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Abstract

The emergence of dipolar magnetic features on the solar surface is an idealization. Most of the magnetic flux
emergence occurs in complex multipolar regions. Here, we show that the surface pattern of magnetic structures
alone can reveal the sign of the underlying magnetic helicity in the nearly force-free coronal regions above. The
sign of the magnetic helicity can be predicted to good accuracy by considering the three-dimensional position
vectors of three spots on the sphere ordered by their relative strengths at the surface and compute from them the
skew product. This product, which is a pseudoscalar, is shown to be a good proxy for the sign of the coronal
magnetic helicity.

Key words: dynamo – magnetohydrodynamics (MHD) – methods: numerical – Sun: corona – Sun: magnetic fields –
turbulence

1. Introduction

The Sun’s magnetic field manifests itself through sunspots in
white light and magnetograms in polarized light. The resulting
pattern is generally rather complex and never in the form of a
symmetric pair of spots that is usually shown in text books; see,
e.g., Parker (1979). Just like a human face, both halves are
never perfectly identical to their actual mirror images. In fact,
certain aspects of the solar surface pattern are distinctly
different from each other in the northern and southern
hemispheres. This aspect has been explored by Sara Martin
(1998a, 1998b, 2003) and others (Canfield et al. 1999; Magara
& Longcope 2001; Gibson et al. 2002); see also Panasenco &
Martin (2008) and Panasenco et al. (2011, 2013) for recent
accounts of those studies.

The purpose of this paper is to propose a simple recipe by
which a pseudoscalar can be constructed that can be used to
estimate the sign of the underlying magnetic helicity that is
responsible for creating the surface magnetic field. To
appreciate the motivation behind this way of thinking, we
must recall that a pseudoscalar is a rather special type of
mathematical construct. If one finds a way of constructing such
a quantity from some physical object, it changes its sign when
constructing it from a mirror image of the same object. A
common example is the cyclones on the Earth’s weather map
that look different from their mirror images. Mathematically, a
pseudoscalar can be constructed from the downward direction
given by the gravity vector g and the local angular velocity
vector Ω, which is an axial vector. If one draws this vector by
indicating the sense of rotation rather than through an arrow on
one of the two ends, it is evident that viewing it in a mirror
results in the opposite sense of rotation. Therefore, the sign
of the dot product W·g changes. It is therefore a pseudoscalar.
In the Earth and in the Sun, it is this pseudoscalar that governs
the sign of several other relevant pseudoscalars such as the
kinetic, magnetic, and current helicities; see Brandenburg &
Subramanian (2005) for a review.

One may now speculate that the construction of any
pseudoscalar in a system must be related to some other

pseudoscalar in that system, even though the causal relation-
ship may not immediately be evident. Consider now a
seemingly absurd looking example of a pseudoscalar,

= ´( ˆ ˆ ) · ˆ ( )n n nQ , 11 2 3

constructed from the normalized position vectors n̂1, n̂2, and n̂3 of
three different spots on the solar surface. In this definition, Q is
independent of the sphere radius. Their unsigned fluxes are F∣ ∣1 ,
F∣ ∣2 , and F∣ ∣3 , and they are ordered such that F < F < F∣ ∣ ∣ ∣ ∣ ∣1 2 3 .
Remarkably, the direction of the magnetic field does not

enter, and we do not even need a vector-magnetogram. All that
is required is any three spots that can somehow be ordered, for
example, by their strength, as explained above.
In this paper, we test the idea outlined above by considering

synthetic line-of-sight magnetograms and constructing from
those a nearly force-free magnetic field in the corona on top of
it. Such a magnetic field is in general always helical, so we can
compute the sign of the magnetic helicity and compare it with
the sign of Q. The idea of constructing a pseudoscalar Q from
the position vectors of individual sources is not new and has
been applied to the arrival directions of energetic GeV photons
coming from extragalactic sources in the sky (Tashiro et al.
2014; Chen et al. 2015; Tashiro & Vachaspati 2015, who find
evidence for a negative sign throughout all of the sky, which
they associated with the possibility of a helical primordial
magnetic field with negative helicity in all of the universe). In
their case, the arrival directions of GeV γ-rays in the sky is the
result of magnetic deflection of pair-created particles resulting
from the interaction of TeV photons from blazars with the
extragalactic background light. In the present case, the location
of spots on the solar or stellar surface is a more direct
consequence of a dynamo-generated magnetic field somewhere
beneath the surface (Brandenburg 2005).
In the solar corona, a force-free magnetic field can be

