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ABSTRACT
We study the effects of ambipolar diffusion (AD) on hydromagnetic turbulence. We consider
the regime of large magnetic Prandtl number, relevant to the interstellar medium. In most of
the cases, we use the single-fluid approximation where the drift velocity between charged
and neutral particles is proportional to the Lorentz force. In two cases we also compare with
the corresponding two-fluid model, where ionization and recombination are included in the
continuity and momentum equations for the neutral and charged species. The magnetic field
properties are found to be well represented by the single-fluid approximation. We quantify the
effects of AD on total and spectral kinetic and magnetic energies, the ohmic and AD dissipation
rates, the statistics of the magnetic field, the current density, and the linear polarization as
measured by the rotationally invariant E and B mode polarizations. We show that the kurtosis
of the magnetic field decreases with increasing AD. The E mode polarization changes its
skewness from positive values for small AD to negative ones for large AD. Even when AD is
weak, changes in AD have a marked effect on the skewness and kurtosis of E, and only a weak
effect on those of B. These results open the possibility of employing E and B mode polarizations
as diagnostic tools for characterizing turbulent properties of the interstellar medium.
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1 IN T RO D U C T I O N

In the cool parts of the interstellar medium (ISM), the ionization
fraction is low, so ions and neutrals move at different speeds, whose
difference is given by the ambipolar diffusion (AD) speed. Partic-
ularly insightful is the single-fluid model in the strong coupling
approximation for cases with negligible electron pressure. It is then
easy to see that there is not only enhanced diffusion, but there is
also a contribution to the electromotive force proportional to the
magnetic field, akin to the α effect in mean-field electrodynamics.
Both terms increase with increasing magnetic field strength, making
the problem highly non-linear. In particular, AD can lead to the
formation of sharp structures (Brandenburg & Zweibel 1994), an
effect that has also been seen in the full two-fluid description
(Brandenburg & Zweibel 1995). It was already known for some time
that, unlike ohmic diffusion, AD does not contribute to terminating
the turbulent magnetic cascade, even though both imply a removal
of magnetic energy. This became obvious when Brandenburg &
Subramanian (2000) simulated the hydromagnetic forward and
inverse cascades in the presence of AD (see their fig. 2) to understand
its effect in the context of helical turbulent dynamos when using it
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as a non-linear closure, as was done by Subramanian (1999). The
presence of magnetic helicity in this case made the interpretation
of the results more complicated, because the α effect-like term
of AD might then have been responsible for the apparent lack of
diffusive behaviour. For this reason, it is important to repeat similar
calculations without helicity, i.e. when there is only small-scale
dynamo action.

The purpose of this paper is to study AD in the context of a small-
scale dynamo, i.e. one that operates in non-helical homogeneous
turbulence. Here, as discussed above, the α effect-like term propor-
tional to the magnetic field is expected to be negligible, because it
involves the current helicity density, and there is no reason for it
to be of significant magnitude when the turbulence is non-helical.
It is therefore not obvious in which way AD affects the forward
turbulent cascade of kinetic and magnetic energies.

The problem of a non-helical dynamo in the presence of AD has
been addressed by Xu & Lazarian (2016) and Xu et al. (2019). They
used a two-fluid description, which can have the advantage that no
severe (diffusive) time-step constraint occurs when the magnetic
field reaches saturation. In their numerical work, Xu et al. (2019)
focused on verifying the linear growth during the damping stage of
the dynamo near saturation, which Xu & Lazarian (2016) found in
their earlier work. However, ionization and recombination reactions
are here neglected. Those turn out to be important for allowing the
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2674 A. Brandenburg

formation of sharp structures around magnetic nulls. Recombination
provides a sink for the charged species near magnetic nulls. These
species (ions and electrons) continue to concentrate the field further,
recombine at the null, and drift outward as neutrals (Brandenburg &
Zweibel 1995). This effect is important for alleviating an otherwise
excessive electron pressure near magnetic nulls, which would
counteract the formation of sharp structures. We demonstrate the
equivalence between the single-fluid and two-fluid approaches in
two particular cases that are of relevance to this paper.

For the purpose of this work, we are particularly interested
in turbulent dynamos at large magnetic Prandtl numbers, which
is relevant for modelling the ISM. In this regime, the viscosity
is large compared with the magnetic diffusivity. This leads to a
truncation of the kinetic energy spectrum at a wavenumber that
is well below that of the magnetic energy; see the simulations of
Haugen, Brandenburg & Dobler (2004) and Schekochihin et al.
(2004). In the ISM, the value of PrM is of the order of 1011

(Brandenburg & Subramanian 2005), but here we will only be able
to simulate values of PrM of about a few hundred. Nevertheless,
we may then already expect to see a clear effect on the magnetic
dissipative effects and, in particular, on the kinetic to magnetic
energy dissipation ratio, which is known to scale like Pr0.3

M when
there is small-scale dynamo action and like Pr0.7

M when there is large-
scale dynamo action (see Brandenburg 2014). It is a priori unclear
how AD affects this dissipation ratio. Again, within the strong
coupling approximation, we would expect that larger magnetic
diffusion enhances the magnetic energy dissipation. Naively, this
would correspond to the case of a reduced effective value of PrM,
so the effective value of the ratio εK/εM should decrease. Such a
result might still be compatible with the usual PrM scaling if PrM is
interpreted as an effective magnetic Prandtl number that would then
also be reduced by AD. It will then be interesting to see how the
individual values of εK and εM change. In this context, it must be
emphasized that in the statistically steady state, εM must be equal
to the work done against the Lorentz force, which corresponds
to the rate of kinetic to magnetic energy conversion. Therefore, a
change in the dissipative properties both through ohmic resistivity
and through AD must also affect the kinetic to magnetic energy
conversion. These questions will therefore also be clarified in this
work.

