@ARTICLE{Jur13,
author = {{Jur{\v c}i{\v s}inov{\'a}}, E. and {Jur{\v c}i{\v s}in}, M. and
{Remeck{\'y}}, R. and {Zalom}, P.},
title = "{Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: Two-loop renormalization group result}",
journal = {\pre},
keywords = {Navier-Stokes equations, Field-theoretic formulations and renormalization, Turbulent diffusion, Magnetohydrodynamics and electrohydrodynamics},
year = 2013,
month = apr,
volume = 87,
number = 4,
eid = {043010},
pages = {043010},
doi = {10.1103/PhysRevE.87.043010},
adsurl = {http://adsabs.harvard.edu/abs/2013PhRvE..87d3010J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{DCRFCL11,
author = {{Dermer}, C.~D. and {Cavadini}, M. and {Razzaque}, S. and {Finke}, J.~D. and
{Chiang}, J. and {Lott}, B.},
title = "{Time Delay of Cascade Radiation for TeV Blazars and the Measurement of the Intergalactic Magnetic Field}",
journal = {\apjl},
year = 2011,
month = jun,
volume = 733,
eid = {L21},
pages = {L21}
}
@ARTICLE{Schober2017,
author = {{Schober}, J. and {Rogachevskii}, I. and {Brandenburg}, A. and
{Boyarsky}, A. and {Fr{\"o}hlich}, J. and {Ruchayskiy}, O. and
{Kleeorin}, N.},
title = "{Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations}",
journal = {\apj},
archivePrefix = "arXiv",
eprint = {1711.09733},
primaryClass = "physics.flu-dyn",
keywords = {early universe, magnetic fields, magnetohydrodynamics: MHD, relativistic processes, stars: neutron, turbulence },
year = 2018,
month = may,
volume = 858,
eid = {124},
pages = {124},
doi = {10.3847/1538-4357/aaba75},
adsurl = {http://esoads.eso.org/abs/2018ApJ...858..124S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{TSS14,
author = {{Trivedi}, P. and {Subramanian}, K. and {Seshadri}, T.~R.},
title = "{Primordial magnetic field limits from the CMB trispectrum: Scalar modes and Planck constraints}",
journal = {\prd},
year = 2014,
month = feb,
volume = 89,
number = 4,
eid = {043523},
pages = {043523},
doi = {10.1103/PhysRevD.89.043523},
adsurl = {http://adsabs.harvard.edu/abs/2014PhRvD..89d3523T},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{Kazantsev1968,
author = {{Kazantsev}, A.~P.},
title = "{Enhancement of a Magnetic Field by a Conducting Fluid}",
journal = {Soviet Journal of Experimental and Theoretical Physics},
year = 1968,
volume = 26,
pages = {1031},
adsurl = {http://adsabs.harvard.edu/abs/1968JETP...26.1031K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{SKS13,
author = {{Schlickeiser}, R. and {Krakau}, S. and {Supsar}, M.},
title = "{Plasma Effects on Fast Pair Beams. II. Reactive versus Kinetic Instability of Parallel Electrostatic Waves}",
journal = {\apj},
year = 2013,
month = nov,
volume = 777,
eid = {49},
pages = {49},
doi = {10.1088/0004-637X/777/1/49},
adsurl = {http://adsabs.harvard.edu/abs/2013ApJ...777...49S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{JKO2000,
author = {{Jedamzik}, K. and {Katalini{\'c}}, V. and {Olinto}, A.~V.},
title = "{Limit on Primordial Small-Scale Magnetic Fields from Cosmic Microwave Background Distortions}",
journal = {Phys. Rev. Lett.},
eprint = {astro-ph/9911100},
year = 2000,
month = jul,
volume = 85,
pages = {700},
doi = {10.1103/PhysRevLett.85.700},
adsurl = {http://adsabs.harvard.edu/abs/2000PhRvL..85..700J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{PTU15,
author = {{Pshirkov}, M.~S. and {Tinyakov}, P.~G. and {Urban}, F.~R.},
title = "{The rotation measures of high-luminosity sources as seen from the NVSS}",
journal = {\mnras},
year = 2015,
month = sep,
volume = 452,
pages = {2851},
doi = {10.1093/mnras/stv1273},
adsurl = {http://adsabs.harvard.edu/abs/2015MNRAS.452.2851P},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BBO1999,
author = {{Blasi}, P. and {Burles}, S. and {Olinto}, A.~V.},
title = "{Cosmological Magnetic Field Limits in an Inhomogeneous Universe}",
journal = {\apjl},
year = 1999,
month = apr,
volume = 514,
pages = {L79},
doi = {10.1086/311958},
adsurl = {http://adsabs.harvard.edu/abs/1999ApJ...514L..79B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{Subramanian16,
author = {{Subramanian}, K.},
title = "{The origin, evolution and signatures of primordial magnetic fields}",
journal = {Rep. Prog. Phys.},
year = 2016,
month = jul,
volume = 79,
number = 7,
eid = {076901},
pages = {076901},
doi = {10.1088/0034-4885/79/7/076901},
adsurl = {http://adsabs.harvard.edu/abs/2016RPPh...79g6901S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{GrassoRubinstein2001,
author = {{Grasso}, D. and {Rubinstein}, H.~R.},
title = "{Magnetic fields in the early Universe}",
journal = {\physrep},
eprint = {astro-ph/0009061},