constructed using a potential field extrapolation method. Only
the line-of-sight magnetic field Bz(x, y) at the bottom boundary
is needed. No magnetic helicity can readily be constructed from
this, and yet a certain sign of the resulting magnetic helicity is
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somehow encoded in the photospheric magnetic pattern,
provided it looks different from its mirror image, as alluded
to above. This is indeed what was found in the recent work of
Bourdin et al. (2018), using data from simulations of Bourdin
et al. (2013).

Any distribution of Bz(x, y, z*, 0) at the surface z=z* can
be used to construct a potential field j=B , where
j ( )x y z, , obeys * j= ¶ ¶( )B x y z z, , , 0z at z=z*. At later
times, however, Bz(x, y, z*, t) changes on the boundary as the
magnetic field patches expand due to diffusive and dynamical
processes. The field then evolves through a sequence of new
nonpotential nearly force-free states, with the current density
being parallel to the magnetic field, which implies local current
helicity.

The purpose of this work is to study the connection between
the original orientation of spots, as characterized by the
pseudoscalar Q, and the sign of the resulting magnetic helicity
in the volume above. For this purpose, we solve for the
magnetic field numerically using ambipolar diffusion as a
relaxation method to construct approximately force-free
magnetic fields above three- and four-spot arrangements as
the lower boundary condition.

2. Method

2.1. Ambipolar Relaxation Approach

To construct an approximately force-free equilibrium magn-
etic field B, one often uses the magnetofrictional approach
(Yang et al. 1986), which corresponds to solving the induction
equation with a velocity that is proportional to the Lorentz
force, ´J B, where m= ´J B 0 is the current density and
m0 is the vacuum permeability. One usually divides this
velocity by B2 to enhance the relaxation rate in regions of weak
magnetic field (Valori et al. 2007), but this is purposely ignored
here, so our effective advection velocity is t r= ´( )v J B,
where τ is some relaxation time and ρ is some density, which is
assumed constant. Inserting this into the induction equation,
the electromotive force ´v B becomes proportional to

´ ´ = -( ) ( · )J B B J B B B J2 , so the uncurled evolution
equation for the magnetic vector potential A, where

= ´B A, can be written as

a h h m
¶
¶

= - +( ) ( )A
B J

t
, 2AD AD 0

where a t r= ( )( · )J BAD is a term reminiscent of the α effect
in mean-field electrodynamics (Krause & Rädler 1980),
h t r= ( )BAD

2 is an effective magnetic diffusivity that is what
gives ambipolar diffusion its name, η is the usual Spitzer
diffusivity, and the Weyl gauge has been adopted in
Equation (2). Ambipolar diffusion is known to lead to the
formation of sharp structures such as current sheets between
nearly force-free regions in space (Brandenburg & Zweibel
1994). This is an important feature that appears more
pronounced here than in the magnetofrictional approach, which
motivates our choice of employing ambipolar diffusion.

To formulate the potential field boundary condition, we
employ the Fourier-transformed magnetic vector potential

ò=˜ ( ) ( ) ( )·A A rk k z t x y z t e d, , , , , , , 3k r
x y

i 2

where = ( )k k k,x y and = ( )r x y, . On the lower and upper z
boundaries, we thus have

*
¶
¶

= -
˜

∣ ∣ ˜ ( ) ( )A
k A

z
k k z t, , , , 4x y

where z* denotes the locations of the boundaries. One of them
is the lower surface, which we will from now on assume to be
at z=0, and the other is at the top of the domain. Note that on
both boundaries we assume the field to fall off with increasing
values of z, which is not the standard situation on the lower
boundary, if the region beneath it was supposed to be a
vacuum. It is, however, a natural choice in the present context
where the magnetic field is assumed to be initially potential
inside the computational domain (Bourdin et al. 2013).
We use this formulation to set the Fourier-transformed

magnetic vector potential in the ghost zones just outside the
computational domain. This corresponds to setting boundary
conditions for the derivative of all three components of Ã, as
stated above. We solve Equation (2) numerically using the
PENCIL CODE6 using a resolution of 643 meshpoints. The total
vertical magnetic flux is always zero since A is periodic in x
and y, and we balance out Bz at the bottom.