2 TH E MO D EL

2.1 The two-fluid description

Before stating the governing equations in the single-fluid approxi-
mation, which will be adopted for most of the calculations presented
below, we first discuss the underlying two-fluid equations for the
neutral and ionized species (Draine 1986). We emphasize that the
ionized fluid component consists of ions and electrons, both of
which are assumed to be tightly coupled to each other. We give the
governing equations here in the form as used by Brandenburg &
Zweibel (1995),

∂ A
∂t

= ui × B − ημ0 J, (1)

ρi
Dui

Dit
= J × B − ∇pi + ∇ · (2νρiSi) − ρ(ρiγ + ζ )(ui − u), (2)

ρ
Du
Dt

= ρf − ∇p + ∇ · (2νρS) + ρi(ργ + αρi)(ui − u), (3)

D ln ρi

Dit
= −∇ · ui + ζρ/ρi − αρi, (4)

D ln ρ

Dt
= −∇ · u − ζ + αρ2

i /ρ, (5)

where D/Dit = ∂/∂t + ui · ∇ and D/Dt = ∂/∂t + u · ∇ are the
advection operators for the ionized and neutral species, respectively,
ui and u are their velocities, ρ i and ρ are their densities, pi and
p are their pressures, ζ is the rate of ionization, α is the rate
of recombination, γ is the drag coefficient between ionized and
neutral fluids, A is the magnetic vector potential, B = ∇ × A is
the magnetic field, J = ∇ × B/μ0 is the current density, μ0 is
the vacuum permeability, Sij = 1

2 (ui,j + uj,i) − 1
3 δij∇ · u are the

components of the traceless rate of strain tensor S, with a roman
subscript i in equation (2) denoting the analogous expression for
the ionized fluid, and f is a non-helical monochromatic forcing
function with wavevectors k(t) that change randomly at each time-
step and are taken from a band of wavenumbers around a given
forcing wavenumber kf. The forcing function is proportional to
k × e, where e is a random unit vector that is not parallel to k (see
Haugen et al. 2004 for details). We adopt an isothermal equation of
state with equal and constant sound speeds cs for the ionized and
neutral components, such that their pressures are given by pi = ρic

2
s

and p = ρc2
s , respectively.

2.2 Single-fluid approximation

In most of this work, we adopt the single-fluid approximation;
i.e., we assume that the electron pressure (which is equal to pi)
can be omitted and that the term ρρiγ (ui − u) in equation (2) is
being balanced by J × B. We can then replace ui in equation (1)
by u + uAD, where uAD = (τAD/ρ0) J × B is the ambipolar drift
velocity with τAD = (γ ρ i0)−1 being the mean neutral–ion col-
lision time, and ρ i0 and ρ0 are the initial density of ions and
neutrals. We thus solve the equations for A, u, and ρ in the
form

∂ A
∂t

= (u + uAD) × B − ημ0 J, (6)

ρ
Du
Dt

= ρf − ∇p + ∇ · (2νρS) + J × B, (7)

D ln ρ

Dt
= −∇ · u. (8)

As we demonstrate below, the solutions to these equations agree
with those to equations (1), (3), and (5) when ζ and α are large
enough (so that the electron pressure becomes negligible) and γ

is large enough to ensure strong coupling between the ionized and
neutral fluids.

2.3 Set-up of the models and control parameters

We consider a cubic domain of size L3, so the smallest wavenumber
is k1 = 2π /L. We normally use the nominal average value kf =
1.5 k1, but, following the reasoning of Brandenburg et al. (2018),
we also use the effective value of kf that determines the relevant
value of the magnetic Reynolds number,

ReM = urms/ηkeff
f , (9)
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Ambipolar diffusion at large Prandtl number 2675

where keff
f ≈ 2 k1 when kf = 1.5 k1. This adjustment at the smallest

wavenumber is motivated by the fact that at such small wavenum-
bers, only 20 different vectors fall into the wavenumber band with
|k|/k1 between 1 and 2, making this a special case compared with
those where kf is larger.

We normally evaluate ReM in saturated cases where the magnetic
field leads to a certain suppression of urms. In some cases, for
example when specifying the critical growth rate of the dynamo,
it is advantageous to use instead the kinematic rms velocity, urms0,
and thus define ReM0 = urms0/ηkeff

f .
The relative importance of viscous to magnetic diffusion is

quantified by the magnetic Prandtl number,

PrM = ν/η. (10)

For the single-fluid models, we consider two types of runs, one with
PrM = 20 (series I) and another with PrM = 200 (series II). In both
cases, η is unchanged and only ν is increased by a factor of 10.
This implies that kinetic energy dissipation should occur at small
wavenumbers. Our two-fluid models are similar to the single-fluid
models of series II.

We often express time-scales in units of the sound travel time,
τ s = (csk1)−1. The correspondingly normalized quantities are
denoted by a prime, so we define

τ ′
AD ≡ τADcsk1, ζ ′ ≡ ζ/csk1, and γ ′ ≡ ρ0γ /csk1. (11)

Alternatively, we express τAD in terms of the turbulent turnover
time τ 0 = (urms0kf)−1. In particular, we define a generalized Strouhal
number as

StAD = τADurms0kf ≡ τAD/τ0. (12)

We also define the quantity kAD = kf/StAD as a characteristic
AD wavenumber where the turbulent and AD time-scales are
comparable. Note that we have used urms0 in the definition of kAD

instead of the actual rms velocity, which can be smaller by up to
a quarter when the magnetic field becomes strong and τAD is not
too large. Thus, the actual value of kAD becomes reduced as the
magnetic field saturates.

