in general a memory effect, i.e., the electromotive force de-

a effect. While mean field dynamo action from flow IV has been
demonstrated as being due to negative magnetic eddy diffusivity

pends through a convolution on the values of the mean magnetic(Devlen et al. 2013), we will show in this paper that flow Il gives

field at all past times (Hubbard & Brandenburg 2009). Although

rise to self-excitation of mean fields as a consequence of turbulent

in isotropic turbulence such effects have been found to be small pumping, i.e., & effect. As for flow Il, the field components evolve
(Hubbard & Brandenburg 2009), examples have been given whereindependently.

they can be important (Hubbard & Brandenburg 200&dIer et al.
2011; Devlen et al. 2013).

In his seminal paper, Roberts (1972) studied four simple spa-
tially periodic steady flows in view of their dynamo action. Flow |
gives an often mentioned example for the classicaiffect (e.g.,
Réadler et al. (2002) or &dler & Brandenburg (2003)). As Dev-
len et al. (2013) recognized, flow IV constitutes, if considered on

the mean-field level, the above-mentioned dynamo due to negative

magnetic eddy diffusivity. In the present paper we will analyze the
dynamo mechanisms in flows Il and Il1, using direct numerical sim-
ulations (DNS) combined with analytic calculations in the second
order correlation approximation (SOCA) and the test-field method
(TFM) to compute the relevant transport coefficients.

In section 2 we define the flows, introduce the mean-field con-

2.2 Mean-field modelling

We consider the behavior of a magnetic fid®lin an infinitely
extended homogeneous electrically conducting fluid moving with
a velocityU. ThenB is governed by the induction equation

n"WV*B+Vx({UxB)-3B=0, V-B=0, (6)

wheren is the magnetic diffusivity of the fluid.

We adopt the concept of mean-field electrodynamics, define
mean fields as averages overakndy, denote them by overbars,
e.g.,B andU, and putB = B + b andU = U + u. Clearly,
mean fields likeB andU may then depend on andt only. We
exclude here, however, a mean flow of the fluid, Te.= 0, and

cept and analyze their dynamo-relevant properties under SOCA. Inspecifyu to be one of the flows introduced above.

section 3 we first present numerical findings on dynamo action in
flows Il and 11l and then provide explanations in mean-field terms
relying upon the results of the TFM. Section 4 is devoted to the
development of a dynamical equation for the mean electromotive
force occurring with flow II, while we draw conclusions in section
5.

2 THE PROBLEM CONSIDERED
2.1 The Roberts flows

Roberts (1972) investigated four incompressible spatially periodic
steady flows with regard to their dynamo properties. More pre-
cisely, the flows vary periodically in the andy directions, but
are independent of. We may write the corresponding velocities
so that the components, andu, have in all four cases the form

Uy = Vo sinkox coskoy, Uy = —vo coskox sinkoy, (1)
while the components .. are different and given by

uy = wo sin kox sin koy (flow 1), 2)

uy = wo cos kox cos koy (flow 11y, 3)

uz = swo(cos 2kow + cos 2koy)  (flow 11), (4)

U, = wo sin kox (flow 1V), (5)

whereuvg, wo andkg are constants. In all four cases, Roberts found

conditions under which dynamo action is possible, that is, magnetic

fields may grow. The resulting magnetic fields surviyeaveraging
and are therefore amenable to mean-field treatment.

In view of mean-field dynamo theory, it is informative to con-
sider the kinetic helicity densitgy = u - (V x u) of the flows.
In the case of flow I, the volume average/ofs equal tovowoko,

that is, in general non-zero. As discussed in various contexts, we

have then amx effect (e.g. Rdler et al. 2002; Rdler & Branden-
burg 2003), which enables self-excitation of mean magnetic fields
being of Beltrami type by a so-calles® dynamo. Remarkably, in
the case of flow Il vanishes everywhere (not only on average).
Nevertheless, as we will see, some kinchoéffect occurs, which

explains the existence of mean-field dynamos, showing, however,

From the induction equation (6) we may derive its mean-field
version

nW’B+VxE-0B=0, V-B=0, 7
with the mean electromotive for&@ defined by
E=uxb. (8)
From (6) and (7) we may conclude thahas to obey
nV2b+V x (uxb) —8,b = -V x(uxB), V-b=0, (9)

where(u x b)’ stands foru x b — u x b.

If u is specified according to (1) and one of the relations (2)—
(5), b and thereforeé€ depend on the magnetic Reynolds numbers
vo/nko andwg /nko. For simplicity we define only one magnetic
Reynolds numbe®,,, by

(10)

Note the difference to the more common definition employing

Ry, = max(vo, wo)/nko .

Urms-

Given that (9) is lineard is a linear functional ofB and its
derivatives. Under our assumptions, all spatial derivativel8 ¢an
be expressed by the mean electric current dembity (1/4)V x
B, wherey means the magnetic permeability, and we have sim-
ply J; = (1/1)e;30. By, thatis,J = (1/u)(—0.B,,0.B,,0).
Hence foru independent of, the mean electromotive for&can
be represented in the form

£t = [ [(as¢ By - gt -1)

— Mij (C7 T)/.,ij (Z - <7 t— T)) d( dr.
Herea;; andn;; are tensors, which are symmetria ¢.

(11)

1 In order to see this, start from the more general relation

&= [ [K;j((,7)B;(z—(,t —7)d¢ dr, splitK;; into a parta;; that

is symmetric and another one which is antisymmetri¢.ifiRepresent the
latter one as a derivative of a quantity symmetric/inAn integration by
parts delivers then a term of the typg-azﬁj in the integrand, witfb; ;
being symmetric irC. It can easily be rewritten so that it takes the form of
then;; puJ j term in the integrand of (11), with;; being symmetric irC.