2.2. Gauge-independent Magnetic Helicity

To characterize the magnetic helicity in a gauge-independent
fashion, we use the formulation of Finn & Antonsen (1985);
see their Equation (5), which is identical to the relative helicity
of Berger & Field (1984), and apply it to the semi-infinite test
volume V(z):

= + -
¥

∭( ) ( ) · ( ) ( )A A B BH z dz dy dx. 5
z

M pot pot

We use a potential field extrapolation from the vertical
magnetic field Bz at the base of this test volume V as a
reference field, = ´B Apot pot. Computing the helicity
difference between two test volumes above heights z and
z+Δz, we obtain the gauge-independent magnetic helicity
contained in small horizontal slices of thickness Δz as

D D = - + D( ) ( ) ( ) ( )H z z H z H z z; . 6M M M

Here, we simply use the grid distance of our simulation as
Δz=2π/64. We stop the integration at the upper boundary of
our simulation domain, where the magnetic field is almost
potential, so that the error we make in our limited integration is
negligible. As required by Finn & Antonsen (1985), the
magnetic fields normal to the boundaries of the integration
volume are identical. Because our setup is periodic in the
horizontal directions, all assumptions on the boundaries of V
apply only to the boundaries in z.

2.3. Arrangement of Spots of Different Strengths

We consider configurations of N spots of different strengths
F < F < < F∣ ∣ ∣ ∣ ∣ ∣... N1 2 as

å ps= F
l

l
s

l
=

- - l( ) ( ) ( )( )B x y z t e, , , 2 , 7r r
z

N

0
1

2 22 2

6 https://github.com/pencil-code
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where lr are the positions of the spots with magnetic fluxes Φλ

for λ=1, 2, K, N, where N=3 in this case.
We construct observables from spherical polar coordinates

(r, θ, f) at the surface as

q f q f q=ˆ ( ) ( )n sin cos , sin sin , cos . 8

To map the corners of a triangle onto the sphere, we choose
two neighboring unit vectors ê1 and ê2 on the sphere to define a
local coordinate system spanned by the unit vectors x̂ and ĥ
given by x = -ˆ ˆe e2 1 and h x= ´ ê1. Thus,

M l= + = ¼l lˆ ˆ ˆ ( )n e r Nfor 1, , , 91

where M x h= (ˆ ˆ ), is a 2×3 matrix consisting of the two
column vectors x̂ and ĥ. In practice, we take =ˆ ( )e 1, 0, 01 and

=  ˆ ( )e sin 30 , cos 30 , 02 . The matrix M describes the conver-
sion of planar two-dimensional position vectors lr onto the
position vector l̂n on the unit sphere. In this formulation,
position differences -l l¢r r are then measured in radian. To
obtain the corresponding values in degrees, we multiply by
180°/π.

2.4. Three-spot Arrangements

We begin with a triangular configuration with positions

= = =( ) ( ) ( ) ( – ) ( )r r rℓ ℓ ℓ ℓ, 0 , 0, , , A C , 101 2 3

with indices (1, 2, 3) corresponding to spots of strengths
Φ1/Φ0=1, Φ2/Φ0=2, and Φ3/Φ0=−3, where Φ0 is
another constant and ℓis the spot separation. This particular
choice for the three values of Fl∣ ∣ ensures vertical magnetic flux
balance, although this is not actually required, as will be shown
further below. We associate the positions ( )r r r, ,1 2 3 with
different permutations of the fluxes (Φ1, Φ2, Φ3); see Table 1.

The three spots, referred to as cases A–C in Equation (10),
are arranged in a mathematically positive (counterclockwise)
sense around their center of mass. The same three-spot
arrangement, but with only positive polarities, will be referred
to as cases A–C.