For comparison with the cold ISM, let us estimate τAD =
nn/niνin ≈ 7 × 1014 s, where we have used nn = 1 cm−3 and ni ≈
1.1 × 10−5(nn/cm−3)1/2 (McKee et al. 1993) for the neutral and
ion number densities, and νin ≈ 1.3 × 10−10(nn/cm−3) s−1 (Draine,
Roberge & Dalgarno 1983). This gives τ ′

AD ≈ 7 for cs = 0.3 km s−1

and k1 = 1 pc−1. Furthermore, using ζ = 3 × 10−17 to 10−15 s−1

(McCall et al. 2003), we have ζ
′ = 3 × 10−3 to 0.1. The values of

τ ′
AD and ζ

′
are comparable to those explored below.

For our numerical simulations we use the PENCIL CODE,1 which
is a high-order public domain code for solving partial differential
equations, including the hydromagnetic equations given above. It
uses sixth-order finite differences in space and the third-order 2N-
RK3 low storage Runge–Kutta time-stepping scheme of Williamson
(1980). We use 5763 meshpoints for all runs in three dimensions
and 576 meshpoints for our one-dimensional runs.

2.4 Energy dissipation

For each of the two series, we vary the value of τAD and express
it in terms of StAD (see equation 12). We also monitor the mean
kinetic and magnetic energy dissipation rates, εK = 〈2νρS2〉 and
εM = 〈ημ0 J2〉, respectively, where angle brackets denote volume

1https://github.com/pencil-code, DOI:10.5281/zenodo.2315093.

averaging. For Kolmogorov-type turbulence, the kinetic and mag-
netic dissipation wavenumbers are given by kν = (εK/ν3)1/4 and
kη = (εM/η3)1/4, respectively.

It is important to note that AD significantly adds to the rate of
magnetic energy dissipation (Padoan, Zweibel & Nordlund 2000;
Khomenko & Collados 2017). This becomes evident when looking
at the magnetic energy equation,

dEM

dt
= −WLor − εAD − εM, (13)

where EM = 〈B2/2μ0〉 is the mean magnetic energy density and
WLor = 〈u · ( J × B)〉 is the work done by the Lorentz force. The
quantities εAD = (τAD/ρ0)〈( J × B)2〉 and εM = 〈ημ0 J2〉 are the
loss terms corresponding to AD and resistive heating, respectively.
In all cases presented here, we express the magnetic field strength in
units of the equipartition value Beq = √

μ0ρ0 urms, which is being
evaluated during the saturation phase. Given that AD contributes
to magnetic energy dissipation, it will also be important to define
the resulting enhancement of the effective magnetic diffusivity due
to AD. For this purpose, we rewrite part of the right-hand side of
equation (6) as

uAD × B − ημ0 J = αAD B − (η + ηAD)μ0 J, (14)

where αAD = τAD J · B/ρ0 as the AD α effect, and ηAD = τADv2
A

is the corresponding diffusive effect, where vA = |B|/√μ0ρ0 is
the local Alfvén speed, although the variation of density is here
deliberately ignored in comparison with the actual Alfvén speed.

In addition to the usual kinetic-to-magnetic-energy dissipation
ratio,

rM = εK/εM, (15)

it is interesting to compute also the ratio of kinetic energy dissipation
to the sum of magnetic and AD dissipations,

rAD = εK/(εM + εAD). (16)

Likewise, in addition to the usual Prandtl number, PrM, we also
quote the ambipolar Prandtl number, i.e.

PrAD = ν/(η + 〈ηAD〉). (17)

It is unclear whether this quantity plays any role in characterizing
the kinetic to magnetic energy dissipation ratio. We will therefore
compare plots of this ratio as functions of both PrM and PrAD.

2.5 E and B mode polarization

As an additional analysis tool, we compute the parity-even and
parity-odd linear polarization modes of the magnetic field, E and B,
respectively. They depend on the detailed physics causing polarized
emission, but for our purpose it will suffice to compute the intrinsic
linear complex polarization as

Q + iU = −ε (Bx + iBy)2 (18)

for any arbitrarily chosen xy plane. Here, Q(x,y) and U(x,y) are
the Stokes parameters characterizing linear polarization, and ε

is the polarized emissivity, which will be assumed constant. The
difference between models with constant and B-dependent values
of ε turns out to be small (Brandenburg et al. 2019).

We then compute the Fourier transforms of Q and U, indicated
by a tilde, e.g. Q̃(kx, ky) = ∫

Q(x, y) eik·xd2x, where x = (x, y)
and k = (kx, ky) are the position and wavevectors in the xy plane.
We then compute (Kamionkowski, Kosowsky & Stebbins 1997;
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2676 A. Brandenburg

Seljak & Zaldarriaga 1997)

Ẽ + iB̃ = (k̂x − ik̂y)2(Q̃ + iŨ ), (19)

where k̂x and k̂y are the x and y components of the planar unit vector
k̂ = k/k, and k = (k2

x + k2
y)1/2. We then transform Ẽ and B̃ back

into real space to obtain E(x, y) and B(x, y) at a given position z.
Earlier work revealed a surprising difference in the statistics of

E and B in that the probability density function (PDF) of E is
negatively skewed, while that of B is not. However, not much is
known about E and B mode polarizations for different types of
turbulence simulations. Therefore, we also compute and compare
the PDFs of E and B for all the models presented in this paper.

3 R ESULTS

3.1 Comparison between one- and two-fluid models

Before presenting in detail the results obtained in the one-fluid
approximation, it is important to verify that those results can also
be obtained in the more complete two-fluid model. Here we examine
both one-dimensional and three-dimensional two-fluid models.