We may subject equations like (7) and (11) to a Fourier trans-
formation with respect te andt,

F(z,t) = // F(k,w)exp (i(kz — wt)) dk dw . (12)
Then (7) turn into
(nk® —iw)B —ikex€=0, B.=0, (13)

with e being the unit vector in the direction. Here, of course,
only thez andy components of the first equation are of interest.
Equation (11) turns into

Eilk,w) = ai;(k,w)Bj(k,w) — 715 (k, w)pTj(k,w) . (14)
The aforementioned symmetry af; and;; in ¢ occurs now as
symmetry ofa;; and7;; in k. We restrict therefore all discussions
about these and related quantitiegte- 0. The imaginary parts of
a;; ands;; vanish atw = 0. Further we havel; = (ik/u)e 3 B,
thatis,J = (ik/u)(—By, Bz, 0).

When using the Fourier transformation, we have to exclude
functions that grow exponentially in time. If such functions occur,
we may easily modify our considerations by using a Laplace trans-
formation instead; see Hubbard & Brandenburg (2009) for exam-
ples. Then-iw is replaced by a complex variable, say

2.3 Second-order correlation approximation

In what follows we will sometimes refer to trsecond-order cor-
relation approximationSOCA), which is defined by omitting the
term with (u x b)" in (9). As long asB is steady or does
not vary markedly during the timévoko) !, a sufficient condi-
tion for the applicability of this approximation reads, < 1.
If B varies more rapidly, this condition has to be replaced by
max(vo, wo)koTo < 1, wherery is a characteristic time of this
variation. R
For the determination of under SOCA, we may use the
Fourier-transformed versions of relations (8) and (9), simplified by
omitting the term(w x b)’, that is,
E=uxb, (15)
(n(@i +02 — k%) + iw)B = — (B0, + Byo))u+iku.B.
We recall here thaB, = 0.
A straightforward calculation on the basis of (15) wittspec-
ified as flow | leads to the relation (14) with

G111 =am=a, a = Votoko
11 22 ) 2(77(2]€(2)+k2)—1(U) )
5 (16)
. . . A Wo
mi1 ="mn22 ="M, TNt =

4(n(2k3 + k?) —iw) -

All other components ofi;; andr;; are equal to zero. The corre-
sponding result for flow Il differs from that only in so far as;
andas> now vanish and the first relation of (16) has to be replaced
by

Q12 = G21 = &.

(17

All other relations (16) remain valid and so also the remark that all
not explicitly mentioned components af; andr;; are equal to
zero.

As for flows Ill and IV, all components af;; vanish and again
also all of7);;, exceptii1 andnz2. Putting

M1 = fez = e, (18)

we now have for flow Il

R wd

"= 4(n(4k3 + k) — iw)

(19)

and for flow IV

2
L Wo

TR+ k) —iw)

We conclude from these results that, as long as SOCA applies,
in the case of flow | we have coupled equationsfarand B, . For
flows 111V, however, the equations fds., andﬁy are decoupled,
that is, B,, and B,, develop independently of each other. The con-
tributionsiw to the denominators in (16), (19) and (20) indicate
that memory effects occur, that i§,at a given time depends also
on B at former times; see Hubbard & Brandenburg (2009), and in
particular their Appendix A.

Inserting our results fo€ into the equations (13) governing
B, dispersion relations can be obtained. Changing from Fourier
to Laplace transformation with respect#towe replace—iw by a
complex variable so that a positive real part pfmeans a growing
solution. In the case of flow | the dispersion relation reads

(20)

p =tk — (n+ 0 k> (21)
In the case of flow I, we have
p = Fikd — (n+ 0 k> (22)

In the latter case, the upper and lower signs applyderand B,
respectively. In the case of flows Il and 1V, (22) applies with=
0.

The above dispersion relation (21) for flow | combined with
(16), allows steady or monotonously growing magnetic fields for
arbitrarily small Ry, if only k/ko is sufficiently small. (Decaying
solutions can also be oscillatory.) In the case of flow Il, we may
conclude from (22) and (16), modified by (17), that the smallest
value of R,, that allows growing magnetic fields is obtained for
k/ko — 0. For a marginally stable field andy = wo we have
in this limit R,, = 2+/2. This field is oscillating with a frequency
w = 2nkok. With this value ofR,,, however, we are beyond the
validity range of SOCA. In the case of flows Ill and IV, we find
no solutions of the above dispersion relations, that is, (22) with
& = 0 and (19) or (20), that would correspond to marginally stable
or growing magnetic fields even if SOCA were valid.

2.4 Possibility of a dynamo from time delay

Let us consider a simple example which shows how the memory
effect makes a dynamo possible. Assume, thinking of flow II, that
a component o3, say B., is independent of the others, depends
only onz andt, and obeys

nd:B, — 8., — 0B, =0. (23)

Ignoring first the memory effect, we pét, = aB, with « inde-
pendent ofz andt, but ignore for simplicityrn,. Without loss of
generality we may restrict ourselves to solutidis of (23) that

are proportional texp(ikz + pt). We have then Rg = —nk?

and Imp = —ak, that is, there are only decaying solutions of (23),
which are in general oscillatory. Let us next take the memory effect
into account. We assume now ti@at(t) = a B, (t —7) with a pos-
itive time 7 and, thinking of not too rapid changesBf, during the
time intervalr, express this by, = a(1—70;) B,. With this rela-

tion for €, and (23), we find Rg = —(n—a’7)k*/ (1 + (akT)?)
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Figure 1. Stability diagram for flows Il and Ill. The corresponding ués
for flow Il under SOCA is shown by the dotted line. (There is ymamo
action under SOCA for flow Ill.) The numbers at the curves iaticthe
oscillation frequency in units ofvokg.

and Imp = —ak(1 + nk*r)/(1 + (ak)?). Thatis, fora®r > n
we havegrowing oscillatory solutions. Now looking ak in (16)
and considering that-iw can be replaced by, we see that for
smallp it can be approximated @ = d&o(1 — 7p), with k£ depen-
dentéao andT > 0. Crossing over to the time domain, replacing
by 0, it becomes clear that indeed contains a memory effect, so
the dynamo efficacy of flow Il can with full right be attributed to it.