In Table 1, we compare the sign of Q with the gauge-
independent magnetic helicity; left-handed systems (L) have a
positive Q value and generate negative helicity signs. We show
the total magnetic (M) and current (C) helicities, where we sum
separately the positive (+) and negative (−) parts in our

domain that we compute as





å
å

= D

= D

 D

 D

( )

( ) ( )
∣ ( )

∣ ( )

H H z

H H z

,

, 11

z H z

z H z

M 0 M

C 0 C

M

C

with D ( )H zC being the total current helicity contained in the
horizontal slice of volume p Dz4 2 . In the tables, we give
normalized values as º H H106M

6
M . The total helicities of

the whole domain may be obtained by summing the negative
and positive helicities:

= +
= +

+ -

+ - ( )
H H H
H H H

,
. 12

M M M

C C C

Magnetic helicity values from the upper part of the domain are
denoted by . The current helicity values denoted with  are
strongly influenced by the lower boundary and are therefore
disregarded.
It turns out that the value of Q is proportional to ℓ

2. In
particular, for the triangular arrangement of the spots given by
Equation (10), we have = Q ℓ2 for positive (negative)
permutations of the spot’s fluxes (Φ1, Φ2, Φ3). Conversely,
for a flipped arrangement of spots (A′–C′), we also find—not
surprisingly—a flipped sign of Q. These three spots are now
arranged in a mathematically negative sense around their center
of mass.
Numerically, we find that for large values of ℓ, corresp-

onding to angular separations of spots in excess of 20°, the
ratio ∣ ∣Q ℓ2 drops significantly below unity. In general, Q/ℓ2 is
twice the area of the triangle spanned by the three points, so, by
comparison, for a configuration consisting of an equilateral
triangle, we have =  Q ℓ sin 602 for spots of increasing
strength in the positive (negative) mathematical sense.
In Figure 1, we show visualizations of Bz, ∣ ∣J , and ·J B at

the bottom surface. We recall that the configurations A and A′,
B and B′, as well as C and C′, each have opposite signs of
current helicity. We confirmed that the polarities of the
different patches is not important for the sign of the current
helicity, but it is instead for the orientation of spots of
increasing strength. In the visualizations of Bz, patches of
increasing strengths are arranged in a clockwise sense, while
those of A′–C′ are in a counterclockwise sense. Comparing
A–C with A′–C′, we see that the current sheets are flipped
about the diagonal, which is indicated by a long-dashed line.
The images of ·J B look more complex than those of Bz and

∣ ∣J because patches of opposite sign are now much smaller than
the patches of Bz. However, one sees clearly that one is a mirror
image of the other after a sign flip of ·J B. Apart from this,
there is no change in the relative dominance of one sign relative
to the other, and one would not be able to tell the sign of the xy
averages á ñ·J B xy judging just based on the sign of the local
patches of ·J B. This demonstrates that what really matters in
the end are both the sign of Q and the values of the unsigned
flux of all spots, which is only obtained after averaging over all
the patches.
Remarkably, as alluded to above, the sign of the polarities is

not important for generating helicity. In cases A–C, where all
spots have the same polarity, we see that they also generate
magnetic and current helicities, but less strongly so than
compared to the arrangements A–C that have different signs in
their polarities; see Figure 2. The current densities of the
unipolar casesA–C are of course stronger on the outer contour

Table 1
Triangular Cases with Multiples of Φ0 at the Positions (r1, r2, r3)

# F Q/ℓ2 H6M+ -H6M HC+ -HC

A (3, −1, −2) +1 +3.17 −2.22 +0.39 −35.0
A′ (−1,3, −2) −1 +2.22 -3.17 +35.0 −0.39
A (3, 1, 2) +1 +10.2 −0.23 +1.36 −3.18
A′ (1, 3, 2) −1 +0.23 -10.2 +3.18 −1.36
B (−1, −2, 3) +1 +0.17 −8.99 +0.07 −10.9
B′ (−2, −1, 3) −1 +8.99 −0.17 +10.9 −0.07
B (1, 2, 3) +1 +0.30 −3.68 +4.46 −0.01
B′ (2, 1, 3) −1 +3.68 −0.30 +0.01 -4.46
C (−2, 3, −1) +1 +0.00 −31.8 +8.78 −15.0
C′ (3, −2, −1) −1 +31.8 −0.00 +15.0 −8.78
C (2, 3, 1) +1 +0.00 −5.68 +0.70 −3.88
C′ (3, 2, 1) −1 +5.68 −0.00 +3.88 −0.70

Note.Some numbers are displayed in italics to indicate a systematic trend.