3.1.1 Formation of sharp structures in one dimension

We examine here a two-fluid model similar to that of Brandenburg &
Zweibel (1995) to demonstrate the similarity with the corresponding
single-fluid model. As initial conditions, we choose for the magnetic
field B = (0, B0 sin k1x, 0). The x component of the Lorentz force,
∂B2

y /2∂x in this one-dimensional model, drives the charged fluid
towards the magnetic nulls at x = 0 and ±π . If the resulting
electron pressure gradient remains small enough, this can lead to
the formation of sharp structures. In Fig. 1, we compare the results
for three values of ζ

′
and two values of ρ i0/ρ0 (10−3 and 10−4)

using γ
′ = 103. The two values of ρ i0 correspond to τ ′

AD = 1 and
10, respectively. In all cases, we use α = ζρ/ρ2

i to achieve initial
ionization equilibrium. We choose PrM = 20, but used different
values for ηk1/cs : 10−4 for τ ′

AD = 1 and 2 × 10−4 for τ ′
AD = 10,

while in all single-fluid models we use ηk1/cs = 5 × 10−5. We have
increased ν and η to avoid excessive sharpening of the structures in
our one-dimensional models. We compare with the results from the
one-fluid model in the last two panels of Fig. 1. We also compare
models with τ ′

AD = 1 and 10.
We see that for ζ

′ = 10−3, good agreement between the one-
fluid and two-fluid models is obtained. The corresponding values
of α for ionization equilibrium are 103 and 105 for τ ′

AD = 1 and 10,
respectively. This encourages us to examine this model now in three
dimensions.

3.1.2 Spectral properties in three dimensions

Next, we consider a set-up similar to that studied below in more
detail in the one-fluid model. Again, we consider the cases with
τ ′

AD = 1 and 10, using ζ
′ = 10−3, which was found to give good

agreement with the one-fluid model (cf. Fig. 1). We consider here
the case of relatively small magnetic diffusivity (ηk1/cs = 5 × 10−5),
which will also be used in the one-fluid models discussed below.

For both values of τAD, there is dynamo action with initial
exponential growth and subsequent saturation. The mean instan-
taneous growth rate of the magnetic field, evaluated by averaging
λ = dBrms/dt over the duration of the early exponential growth
phase, is λ/(csk1) = 0.019. In units of the turnover time, we

have λ/(urms0k
eff
f ) = 0.080. For larger values of τAD, the dynamo

saturates at a lower magnetic field strength (see Fig. 2). Running the
simulation beyond the early saturation shown here is numerically
expensive and would require higher resolution. This is because of
sharp gradients in the magnetic field. This problem can be mitigated
by increasing the viscosity of the ionized fluid and certainly also by
using a larger magnetic diffusivity, which was also used in the one-
dimensional runs shown in Fig. 1. The dynamo would then become
weaker, however, and this would no longer be the model we would
like to study in the one-fluid approximation below.

In Fig. 3, we compare magnetic and kinetic energy spectra for
the two values of τAD. They are normalized such that
∫

EK(k) dk = ρ0〈u2〉/2,

∫
EM(k) dk = 〈B2〉/2μ0. (20)

Here, the kinetic energy is based on the neutral component, but we
also consider the kinetic energy of the ionized components, which
we normalize by the same density factor,
∫

Ei(k) dk = ρ0〈u2
i 〉/2. (21)

This normalization has the advantage that we can more clearly see
that both velocity components are about equally big at large scales
(small k), when all spectra are also normalized by the same value,
namely the total kinetic energy of the neutrals, E0 = ρ0u

2
rms/2.

We see that there is a marked separation between the ionized and
neutral fluid components for larger wavenumbers. The wavenumber
above which the two spectra diverge from each other is independent
of the value of τAD, and it is therefore also independent of kAD,
whose values are indicated by an arrow on the lower abscissa of
Fig. 3. There is, however, a strikingly accurate agreement between
the viscous dissipation wavenumber, kν , and the wavenumber where
EK(k) and Ei(k) begin to diverge from each other. It therefore
appears that the value of kAD does not play any role in the
dynamics of turbulence with AD. This confirms the earlier result
of Brandenburg & Subramanian (2000) that the relevant dissipation
wavenumber is independent of AD and is just given by the usual
resistive wavenumber kη, which was defined in Section 2.4 and
agrees with the wavenumber defined by Xu & Lazarian (2016) after
replacing εM by kfv

3
A.

We also see that the ionized fluid is not efficiently being dissipated
at the highest wavenumbers in this model: The kinetic energy
spectrum of the ionized fluid does not fall off as much as for the
neutral fluid. This is partially explained by the very low ion density
in our model, so the actual kinetic energy in the ionized fluid is still
not very large. Thus, the energy dissipation may appear insufficient
because the amount of energy to be dissipated is very small.

To understand why the magnetic field is apparently not visibly
affected by the breakdown of the strong coupling of the ionized
and neutral species below the viscous scale, we have to realize that
for PrM = 20 
 1, the velocity at k 
 kν is being driven entirely
by the magnetic field. Owing to the fact that ρ i/ρ is very small
(10−3 and 10−4 for τ ′

AD = 1 and 10, respectively), the velocity is
too small to affect the magnetic field. Instead, the magnetic field
at large k receives energy only from the magnetic field at larger
scales through a forward cascade. This is also evidenced by the fact
that, except for a vertical shift, the magnetic spectrum looks similar
for τ ′

AD = 1 and 10. This shows that the breakdown of the tight
coupling below the resistive scale will not affect our conclusions
based on the single-fluid approximation considered in the main part
of this paper.
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Ambipolar diffusion at large Prandtl number 2677

Figure 1. Magnetic field profiles for τ ′
AD = 1 (left) and τ ′

AD = 10 (right) with ζ
′ = 10−9 (top), ζ

′ = 10−5 (second row), ζ
′ = 10−3 (third row), compared

with a magnetic field profile in the single-fluid model (bottom). The red arrows indicate the temporal evolution.