3 DYNAMO ACTION FROM FLOWS Il AND I

In what follows we assume for simplicity always = wy as far as
numerical results are concerned.

3.1 Stability diagram from DNS

To make progress in studying mean field dynamo action for flows
Il and Il beyond SOCA, we now turn to numerical solutions of

Eq. (6). We discretize them on a three-dimensional mesh in a

cuboid domain employing sixth-order finite differences in space

and a third-order accurate time-stepping scheme using the publicly

available ENCIL CODE?. In thex, y and z directions the cuboid
is given by the dimensiorr /ko, 27 /ko, 27 /k, wherek defines

2-0, """" LI S B T T T ]
[ stable ]
1.5 : B
[ unstable ]
o r stable (small-scale dynamo) 1
S L ; i
~ 1.0 ‘\'___"4,,/—\. u
= [ : stable 1
0.5 L unjstable ]
[ (large—scale dynamo) 1
0.0L T 1 1 1 ]
0 10 20 30 40 50 60
R

m

Figure 2. Stability diagram for flow Ill showing the margins of large kca
and small scale dynamo action. The vertical dotted lin&gat = 15 in-
dicates the smallest value for which we have observed snalit-siynamo
action.

Table 1. Oscillation frequency, transport coefficients and resgltomplex
growth ratep according to (22) for the POIN(REI | k144 ) ON the marginal
curve for flow Il, see Fig. lkcrit = kerit/ko, @ = w/(voko).

kcrit

0.025
0.162
0.260
0.356
0.423
0.567
0.633

crit
RIII

10&/vo 107/ (vo/ko)

0.0218.310—0.197i 5.628—0.094i
0.1348.177—1.268i 5.688—0.627i
0.2158.009—2.034i 5.819—1.032i 3x10~°+0.215i
0.2957.757—2.803i 6.051—1.491i 6x10~°+0.295i
0.3517.497—3.355i 6.280—1.904i —3x10~*+0.351i
0.4766.441—4.666i 6.977—3.4431 7x107°+0.476i
0.5365.448—5.219i 7.244—4.784i 4x10~5+0.537i

p/(voko)

4x107640.021i
3x107°40.134i

W

4.56
4.69
5.00
5.50
6.00
8.00
10.00

the z extent of the computational domain must be larger than the
horizontal extents. On the other hand, the limit> 0 is difficult
to perform numerically, because the growth rate vanishés-ab.
To study dynamos near onset, we chobgé, = 0.025 so that a
finite growth rate can still be easily determined.

It turns out that all solutions on the marginal lines are oscil-
latory. All growing and decaying solutions encountered in deter-
mining them are also oscillatory. Tables 1 and 2 show the oscil-

the minimum possible wavenumber of a mean field. The boundary !ation frequencies for the points on the marginal curves indicated

conditions are always periodic in all three directions.

For a given value ok, we determine a critical valu&S:'
such that there are growing solutions fBr, > RS, but only
decaying ones foR,, < R, In Fig. 1 we show the resulting
stability margins for flows Il and Il in th&—R,, plane; see also
Fig. 2 for higherR,, in flow Ill. For comparison, we also show the

corresponding result from SOCA, where growing solutions are sug-

gested only for flow 1l. As mentioned above, the resulting stability
line is already outside the domain of validity of SOCA.

In the limit & — 0, we find R%* ~ 4.58 and~ 2.9 for
flows Il and Ill, respectively. FoR,, < 10, growing solutions are
only possible foik/ko < 0.64 andS 0.78, respectively. Note that
for R, < 10, in contrast to dynamos with flows | and 1V, growing
solutions are ruled out in cubic domains, that isfot kq. Instead,

2 http://pencil-code.googlecode.com/

in Fig. 1. These tables also give the valuesagfij;, and the re-
sulting growth ratep obtained using the test-field method (TFM)
explained in Sect. 3.2.1 below.

For flow lll, a secondk interval with dynamo action is ob-
served forR,, 2 15 (see Fig. 2), where in the DNS initially both
the mean and the total fields are decaying to very low values. While
Byms Starts to grow again at~ 90(v0k0)’1, B continues to fall.
However, att ~ 170(voko) ™", many orders of magnitude below
Bims, also B starts to grow again and the growth ratesRf,.s
and B turn out to be equal. Moreover, both the tofaland B are
oscillatory with the same frequency, differing though from the one
detected inB during the initial decay. AsB is clearly dominated
by b, we may identify the growing field as a small-scale dynamo
mode, given that the horizontal scalesbodindw are the same al-
beit the vertical scale df is just the same as that &; see Fig. 3.
Regarding the nature of the growidg, see the discussion at the
end of Sect. 3.2.4.
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Figure 3. Small-scale dynamo faR,, = 25 andk = 1.25. Left, middle, right: isolines 0b.., b, andb., respectively. Top, bottom: plangs= 0 andz = 0,
respectively. In the lower left panel, isolineswf are overplotted and in the lower middle and right ones stresslofu.,, .