3

The Astrophysical Journal, 869:3 (7pp), 2018 December 10 Bourdin & Brandenburg



of the three-spot region. The angles between J and B have a
less complex pattern. This is expected because of the less
complex magnetic topology in the unipolar regions.

2.5. Four-spot Arrangements

In an attempt to generalize our approach to multiple spots,
we now also consider four-spot arrangements with

= = = =( ) ( ) ( ) ( ) ( )r r r rℓ ℓ ℓ ℓ0, 0 , , 0 , , , 0, , 131 2 3 4

which are referred to as cases D–F′; see Table 2. Each
configuration is denoted by the vector

F = F F F F( ) ( ), , , 14a b c d

for each of the positions ( )r r r r, , ,1 2 3 4 , being certain permuta-
tions of (Φ1, Φ2, Φ3, Φ4), where the four fluxes
obey F < F < F < F∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣1 2 3 4 .

Figure 1. Overview of Bz(x, t) (red: Bz<0, blue: Bz>0), current density (linear grayscale), and á ñ·J B xy at an evolved snapshot at t=7 time units at the bottom
boundary. The gray dashed line indicates the symmetry axis between cases X and ¢X ; see also Table 1. The letters L and R in the panels of ∣ ∣Bz refer to left and right
hands, respectively. The handedness is L in all panels X and R for all ¢X ; see Section 2.6.

Table 2
Quadratic Cases with Multiples of Φ0 at the Positions (r1, r2, r3, r4)

# F S +H6M -H6M +HC -HC

D (0.5, 1.0, 1.5, −3) +18 +8.70 −1.14 +31.0 −0.35
E (0.5, 1.0, −3, 1.5) −3 +0.18 −6.80 +0.08 −12.9
F (0.5, 1.5, 1.0, −3) +1 +1.10 -3.01 +14.4 −0.86
E′ (0.5, 1.5, −3, 1.0) +3 +6.80 −0.18 +12.9 −0.08
F′ -( )0.5, 3, 1.0, 1.5 −1 +3.01 −1.10 +0.86 −14.4

Note.Some numbers are displayed in italics to indicate a systematic trend.
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Figure 2. Overview of the magnetic and current helicity evolution for the signed and unsigned three-spot configurations as listed in Table 1 at three times. Time is
given in arbitrary time units [tu].
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A four-spot arrangement can be analyzed by breaking it
down into four different three-spot arrangements and calculat-
ing the weighted sum

å f=
=

( )S q , 15
i

i i
1

4

where qi=Qi/ℓ
2=±1 is the normalized Q value for triangle

i and fi is the total unsigned flux of each triangle, i.e.,

åf = F
l

l
=

∣ ∣ ( ), 16
a

c

which is different for each of the four triangles. In Table 2, we
compare the S values for all possible four-spot arrangements
and find agreement with the signs and relative magnitudes of
the actual magnetic helicity in the lower part of the domain.
Values denoted with  are from the upper part of the domain,
where both signs contribute significantly in Figure 3. We find
that the sign changes of S correlate well with those of the
generated helicities in the lower part of the domain. Also, the
magnitude of S correlates with the strength of the generated
helicities. When S is small, the correlation with the helicities is
less clear. On the other hand, compared with the three-spot
configurations, the correspondence with the actual signs of

current helicity, and sometimes also the relative magnetic
helicity, tends to be the other way around. The reason for this is
not obvious, but the different trends for magnetic and current
helicities suggest that this is connected with helicity effects
from different length scales. Therefore, investigating helicity
spectra will be an important future task.

2.6. Application to Solar Magnetograms

Nearly force-free magnetic field configurations have been
generated in numerical simulations by several groups (Gudiksen
& Nordlund 2002, 2005a, 2005b; Bingert & Peter 2011; Bourdin
et al. 2013) using observed solar magnetograms as lower initial
and boundary conditions, where the vertical magnetic field was
kept fixed. They showed that random footpoint motions lead to
field line braiding and coronal heating. Force-free magnetic
fields are generally helical, but the initial potential field and the
random footpoint motions were nonhelical, so no net sign of
magnetic helicity was expected. This turned out not to be the
case. Instead, these simulations produced net magnetic helicity,
which Bourdin et al. (2018) used to study the vertical variation
of the resulting magnetic and current helicity profiles and
the possibility of a magnetic helicity reversal with height, as
has been suggested from studies of magnetic helicity in the
solar wind (Brandenburg et al. 2011) and theoretical studies
(Warnecke et al. 2011, 2012). The point of the present work is to
provide the theoretical underpinning to why a finite value of the
magnetic helicity can be expected in these simulations that are
otherwise statistically mirrorsymmetric. In fact, the coronal
simulations of Rempel (2017) also have finite magnetic current
helicity (M. Rempel 2018, private communication), but in their
case this could also be a remnant from the initial magnetic field
that was taken from a large-scale dynamo simulation.
The images of Bz for A and A′ in Figure 1 can be identified