3.1.3 Conclusions from the two-fluid model

We have seen that in the two-fluid model, the ionized and neutral
components are tightly coupled at large length scales (k � kν).
At small scales, however, we see major departures between the
two fluids. There are clear differences in the results for the two
values of τAD studied above. For the larger value of τAD, the
magnetic energy saturates at a smaller value. The magnetic field
can therefore no longer drive turbulent motions beyond the viscous
cut-off scale, where EK(k) would normally fall off sharply when
there is no magnetic field. For the ionized component, on the other
hand, the difference between the two spectra is much smaller and
a comparatively high fraction of kinetic energy still exists in the
ionized component. This is probably indicative of a significant
fraction of small-scale magnetic field structures where the ionized
and neutral components are counter-streaming in a way similar to

what is seen in Fig. 1. After these preliminary studies, we now
proceed with the examination of the one-fluid model, which is
simpler, but shows similar characteristics and dependencies on τ ′

AD,
as we will see.

3.2 The dynamo in one-fluid models

3.2.1 Kinematic evolution

Turning now to the study of dynamo action in the one-fluid model,
we first look at the evolution of the rms velocity and magnetic
field versus time (see Fig. 4). The magnetic Reynolds numbers of
the runs are 1200 for series I and 790 for series II. This lower
value for series II is caused by the ten times larger viscosity in this
case (ν/csk1 = 10−2 instead of 10−3). We clearly see exponential
growth in both cases. The mean instantaneous growth rates are
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(a)

(b)

Figure 2. (a) Evolution of the rms velocity (normalized by the sound speed)
for the runs with τ ′

AD = 1 (red) and 10 (blue). (b) Evolution of the rms
magnetic field for the same runs.

Figure 3. Kinetic energy spectra for the neutral (dashed lines) and ionized
fluids (dotted lines) as well as magnetic energy spectra (solid lines) for
τ ′

AD = 1 (red) and 10 (blue). The k−5/3 slope is shown for orientation.

given by λ/(csk1) = 0.019 and 0.010 for series I and II, respectively.
In units of the turnover time, we have λ/(urms0k

eff
f ) = 0.080 and

0.062 for series I and II, respectively. These values are compatible
with the relation λ0Re1/2

M0 with λ0 ≈ 0.0023 (see also fig. 3 of
Haugen et al. (2004) as well as fig. 3 of Brandenburg (2009), where
similar values of ReM0 ≈ 1000 were found and the Re1/2

M0 scaling
was demonstrated).

For all runs, the magnetic field eventually saturates owing to
the non-linearity of the problem. In addition to the Lorentz force,
J × B, there is the AD non-linearity. It is a priori unclear which

(a)

(b)

Figure 4. (a) Evolution of the rms velocity (normalized by the sound speed)
for each of the three runs of series I and II. The values of late-time averages
are indicated by horizontal lines in the corresponding colour and connected
by dashed arrows to the corresponding horizontal line for the kinematic
stage. (b) Evolution of the rms magnetic field for series I (solid lines) and
II (dashed lines) for small (black lines for runs I.A and II.A), intermediate
(red lines for I.B and II.B), and large values (blue lines for I.C and II.C) of
StAD.

of the two is more important. The saturation phenomenology of the
small-scale dynamo has been studied by Cho et al. (2009). Xu &
Lazarian (2016) found that this dynamo saturation is independent
of plasma effects including AD. Interestingly, Fig. 4 now shows
that for StAD ≥ 1, the AD non-linearity does affect the solution, and
this happens already when Brms/Beq ≥ 0.02. We also see that the
kinetic energy decreases only very little during saturation when AD
is strong (cf. cases I.C and II.C). This is because the velocity is only
affected by the magnetic field, whose saturation levels diminish
with increasing values of StAD.

3.2.2 Spectral properties

Next, we consider kinetic and magnetic energy spectra for series I
and II, EK(k, t) and EM(k, t), respectively. For both series, the kinetic
energy spectra are found to be unaffected for k < kν , while the
magnetic energy is clearly suppressed by AD at all wavenumbers.
The magnetic energy spectrum does not really show power-law
scaling, but it has a slope compatible with k−5/3, although the
spectrum tends to become slightly shallower at high wavenumbers
when AD is strong (compare the red and blue lines in Fig. 5 with the
black ones). This could be a signature of sharp structures that are
expected to develop in the presence of AD (Brandenburg & Zweibel
1994; Zweibel & Brandenburg 1997). Sharp structures could be
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Figure 5. Spectra of magnetic (i = M, solid lines) and kinetic (i = K,
dashed lines) for each of the three runs in series I (top) and II (bottom).

responsible for producing enhanced power at high wavenumbers.
This is an effect that was also seen in the turbulence simulations of
Brandenburg & Subramanian (2000).

In both series I and II, the kinetic energy spectrum develops a
clear power law in the dissipation range, especially for series II,
where power-law scaling extends over about 1.5 decades, while for
series I, the same power law is seen for only about half a decade.
The power-law scaling of EK(k) is solely a consequence of magnetic
driving at k > kν when PrM is large.

Also, the magnetic energy spectrum shows a range with power-
law scaling for series II, where EM ∝ k−5/3. For series I the
k−5/3 scaling is not so clear. The kinetic energy spectrum is much
steeper and has a slope comparable with a k−11/3 spectrum. This
is reminiscent of the Golitsyn spectrum of magnetic energy, which
applies to the opposite case of small magnetic Reynolds numbers
(Golitsyn 1960). In that case, the electromotive force is balanced by
the magnetic diffusion term rather than the time derivative of B. The
similarity suggests that in the present case, the velocity is driven
through the balance between the Lorentz force and the viscous force
(which is proportional to ν∇2u) rather than through a balance with
the Du/Dt inertial term.