Table 2.As Table 1, but for flow I1l, hence from (30); Fesi = kexit /Ko, p=1, 2_, v_wth the unit vectors i andy dlr_ectlon,el,g and a real
& = w/(voko). w describing a frequency. Since the flow is steady, we can solve for

the time dependence in Fourier space by assuming the solutions to
be proportional te=~'*, that is, purely oscillatory. As mentioned

Rt ke @ 103/vo 104/(vo/ko) p/(voko) above, we may also employ the Laplace transform, then replacing
2.90 0.065 0.037%.70—0.309i 1.29+0.0219i 9x10~6+40.037i —iw by the complex time increment= X\ — iw. Equation (9) thus
2.94 0.132 0.07%.69—0.622i 1.31+0.0430i 3x10-%40.075i results in the following system for the real and imaginary parts of
3.00 0.184 0.1045.68—0.861i 1.34+0.0580i 4x107540.104i the complex amplitude df, b(x, s) = b* +ib' (cf. Eq. (15))

3.40 0.371 0.2075.62—1.651 1.51+0.0954i —9x 10~ 7 +0.207i )

4.00 0.512 0.2845.60—2.17i 1.73+0.111i  1x10~*+0.284i NV + Vx (uxb’) — A" —wb' = -V x (uxB"),

5.00 0.638 0.3575.69—2.57i 2.03+0.136i —3x10~°+0.357i . N . . . (25
5.50 0.676 0.3825.76—2.69i 2.17+0.1531 —2x10~440.382i NV + Vx (uxb) — b +wb’ = -V x (uxB'),

6.00 0.703 0.4025.84—2.79i 2.30+0.170i  1x10~*40.402i . ,

8.00 0.761 0.4566.16—3.051 2.76-40.233i 2x10—*+0.4551 where B is any out of the set defined by (24). In general we then

10.00 0.782 0.488.44—3.25i 3.15+0.255i  8x 10~ 5+0.488i determine coefficienté; (z, k, s) and;; (2, k, s) such that they

obey the equations
= Pq S ~Pq
& =By —nipdy, (26)

_fi I i 2. Pq
3.2 Mean-field interpretation wherei, j,p = 1,2, the superscripy is either c or suJ; =

3.2.1 Testfield method V x B, , and a common argumett, k, s) on all functions has
been dropped. Given that we are asking for eight coefficiénts,
andn;;, and that the test fields are linearly independent, the system
(26) is just sufficient to yield a unique result. For thenvariant
Roberts flows the coefficients are also independent bEnce we

will drop this argument in the following.

The test-field method (TFM) is a tool for identifying the complete
set of transport coefficients that defigefor a given floww. It
does not suffer from restrictions like SOCA as the full Eq. (9) is
solved numerically fob. This is done for a number of different
mean fields, called thiest fields which must be prescribed prop-
erly such that the wanted coefficients can be obtained unambigu-
ously (Schrinner et al. 2007). We choose here the four linearly in- 3 5 5 Test-field results for flow I
dependent fields
For a first verification of the TFM we have calculated the transport
B" = Boeye “coskz, B = Boepe “'sinkz, (24) coefficients for the point$R&™ k..i;) on the marginal curve of
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Figure 4. w dependence af(k,w) andrj (k,w) for flow Il with k/ko =
0.025 and Ry, = 4.6.
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Figure 5. Dependence of /&(k,w) and1 /7 (k,w) on k for flow Il with
w/voko = 0.5 and R, = 4.6. The Lorentzian fits are obtained with
kol = 1.0 for Re & and with1.14 for Re 7, respectively. In the second
panel, Imij; is not a constant (blue solid line) and a Lorentzian vikigld =
0.55 fits better (blue dotted line).

Fig. 1 employingk..ir and the detected oscillation frequency in

(25). It turned out that to high accuracy;; ands;; have the same
structure as obtained under SOCA, thatis; = d21 = &, 711 =

7122 = 1 with all other components vanishing. When inserting the
results in the thus valid dispersion relation (22) the outcome should
bep = 0 — iw. Indeed this was confirmed with high accuracy,

see Table 1, where we ligt and 7 along with p obtained from

Table 3. Parameters of the fits (27) to the data points shown in Fig. e He
ap is normalized byvo, n:0 by vo/ko, and allT. by (voko)~'. Normal-
ization is indicated by tildes.

o Eo ?0-1 Fcr ;(72
a 083 0904 205 1.296
n 056 0643 149 1414

Next, we use the TFM to study thedependence of the trans-
port coefficients in the neighborhood of the lowest point on the
marginal curvek/ko = 0.025 and R ~ 4.56, but fixing A = 0
in (25). For simplicity we writex(k, w) and7 (k,w), dropping the
imaginary unit in the second argument. The results are shown in
Fig. 4

These data can be utilized to infer the dependences of the co-
efficients on the&eomplexincrements which opens the way for pre-
dicting growth (or decay) rates also for points in the—k plane
distant from the marginal curve. To accomplish this, we have to find
an approximation oft and» as analytic functions aiv, in which
we are allowed to replaces subsequently by. Employing these
functions in Eq. (22) withs = p, enables us to solve consistently
for p.

For small values ab, the resulting function& ands; are pro-
portional to(1 — iw7) ™!, in qualitative agreement with the SOCA
result Eq. (16). However, the values ofare no longer the same
for & and7j,. For larger values ab, the resultingv dependences
become more complicated and can be fitted to expressions of the
form

d(s)—a 1+ 7a1s

T s — (Ta2s)?’ 27)
~ 1+7—n13
(s) =n

T F Tns — (Ty28)?’

wheres = —iw with real coefficients-., ao, n:0; see Table 3. Note
that & andr, are real only whers is so. The result is shown in
Fig. 4 as continuous lines.