with those of open left (L) or right (R) hands, respectively.
Here, the palm corresponds to the biggest spot, the thumb
points to the smallest one, and the four fingers to the
intermediate spot. Their orientation indicates the expected sign
of helicities, where left-handed regions should generate negative
helicity and right-handed ones positive helicity. The polarity of
the spots is of no importance for the sign of the generated, even
though we find that mixed polarities generate more helicity.
Our work raises the possibility that magnetic helicity can be

determined even from a magnetic field with a 180° ambiguity
and, in particular, from the relative arrangement of sunspots on
the solar surface. We have seen in Section 2.4 that helicity is
also generated if all spots feature the same polarity, even
though such setups create less helicity than multipolar ones.
This suggests remarkable prospects for future work, whose full
extent cannot be imagined at present, given that detailed
sunspot observations exist for many centuries.

3. Conclusions

With the help of our model, we have demonstrated that
magnetic helicity is generated above the surface of a star like
the Sun and that its sign can be determined uniquely from the
horizontal arrangement of magnetic flux concentrations and not
just, as previously thought, by the twist of the emerging
magnetic field. The source of this magnetic field is the solar
dynamo, and it also determines the sign of magnetic helicity.
This helicity manifests itself in a powerful way through the spot
arrangement. We have demonstrated this by taking an observed

Figure 3. Similar to Figure 2, but for the four-spot configuration listed in
Table 2.
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solar magnetogram, removing all other signs of magnetic
helicity by fitting it to a potential field, and then finding the
original sign of magnetic helicity being recovered through the
spot arrangement alone (Bourdin et al. 2018). This illustrates a
strong persistence of magnetic helicity characterized by this
new aspect of handedness.

An immediate implication of our work is that the horizontal
arrangement of just the line-of-sight magnetic field or—more
precisely—the vertical magnetic field, contributes to determin-
ing the sign of magnetic helicity in the region above. Such
magnetograms have commonly been used in earlier studies of
coronal heating. Although footpoint motions can lead to
random twist of magnetic field lines, the net effect vanishes,
as has been confirmed in the simulations of Bourdin et al.
(2013). Nevertheless, net magnetic helicity has been detected in
those simulations; see Bourdin et al. (2018). Our present results
now give us a theoretical framework with which this surprising
fact can be understood. In the simulations of Bourdin et al.
(2013), the underlying solar magnetogram was taken from a
location on the southern hemisphere slightly below the solar
equator. Thus, if any net magnetic helicity is to be expected, it
should be positive (Seehafer 1990). This is indeed what is
found in the simulations. This suggests that the sign of
magnetic helicity must have been imprinted on the pattern of
the emerged magnetic flux at the surface through its complex
arrangement that cannot be modeled using only a pair of spots.
Three or more spots or magnetic flux concentrations are needed
to encode the information about magnetic helicity in the surface
pattern.

Our work has future applications to solar physics and,
perhaps, many other fields. Even just sunspot and starspot
observations can in principle be used to gather information
about magnetic helicity. Besides the original application of
Tashiro et al. (2014) to extragalactic high-energy gamma-rays,
other possible applications in astrophysics may include galactic
magnetism, where magnetic helicity was previously only
accessible through Faraday rotation measurements (Oppermann
et al. 2011; Brandenburg & Stepanov 2014). Other approaches
are conceivable where the sign of magnetic helicity is in
principle accessible through the measurement of what is known
as E and B polarization (Seljak & Zaldarriaga 1997; Kamion-
kowski et al. 1997), i.e., the parity-even and parity-odd
contributions to the linear polarization in the sky (Kahniashvili
et al. 2014). The relation between this and our present work
still needs to be elucidated in more detail.
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