The magnetic energy spectrum peaks at a wavenumber k∗ that
can roughly be estimated by Subramanian’s formula k∗ ≈ kfRe1/2

M,c

(Subramanian 1999). Estimating ReM,c ≈ 40 for the critical mag-
netic Reynolds number for dynamo action (Haugen et al. 2004), we
have k∗/kν ≈ 0.5 and 2.8 for series I and II, respectively. This is in
fair agreement with the position of the magnetic peak wavenumber
seen in Fig. 5. Schober et al. (2015) proposed a revised estimate

Figure 6. Magnetic Kelvin–Helmholtz time normalized by the turnover
time versus normalized magnetic field strength.

with an exponent 3/4 for Kolmogorov turbulence and a larger pre-
factor, so the corresponding values are by about a factor of 8 larger.
I addition, both estimates would yield bigger values if 2π factors in
their definitions of ReM were taken into account.

3.2.3 Comment on numerical diffusion

At this point, a comment on the accuracy and properties of
the numerical scheme is in order. The results presented above
relating to the spectral kinetic energy scaling in the high magnetic
Prandtl number regime rely heavily upon the presence of proper
diffusion operators. In fact, those are the only terms balancing
an otherwise catastrophic steepening of gradients by the u · ∇u,
u × B, and J × B non-linearities. The weakly stabilizing proper-
ties of any third-order time-stepping scheme and the dispersive
errors of the spatial derivative operators such as u · ∇ do not
contribute noticeably to numerical diffusion below wavenumbers
of half the Nyquist wavenumber (Brandenburg 2003), which is
the largest wavenumber shown in our spectra. This is different
from codes that solve the ideal hydromagnetic equations. Those
codes prevent excessive steepening of gradients by the numerical
scheme in ways that cannot be quantified by an actual viscosity
or diffusivity. This is sometimes also called numerical diffusion,
but such a procedure is not invoked in the numerical simulations
presented here.

3.2.4 Magnetic dissipation

If the magnetic field were not constantly regenerated by dynamo
action, it would decay on a time-scale that we call the magnetic
Kelvin–Helmholtz time,

τM
KH = EM/εM. (22)

In Fig. 6, we plot its instantaneous value versus the instantaneous
magnetic field strength as the dynamo saturates and the field strength
thus increases. Almost independently of the presence or absence of
AD and regardless of whether we consider series I or II, the ratio
τM

KH/τ0 is always around 8; see the two concentrations of data near
Brms/Beq ≈ 0.08 and 0.16 for series I and II, respectively.

In the absence of AD, it was found that the ratio rM = εM/εK

of magnetic to kinetic energy dissipation increases with increasing
values of PrM, like Pr1/3

M for small-scale dynamo action and Pr2/3
M

for large-scale dynamo action (in the presence of kinetic helicity
of the turbulent flow). In the presence of AD, there is an additional
mode of dissipation proportional to εAD. On the other hand, the
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2680 A. Brandenburg

Figure 7. Ratio of kinetic to magnetic and kinetic to ambipolar dissipation rates versus magnetic and ambipolar Prandtl numbers. The light and darker grey
lines denote the scaling found by Brandenburg (2014) for large- and small-scale dynamos, respectively.

effective magnetic Prandtl number is also modified if we include
ηAD in the definition of PrM, as in equation (17). The question is
therefore whether there is any analogy between ohmic dissipation
and dissipation through AD. To assess this, we plot in Fig. 7 all four
possibilities: rM versus PrM and PrAD, as well as rAD versus PrM and
PrAD.

Both rM and rAD are seen to increase with StAD, so the data points
generally move upwards in all four plots. However, as we increase
StAD, we also decrease PrAD, so the data points move to the left in
Fig. 7. In this sense, there is no analogy with ohmic dissipation. It
should be noted, of course, that both ohmic dissipation and AD are
no longer accurate descriptions of the physics on small length scales.
It would therefore be interesting to revisit this question when such an
analysis of the full kinetic equations becomes feasible (see Rincon
et al. 2016 and Zhdankin et al. 2017 for relevant references). It is
worth noting in this connection that the case with PrM 
 1 is special
because the work done against the Lorentz force, which quantifies
the conversion of kinetic to magnetic energy, only operates on large
length scales when PrM 
 1. At small length scales, the sign of
this term is reversed, so Brandenburg & Rempel (2019) called
this reversed dynamo action. This means that the magnetic energy
is not ohmically dissipated at small length scales, but viscously.
Brandenburg & Rempel (2019) speculated further that this loss
of energy would really correspond to the energization of ions and
electrons, although there is currently no evidence that this similarity
is quantitatively accurate.

3.3 Spatial features related to AD

3.3.1 Visual inspection

In Fig. 8, we show xy slices of Bz/Brms and compare with slices of the
x component of the neutral and ionized flows, ux/urms and uxi/urms,
respectively, in the same (arbitrarily chosen) plane. The magnetic
field displays folded structures in places, as was first emphasized
by Schekochihin et al. (2004), but Brandenburg & Subramanian

(2005) found that there are also many other places in the volume
that are not strongly folded. Some of the folds lead to differences
between the neutral and ionized fluid components (see the insets of
Fig. 8). In most other places, however, the two velocity species are
remarkably similar. The y and z components of u and ui are also
similar to each other and show only small differences near magnetic
structures.

Next, we compare the magnetic field for different one-fluid
models (see Fig. 9, where we compare the three models of series
I and II). The overall magnetic field strength is weaker for model
C compared with models B and A. To remove this aspect from the
comparison, we plot in Fig. 9 the Bz components of the magnetic
field normalized by the rms values for each model.