We have also identified thie dependence af andr; which,
for w = 0, prove to be roughly compatible with that of a
Lorentzian,(1+ (k¢)?) ~! again in qualitative agreement with the
SOCA result Eq. (16), but with different valués and?,, of ¢ for
& and7. In Fig. 5 we show the result foR,, = 4.6 and the ar-
bitrarily chosen valuev/voko = 0.5, where the fits (overplotted
lines) are obtained withko/, = 1.0 andkol,, = 1.14. Note that
the SOCA result Eq. (16) fav # 0 suggests: independent imag-
inary parts ofl /& and1/7;. From Fig. 5 one can see that this is
well satisfied forl /&, but not forl /7.

3.2.3 Self-consistent growth rate from test-field method

In order to predict the growth rate at a given point in fRg — &
plane, one could proceed as exemplified above: determine the

them. Note that the marginal points were determined by an iterative dependence ofc and 7, establish analytical approximations for
procedure and their oscillation frequency by a fit, so the achievable &(s) and 7 (s), s = —iw, via a fit procedure, employ them in

agreement of the two results fpris limited already by the quality
of the input data to the TFM.

Eq. (22) withs = p and finally solve fomp.
A less cumbersome way is offered by an iterative approach



0.3 for flow II.

3

a/vo

7t/ (vo/ko)

7

Table 4. Iteration steps of the procedure (28) wilh, = 6 andk/ko =

p/(voko)

0.8696 + 0.0001i
0.9095 + 0.2747i
0.8261 + 0.2698i
0.8294 + 0.2487i
0.8349 + 0.2501i
0.8345 + 0.2514i
0.8341 + 0.2513i
0.8341 + 0.2513i

O~NOO O WNE

0.5367 — 0.00003i
0.6846 — 0.040881
0.6337 — 0.105601i
0.6212 — 0.09044i
0.6253 — 0.08747i
0.6260 — 0.088571
0.6257 — 0.08874i
0.6257 — 0.08874i

—0.063280 — 0.2609i
0.005796 — 0.27651
0.008907 — 0.5730i
0.003702 — 0.2570i
0.003753 — 0.2583i
0.004080 — 0.2583i
0.004077 — 0.2582i
0.004077 — 0.2582i

— — 1.000F " i " 3
Figure 6. B, and B, in a zt diagram as obtained from DNS fdt,, = F ]
6, k/ko = 0.3, using random initial conditions. The growth rate is [ i
0.00408 voko and the frequency = 0.2567 voko, cf. the predicted val- 0.100 & -
ues in Table 4At = t — tp with to defined by dominance of the fastest F E
growing mode fott > ¢g. r ]
0.010 ¢ E
defined schematically by b - ]
po = initial guess 0.001 F E
do while stop criterion# TRUE 0.1 10 10.0 100.0
&(pn), Nt (pn) := TEM(pn R
(pn) m(pA) f (pn) (28) m
Prt+1 = p(&(pn), M (pn))
n:=n+1 Figure 7. Ry, dependence of (solid) and7; (dashed) for flow Il with
enddo k = ko andw = 0. Red lines: Scalings- R2, and Ry, for 4 and 1,

respectively.

where TFMp,,) stands for the application of the TFM, see
Sect. 3.2.1, with the complex, as input angh(&, 7j) for the rhs of
the dispersion relation Eq. (22). Of course both major steps in (28)
have to be carried out with the chosBp, andk and an appropriate
stop criterion has to be applied.

We demonstrate this now for flow Il in the special case of
Rm = 6 andk/ko = 0.3, which is well outside the domain of
validity of SOCA. We adoppo = 0 as the initial guess and obtain
after seven iterations, a four-digit converged result with growth rate
A = 0.00408v0ko and the frequencyw = 0.2582v0ko. Table 4 . .
lists all iterations needed. For comparison we have performed afor both B, and 5. Clearly, the pumping effect, if acting instan-
DNS, again withR,, = 6 and random initial conditions, and an as-  taneously, that is, with a regl, does not lead to dynamo action on
pect ratio of the cuboid correspondingitpko, which for periodic ~ 1tS 0wn, but gives merely rise to oscillations. However, dog# 0
boundary conditions allows harmonic mean fields with the desired We find always complex values gfindicating the presence of the
k to evolve. We are also interested in the eigenfunction correspond-memory effect. Like the imaginary part of for flow II, the one
ing to the fastest growing mode. This means that the DNS has to ©f 7 has the potential to overcome the negative real contribution to
run long enough (until = £, say) so that all other modes have be-  from the second term in (30). Table 2 preseqtandsj, for the
come subdominant. We observe indeed both componeni tof points on the marginal curve of flow Ill shown in Fig. 1. In the last
be growing with just the predicted growth rate and frequency, see column one finds the value of the complex growth rate obtained
Fig. 6. A corresponding experiment with non-vanishing initial con- When inserting the transport coefficients into (30). As in the case of

ditions in only one of the components confirms their independent flow 11, the agreement witl, observed in the DNS, is excellent.
growth. In Fig. 7 we show that for flow 11l at small values &, % /vo

is proportional toRZ,, which is steeper than the in general linear
scaling of the components af;; /vy in SOCA. Hence, the found