It is hard to see systematic differences between the different cases.
There could be more locations with strong horizontal gradients in
Bz(x, y), where StAD is large (compare runs C of series I and II with
runs A and B of the corresponding series), but the resulting changes
are not very obvious. There are also no clear differences between
series I and II themselves. For these reasons, it is important to look
at statistical measures to study the differences. This will be done
next.

3.3.2 Statistical analysis

In this section, we investigate in more quantitative detail the effects
of AD on the structure of the magnetic field. We know that AD
tends to clip the peaks of the magnetic field at locations where its
strength is large (Brandenburg & Zweibel 1995). This should lead
to a reduced kurtosis,

kurt Bi = 〈B4
i 〉/〈B2

i 〉2 − 3. (23)

It is unclear, however, whether this is a statistically significant effect.
To examine this, we compute the resulting values of kurt(Bi). Since
our simulations are isotropic, we can improve the statistics of the
kurtosis by taking the average over all three directions, i.e. we define
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Ambipolar diffusion at large Prandtl number 2681

Figure 8. Visualizations of Bz/Brms, ux/urms, and uxi/urms for the two-fluid model with StAD = 0.15 or τ ′
AD = 1. The insets show a blow-up near a magnetic

structure.

Figure 9. Visualizations of Bz(x, y)/Brms for the single-fluid models, Runs I.A–C and II.A–C.

kurt B (bold without subscript on B) as

kurt B = (kurt Bx + kurt By + kurt Bz)/3, (24)

and compute it for each of the two series and for different values
of StAD. In this context, we recall that the kurtosis vanishes for
Gaussian-distributed data, and it is 3 for an exponential distribution.
Here we find a systematic crossover from values somewhat smaller
than 3 to negative values when StAD � 0.02 (see Fig. 10 for series I
and II with PrM = 20 and 200, respectively). Here we have included

the additional runs I.a–e with lower values StAD have been added.
This dependence can roughly be described by a fit of the form

ln kurt B = eκ∞ + St−α
AD, (25)

where κ∞ ≈ 2.36 is the value of kurt B + 3 for large values of
StAD and α ≈ 0.61 is the slope for smaller values. Additional
terms and parameters could be included in this fit to account for
finite values of the kurtosis for StAD → 0, but this does not appear
to be necessary for describing the present data (see Table 1). In
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2682 A. Brandenburg

Figure 10. Dependence of kurt B on StAD. The red (blue) symbols denote
the results for series I (II).

conclusion, it appears that the measurement of the kurtosis of the
magnetic field in the interstellar medium could be a useful diagnostic
tool that should be explored further in future.

In Fig. 11 we show histograms of Jz for series I and II. We
see that, as StAD is increased, the wings of the distributions are
being clipped slightly. On the other hand, the amount of clipping
is actually relatively small compared with the increase in magnetic
field strength as StAD is increased. This is to be expected, because
AD tends to create force-free regions where ( J × B)2 is minimized
and ( J · B)2 is maximized. In between those regions, on the other
hand, there are sharp current sheets that were already found in the
earlier work of Brandenburg & Zweibel (1994).

It is important to note that one usually never measures the
magnetic field directly, but instead the linear polarization through
either synchrotron radiation or through dust emission. In both
cases, it therefore appears useful to discuss the two rotationally
invariant modes of linear polarization, namely the E and B mode
polarizations. This will be done in the next section.

3.4 E and B mode polarizations

The analysis of E and B mode polarization has been particularly
important in the context of cosmology (Kamionkowski et al. 1997;
Seljak & Zaldarriaga 1997) and, more recently, in the context of
dust foreground polarization (Planck Collaboration XXX 2016). It
was found that there is a systematic excess of E mode power over
B mode power by about a factor of 2, which was unexpected at the
time (Caldwell, Hirata & Kamionkowski 2017). Different proposals
exist for the interpretation of this. It is possible that the excess of
E mode polarization is primarily an effect of the dominance of

(a)

(b)

Figure 11. Histograms of Jz for (a) series I and (b) series II. Black, red,
and blue lines denote the cases A, B, and C, respectively.

the magnetic field, i.e. a result of magnetically over kinetically
dominated turbulence (Kandel, Lazarian & Pogosyan 2017). Using
simulations of supersonic hydromagnetic turbulent star formation,
Kritsuk, Flauger & Ustyugov (2018) found that the observed E over
B ratio can be reproduced. However, not enough work has been
done to assess the full range of possibilities for different types of
flows. For solar linear polarization, for example, it has been found
that there is no excess of E over B mode polarization, although
the possibility of instrumental effects has not yet been conclusively
addressed (Brandenburg et al. 2019).

Looking at Fig. 12, we see that, as StAD is increased, there is a
systematic change of the skewness of E (but not of B) as StAD is
increased. For small values of StAD, the skewness is positive and
for large values it is negative. Here we define the skewness as

skewE = 〈E3〉/σ 3
E, skewB = 〈B3〉/σ 3

B, (26)

where σ 2
E = 〈E2〉 − 〈E〉2 and σ 2

B = 〈B2〉 − 〈B〉2 are their vari-
ances. Note that here the B is not to be confused with the components

Table 1. Summary of the runs discussed in the paper.