4 cannot be captured by this approximation. We recall here a re-
lated result for the Galloway—Proctor flowgRler & Brandenburg
2009), wherey /u.ms turned out to be proportional 3, . Just like

for flow Il, we can determine self-consistent valuegyaindr), for
givenk andR,, in an iterative manner such that they obey the dis-
persion relation (30). As demonstrated in Table 5y = 6 and
k/ko = 0.4 the procedure converges, but requires somewhat more

where we have chosen the symBglrecognizing that this effect
corresponds to an advection of the mean magnetic field with the
velocity 4e (but without mean material transport). This is often
referred to asurbulent pumpingr turbulent diamagnetisnis for

flow Il, the equations foi3,, andﬁy decouple, and we have here
the only slightly different dispersion relation

p = —ik§ — (n + )k (30)

3.2.4 Pumping effect in flow IlI

We recall that, under SOCA, the dispersion relation (22) for flow
Il applies witha = 0, so only decaying solutions are predicted.
However, this is no longer true beyond SOCA: Using the TFM, we

find that for all R, £ andw considered
still with dll = (3(22 = O, (29)

—@12 = dzl E’A}/;EO,
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Table 5. Iteration steps of the procedure (28) with, = 6 andk/ko =
0.4 for flow 111 N
o
~
n & /o 7t/ (vo/ko) p/(voko)
1 0.8035—0.0001i 0.1609 — 0.00000i 0.05245 — 0.3214i
2 0.8374+40.32681 0.2188 + 0.067091  0.06905 — 0.3242i
3 0.7018 4+ 0.2972i  0.2189 + 0.01903i  0.05719 — 0.2777i
4 0.7265 4 0.2543i  0.2062 + 0.02417i  0.04206 — 0.2867i
5 0.7395+0.2669i  0.2088 4+ 0.02846i 0.04671 — 0.2912i N
6 0.7337+40.2704i  0.2101 4+ 0.027061  0.04788 — 0.2891i <
7 0.7330 4+ 0.2680i  0.2095 4 0.02673i  0.04701 — 0.2889i
8 0.7339 4 0.2680i 0.2094 + 0.026991  0.04702 — 0.2893i -
9 0.7338 +0.26831  0.2095 + 0.026991  0.04714 — 0.2892i 0 5 10 15 20
10 0.7337 +0.26831  0.2095 + 0.026951  0.04711 — 0.2892i At ugk,

Figure 8. Similar to Fig. 6, but for flow Ill atR., = 6, k/ko = 0.4. The
growth rate is0.0471 voko and the frequency = 0.2877 voko, cf. the
predicted values in Table 5.

steps than for flow Il. The normalized growth rate and frequency
resulting from the dispersion relation &i®4711 and0.2892, re-
spectively, and are in very good agreement with the result of DNS;
see Fig. 8.

Naturally, the question arises how the polar veetercan be
constructed from any directions detectableirSuperficially, there
seems to be only one such direction, namely just that, &fut no
preferred sense of it (up or down) is identifiable. Indeed, from this
argument one can correctly conclude that flow | does not show a
pumping effect. This is possible, because for this flow all second-
rank transport tensors can be shown to be symmetric about the
axis under the planar average adopted hegal et al. 2002). In
contrast, flow Ill does not show the underlying symmetry property.
Consequently, it can imprint preferred directions different frem
into its relevant averages and has therefore the potential of show-
ing a pumping effect. Indeed, with the vorticity = V x u, a
polar vector can be constructed @sx (w x w), having only a
non-vanishing: component equal te kjvgwo /2. This finding also
supports the quadratic scalingpfvo with Ry, for vg = w.

It remains to clarify the nature of the mean field that grows
along with the small-scale dynamo mode described in Sect. 3.1.
For that, we have applied the TFM with the relevant valueRgf
and k as well as the growth rate and frequency measured in the
DNS. Subsequently employing the obtained transport coefficients
in the dispersion relation (30) yields a prediction of decay instead
of growth, along with a frequency differing from the one used as
input to the TFM. An attempt to determine the complex growth
(or decay) rate oB consistently by the iterative method fails due
to lack of convergence. We conclude that the growBigs not an
eigenmode, but enslaved by the growingd he only possible cause
seems to be a non-vanishifig = u x b, whereb, stands for the
small-scale field which would evolve in the absence of the mean
field. £, represents an inhomogeneity in the equation goverfing
and, asu is stationary, botlb and B would have the same tem-
poral dependence dg (after all transients having decayed). We
have calculated at firat x b finding that it is more than six or-
ders of magnitude smaller thanmsb:ms. Given thatb contains,
along withby, necessarily also a contribution from the tangling o
B by u, one has to remove that part, which can be derived from the
TFM values of& and#;. The resulting€,, although being only a
fraction ofu x b and anyway tiny compared tQmsbrms, does not which closes the mean-field induction equation (7). In this section,
vanish. However, given its decrease with increasing resolution, we we ask how useful such an approach is to model the dynamo action
conclude that it is likely a numerical artifact. of flow I qualitatively and perhaps even quantitatively.

4 EVOLUTION EQUATION FOR THE MEAN
ELECTROMOTIVE FORCE

4.1 Real space-time formulation

So far we have demonstrated how flows Il and IIl can be repre-
sented in a mean-field model if the temporal behavior of the mean
field is an oscillation with exponentially growing or decaying am-
plitude, that is,B ~ exp(pt) with a complexp. It is highly desir-
able to overcome this limitation and to allow general time behav-
ior, e.g., when transient processes are to be considered. Thigcan b
accomplished by establishing analytical approximations forkthe
andw dependences @f andsj, and Fourier-backtransforming them
into the spacetime domain for obtaining the convolution kernels in
Eg. (11). This integral representation®thus becomes practically
handleable.