Run ReM PrM PrAD rM rAD StAD 〈E2〉/〈B2〉 skew E skew B kurt E kurt B kurt B

I.a 800 20 18.3 0.84 0.79 0.000 12 1.66 2.05 0.19 14.9 3.38 2.33
I.b 840 20 15.7 0.86 0.73 0.000 39 1.80 2.00 − 0.36 11.7 3.60 1.92
I.c 850 20 10.5 0.97 0.71 0.001 30 1.60 1.32 0.04 4.58 1.20 1.35
I.d 830 20 5.15 1.15 0.72 0.0038 1.41 0.97 − 0.05 4.99 2.57 0.66
I.A 860 20 1.9 1.15 0.65 0.013 1.46 0.85 0.01 6.30 3.73 0.08
I.e 800 20 0.71 1.25 0.65 0.037 1.33 0.41 0.17 5.34 3.21 − 0.06
I.B 1000 20 0.32 1.58 0.70 0.15 1.21 − 0.18 0.02 1.77 1.08 − 0.43
I.C 1170 20 0.18 12.3 4.12 1.79 1.12 − 0.27 0.05 2.08 1.18 − 0.57
II.A 630 200 27.4 4.79 2.35 0.010 1.27 0.72 − 0.13 2.17 1.32 3.19
II.B 670 200 5.13 7.42 3.20 0.10 1.43 0.06 − 0.08 0.91 1.75 2.50
II.C 770 200 2.31 40.0 14.6 1.19 1.29 − 0.48 − 0.04 3.71 1.71 2.48
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Figure 12. E and B mode polarizations for series I (upper row) and II (lower row). Blue (red) lines denote the normalized probability density functions of E
(B) mode polarization.

Bi of the magnetic field, which are related to each other only through
equation (18).

The increase of the skewness of E with StAD is seen both for
series I (where skew E = −0.27 for StAD ≈ 1.8 in I.C) and series II
(where skew E = −0.48 for StAD ≈ 1.2 in II.C). For small values of
StAD, however, there is a much more dramatic effect in that skew E

reaches values of around 2, which is much more extreme than what
was found earlier for decaying hydromagnetic turbulence. Even a
change of StAD from 10−2 (I.A) to 10−4 (II.a) has a strong effect
in that the skew changes from 0.85 to 2. The kurtosis of E reaches
more extreme values much larger than 10 (see Fig. 1 for a summary
of the statistics of E and B). Although we have not determined error
bars, we can get a sense of the reliability of the data by noting that
the trend with StAD is reasonably systematic (see Fig. 13).

In view of the negative skewness found previously for decaying
hydromagnetic turbulence (Brandenburg et al. 2019), it now appears
that negative skewness of E is not a general property of hydromag-
netic turbulence, although it may well appear in the interstellar
medium where both AD can be present and magnetic fields can
be significant. AD can also play a role in the solar chromosphere,
where it contributes to heating cold pockets of gas (Khomenko &
Collados 2017). It needs to be checked whether this can lead to
observable effects. The analysis of E and B mode polarization is
therefore an interesting diagnostic tool, although more work needs
to be done to learn about all the possible ways of interpreting those
two modes of polarization.

4 C O N C L U S I O N S

In the cold interstellar medium, ionization and recombination are
important. The electron pressure can then be neglected and the
single-fluid approach of AD becomes an excellent approximation.
Our work has now demonstrated that AD does not have diffusive
properties in the sense of enhancing the effects of microphysical
magnetic diffusion. This is most likely due to the fact that AD is
a non-linear effect that operates only in places where the field is

strong in the sense that τADv2
A 
 τ0u

2
rms. In fact, in one dimension

it is easy to see that the Lorentz force acting on the ionized fluid
works in such a way as to move more ionized fluid towards the
magnetic null (Brandenburg & Zweibel 1995). This depletes the
field maxima and leads to a pile-up of magnetic field just before the
magnetic null. This effect is particularly pronounced when τAD 

τ 0, and thus StAD 
 1.

Although the spectral shape at large k is only weakly affected by
AD, it does have a clear effect on the kinetic energy spectrum at
k > kν and suppresses the spectral kinetic energy of the neutrals
markedly. The kinetic energy of the charged species is even slightly
enhanced. This is surprising, because the overall rms velocity of the
neutrals is hardly affected at all. One must keep in mind, however,
that not much kinetic energy is contained deep in the kinetic energy
tail at large k. In fact, the only reason why there is some level of
kinetic energy at all is that, owing to the large magnetic Prandtl
number, there is still significant magnetic energy at those high
wavenumbers that drives the kinetic motions.

From an observational point of view, we can identify two
potentially useful ways of diagnosing the importance of AD in
the ISM. First, there is the direct effect on the statistics of the
magnetic field. The importance of AD can then potentially be
quantified by measuring the kurtosis of the components of the
magnetic field. Alternatively, there appears to be a systematic effect
on the statistics of the E and B mode polarizations. While the B
mode polarization is generally unaffected by turbulence, the E mode
polarization can exhibit non-vanishing skewness, which is positive
for a weak AD and negative for strong AD. This is an unexpected
signature in view of recent results for decaying hydromagnetic
turbulence, where the skewness was found to be negative even
without AD.

In this work, we have studied only two values of the magnetic
Prandtl number. However, the effect of changing the value of PrM on
observational properties such as E and B is rather weak (see Fig. 13).
This is interesting because in cold molecular clouds, the magnetic
Prandtl number can potentially drop below unity. It would therefore
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(a) (b)

Figure 13. (a) Dependence of skew E (blue) and skew B (red) on StAD and (b) dependence of kurt E + 3 (blue) and kurt B + 3 (red) on StAD. Filled (open)
symbols refer to series I (II). The straight lines represent approximate fits given by skew E = −0.5 − 0.3 ln StAD (blue) and skew B = 0 (red) in (a), and
kurt E + 3 = 3.3 St0.17

AD (blue) and kurt B = 2 (red) in (b).

in future be useful to study whether the present results carry over
into the regime of lower values of PrM (possibly below unity), and
whether the effects on the skewness of E and B mode polarizations
remain unchanged.
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