However, performing a convolution in time is cumbersome
from a numerical point of view, because one would need to store
the magnetic field at sufficiently many previous times. Moreover,
the spatial integral represents a global operation requiring global
communication in parallelized codes. Thus a differential equation
governing€ instead of an integral one would be a major benefit.
Such a model would also open the gateway to include nonlineari-
ties due to magnetic quenching of the transport coefficients, which
otherwise must be kept out.

For isotropically forced turbulence, Rheinhardt & Branden-
burg (2012) found that the kernels of theandn tensors, which
are then isotropic, can both well be approximated in Fourier space

oo

1+ (k0)? — iwT (31)

a' =
with o standing fora or 7 ; see also Brandenburg et al. (2004) for
passive scalars. Multiplying no# = 4B — 7 u.J with the denom-
inator of (31) and returning from thiew domain to the spacetime

domain, we arrive at a diffusion-type operator actinggoand thus
¢ atthe simple evolution equation

(1 — 0?97+ T@t) & = aoB; — mopdi, (32)




Table 6. Ry, dependence akg, 110, £ andr for flow Il.

Rm  ao/vo mwoko/vo Lako Tavoko fInko  Thuoko
1.00 0.249 0.138 0.743 0.495 0.772 0.560
2.00 0.481 0.313 0.808 0.908 0.854 1.108
3.00 0.664 0.465 0.844 1.128 0.859 1.273
4.58 0.832 0.559 0.814 1.133 0.734 0.725
6.00 0.901 0.546 0.737  0.998 0.576 —0.001

4.2 A model for flow Il

If SOCA were applicable to flow Il, Eqg. (31) would agree with
Eq. (16) fora and7).. However, to explain dynamo action we have

to go beyond SOCA, so (31) can only be regarded as an approxi-

mation. The differential equations f@, and B,, decouple, which
|s most easily formulated by employing the mean vector potential
A, withB=V x A:

(1002 +70,) € = £aod-A; + bod?A;  (33)
which has to be solved along with
A =& + 77(9221- ) (34)

1 = 1,2. In EqQ. (33), the upper and lower signs apply respectively
to: = 1 and 2. If SOCA were valid, we would have

Rm’Uo/4, b() = Rmvo/gko,
0 =1/\2ky, T = Rum/2uoko,

which implies that’® /7 = 7. In the following, our corresponding
non-SOCA results will sometimes be normalized by these values.

When taking the ansatzes (31) for valid, but allowing now
andr to be different for& and7;, all parameters can be obtained
from the TFM—-identified dependenciésk,w) and 1 (k,w) via
the following recipes

apg =
(35)

oo = lim Rea(k,0),
k—0

1 [Re(1/a(k,0)) 1" _
lo = % {Re(l/a 0,0) ) - 1] for any fixedk # 0, (36)
o im {Um(l/d(k?w))]
“ w0 wRe(1/a(k,w)) |’

and analogously fo:o, £,, andr,. The results are listed in Table 6
and plotted in Fig. 9 in dependence Bg,, along with the resulting
growth rate, which can be obtained by inserting (31) with=
™, = T and{, = ¢, = £ into (22) and solving fop:

'+ (e + )k

P+ = 5 (37)

_ . 1/2
nenk® + 771 (Fiowk + 77T0k2)

(71 + (ne +n)k?)”

Xx{—1+|1-4

Here we have sejro = 10 + 1 andne = ¢2/7. We have scaled
the coefficients with their respective SOCA valuesiat = 1, see
Egs. (35).

We now employ the resulting mean-field coefficients to solve

o o
@ ©
’
/
1,

0.02F Im P/uof‘?(_)_ ________________ E
0.01F  __.--="" ;
0.00 =
-0.01F ]
“o-0zg 100x Re p/ugkq
-0.03F ]
Rl'ﬂ

Figure 9. R,, dependence afg, 70, ¢, andr, for o = « or 7, flow
1. In the last panel, we plot the resulting growth rat@s obtained from
Eq. (37) fork/ko = 0.025.

Note that there are propagating waves traveling in opposite direc-
tions for B,, and B,,. This result agrees qualitatively with that of
the DNS (Fig. 6), but the growth rate is too smalli0184 vy ko in-
stead 010.00408 vo ko) and also the (for the choserextent) most
unstable wavenumber is too low.2 k¢ instead 0f0.3 ko).

We chooseR,, = 5 and, interpolating in Table 6o
0.87vo, o = O.562’Uo//€0, T =Ta = 1.1/1)0]430, and/ = o =
0.799/ko, where the latter choices are somewhat arbitrary given
thatr, # 7, and{, # £,. In Fig. 11 we show the resultingt
diagram for B,, and B,,. Again, for both components there are
propagating waves, but traveling in opposite directions. The re-
sult agrees qualitatively with that of the DNS when restricting it
to k = 0.1ko (Fig. 12), but the growth rate is somewhat too big,
5.45 x 10" % voko vs. 4.4 x 10~ % voko from DNS, whereas the

the underlying system of mean-field equations. For that purpose weoscillation frequencies match well.0861 voko VvS. 0.0854 voko

use again the BNciL CoDE, which comes with a corresponding

from DNS. However, for & extent of207/ko, the fastest grow-

mean-field module to solve Egs. (33) and (34). In Fig. 10 we show ing mode has tW|ce the wavenumbeér, = 0.2kq, along with

the resulting mean-field components, andB,, in a zt diagram.

A = 7.4 x 10 voko andw = 0.168 voko, which are also al-
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At uoko 0 50 100 150 200
B B At vk,
Figure 10. B (top) andB,, (bottom) in azt diagram as obtained from
the mean-field model (33), (34) for flow Il witk,, = 6 and az extent Figure 12. B, and B, in a zt diagram as obtained from DNS for flow II
of 207/ ko, using the parameters of Table 6 and random initial condition  with R,, = 5 and az extent of207 / ko, using random initial conditions.
The (for the chosen extent) fastest growing mode hagko = 0.2, the The (for the chosen extent) fastest growing mode has= 0.2ko while
growth rate i0.00184 voko and the frequency i8.17 voko. growth rate and frequency abed0074 voko and0.168 voko, respectively.

The corresponding values for the mode with= 0.1kp are0.00044 voko
and0.0854 vokg.

total diffusivity (sum of turbulent and microphysical magnetic dif-
fusivities) is indeed negative when dynamo action occurs, it is for
flows Il and Il not only positive, but turbulent and microphysical
contributions have the same order of magnitude. The sum of these
two positive contributions has to be overcome by additional induc-
tive effects to produce growing solutions. These inductive effects
come from the symmetric off-diagonal components ofdthtensor
combined with the memory effect.

It is unclear how generic this qualitatively new mean-field
dynamo behavior is. Off-diagonal components of thetensor
are commonly found in inhomogeneous turbulence, but then they
are usually antisymmetric and thus correspond to turbulent pump-
0 100 200 300 400 500 ing. Not much attention has yet been paid toward symmetric off-

At vyk, diagonal contributions ofx. However, we do know that in con-
vection such contributions do exist in all the cases with shear; see
Figs. 9 and 12 of Kpyk et al. (2009). Dynamos owing to a combi-
of 207 /ko, using interpolated parameters and random initial conuktio nat.lon of memo.ry effect and otherW|se non-.generatlve or even dif-
The (for the chosen extent) fastest growing mode has— 0.1ko while fusive effects might not be restricted to off-diagonal components of
growth rate and oscillation frequency &r€00545 vo ko and0.0861 voko, a. Itis more generally connected with oscillatory behavior of a sys-
respectively. For the definition ak¢ see Fig. 6. tem combined with the memory effect. Two other examples have

been considered in the work of Rheinhardt & Brandenburg (2012),

where oscillatory solutions of both an inhomogeneatislynamo
most twice as large. The corresponding prediction from a mean- and a homogeneous? dynamo have produced significantly lower
field simulation is\ = 2.9 x 10™* voko, w = 0.168 voko. critical dynamo numbers in comparison with the model without
memory effect.

The present work has highlighted the importance of using the
test-field method to diagnose the nature of large-scale dynamos.
Even without taking the memory effect into account, i.e., if the
The present work has demonstrated a qualitatively new mean-fieldtest fields were assumed constant in time, it would have deliv-
dynamo behavior that works chiefly through a memory effect. ered the information about the unusual occurrence of symmetric
Without it, the examples of flows Il and Ill studied in this paper off-diagonal components ak in flow Il and of a~ effect in flow
would yield just decaying oscillatory solutions. Remarkable is also Il
the fact that flow Il has zero kinetic helicity pointwise. This, to- Finally, let us emphasize the usefulness of taking spatio-
gether with the fact that the two relevant components of the mean temporal nonlocality even to lowest order into account. Techni-
magnetic field evolve completely independently of each other (one cally, this is straightforward by replacing the usual equation of
can be zero, for example), might lead one to the suggestion thatthe mean electromotive force by a corresponding evolution equa-
the mean-field dynamo behavior of flow Il could be due to negative tion. This automatically ensures that the response to changes in the
eddy diffusivity. However, unlike flow IV, where the real part of the mean magnetic field is causal and does not propagate with a speed

Figure 11. B, (top) andB,, (bottom) in azt diagram as obtained from
the mean-field model (33), (34) for flow Il witfe,,, = 5 and az extent

5 CONCLUSIONS



11

faster than the rms velocity of the turbulence, as was demonstrated Rogachevskii I., Kleeorin N. 2004, Phys. Rev. E, 70, 046310
by Brandenburg et al. (2004) in connection with turbulent passive Schrinner, M., Rdler, K.-H., Schmitt, D., Rheinhardt, M., &
scalar diffusion. It also guarantees that there is no mean-field re- Christensen, U. R. 2007, 2007, Geophys. Astrophys. Fluid Dyn.,
sponse to structures varying on small length scales that could oth- 101, 81
erwise be artificially amplified; see a corresponding discussion in  Steenbeck M., Krause F.A8ler K.-H. 1966, Z. Naturforsch., 21a,
Chatterjee et al. (2011). 369

Although for flow 1l the lowest-order nonlocal representation  Sur S., Brandenburg A., Subramanian K. 2008, MNRAS, 385,
employed in our mean-field calculations breaks down for relatively ~ L15
small values ofR,,, there are reasons to believe that this is a pe- Zheligovsky V. A., Podvigina O. M., Frisch U. 2001, Geophys.
culiarity of the prescribed laminar flows. In this respect, turbulent  Astrophys. Fluid Dyn., 95, 227
flows tend to be better behaved, as has been demonstrated on sev-Zheligovsky V. A., 2012, Large-Scale Perturbations of Magneto-
eral other occasions in comparison with the Galloway-Proctor flow  hydrodynamic Regimes, Springer Lecture Notes in Phyg&2&s
(Courvoisier et al. 2006), where complicated, non-asympttic Springer, Berlin, 2011.
dependences af and~y occur that are not found for turbulent flows
(cf. Sur et al. 2008; Rdler & Brandenburg 2009).
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