year = 2001,
volume = 348,
pages = {163},
doi = {10.1016/S0370-1573(00)00110-1},
adsurl = {http://adsabs.harvard.edu/abs/2001PhR...348..163G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{S68,
author = {{Silk}, J.},
title = "{Cosmic Black-Body Radiation and Galaxy Formation}",
journal = {\apj},
year = 1968,
month = feb,
volume = 151,
pages = {459},
doi = {10.1086/149449},
adsurl = {http://adsabs.harvard.edu/abs/1968ApJ...151..459S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@PROCEEDINGS{HPY07,
title = "{Neutron Stars 1 : Equation of State and Structure}",
keywords = {NEUTRON STARS, CORES, PLASMA PHYSICS, MAGNETIC FIELDS, CRUST},
booktitle = {Astrophysics and Space Science Library},
year = 2007,
series = {Astrophysics and Space Science Library},
volume = 326,
editor = {{Haensel}, P. and {Potekhin}, A.~Y. and {Yakovlev}, D.~G.},
pages = {Haensel},
adsurl = {http://adsabs.harvard.edu/abs/2007ASSL..326.....H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{DT92,
author = {{Duncan}, R.~C. and {Thompson}, C.},
title = "{Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts}",
journal = {\apjl},
keywords = {Dynamo Theory, Gamma Ray Bursts, Neutron Stars, Star Formation, Stellar Magnetic Fields, Gravitational Collapse, Stellar Rotation, Supernovae},
year = 1992,
month = jun,
volume = 392,
doi = {10.1086/186413},
adsurl = {http://adsabs.harvard.edu/abs/1992ApJ...392L...9D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{UR14,
author = {{Uzdensky}, D.~A. and {Rightley}, S.},
title = "{Plasma physics of extreme astrophysical environments}",
journal = {Rep. Prog. Phys.},
year = 2014,
month = mar,
volume = 77,
number = 3,
eid = {036902},
pages = {036902},
doi = {10.1088/0034-4885/77/3/036902},
adsurl = {http://adsabs.harvard.edu/abs/2014RPPh...77c6902U},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{HL06,
author = {{Harding}, A.~K. and {Lai}, D.},
title = "{Physics of strongly magnetized neutron stars}",
journal = {Rep. Prog. Phys.},
year = 2006,
month = sep,
volume = 69,
pages = {2631},
doi = {10.1088/0034-4885/69/9/R03},
adsurl = {http://adsabs.harvard.edu/abs/2006RPPh...69.2631H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{H13,
author = {{Harding}, A.~K.},
title = "{The neutron star zoo}",
journal = {Frontiers of Physics},
year = 2013,
month = dec,
volume = 8,
pages = {679},
doi = {10.1007/s11467-013-0285-0},
adsurl = {http://adsabs.harvard.edu/abs/2013FrPhy...8..679H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{OK14,
author = {{Olausen}, S.~A. and {Kaspi}, V.~M.},
title = "{The McGill Magnetar Catalog}",
journal = {\apjs},
year = 2014,
month = may,
volume = 212,
pages = {6},
eid = {6},
doi = {10.1088/0067-0049/212/1/6},
adsurl = {http://adsabs.harvard.edu/abs/2014ApJS..212....6O},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{KEtAl99,
author = {{Kouveliotou}, C. and {Strohmayer}, T. and {Hurley}, K. and
{van Paradijs}, J. and {Finger}, M.~H. and {Dieters}, S. and
{Woods}, P. and {Thompson}, C. and {Duncan}, R.~C.},
title = "{Discovery of a Magnetar Associated with the Soft Gamma Repeater SGR 1900+14}",
journal = {\apjl},
year = 1999,
month = jan,
volume = 510,
doi = {10.1086/311813},
adsurl = {http://adsabs.harvard.edu/abs/1999ApJ...510L.115K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{TD95,
author = {{Thompson}, C. and {Duncan}, R.~C.},
title = "{The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts}",
journal = {\mnras},
keywords = {MAGNETIC FIELDS, RADIATION MECHANISMS: THERMAL, RADIATIVE TRANSFER, STARS: NEUTRON, GAMMA-RAYS: BURSTS},
year = 1995,
month = jul,
volume = 275,
doi = {10.1093/mnras/275.2.255},
adsurl = {http://adsabs.harvard.edu/abs/1995MNRAS.275..255T},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{GKR15,
author = {{Grabowska}, D. and {Kaplan}, D.~B. and {Reddy}, S.},
title = "{Role of the electron mass in damping chiral plasma instability in Supernovae and neutron stars}",
journal = {\prd},
year = 2015,
month = apr,
volume = 91,
number = 8,
eid = {085035},
pages = {085035},
doi = {10.1103/PhysRevD.91.085035},
adsurl = {http://adsabs.harvard.edu/abs/2015PhRvD..91h5035G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{KBJ11,
author = {{Kemel}, K. and {Brandenburg}, A. and {Ji}, H.},
title = "{Model of driven and decaying magnetic turbulence in a cylinder}",
journal = {\pre},
archivePrefix = "arXiv",
eprint = {1106.1129},
primaryClass = "physics.plasm-ph",
keywords = {Field-reversed configurations rotamaks astrons ion rings magnetized target fusion and cusps, Current drive, helicity injection, Magnetohydrodynamic and fluid equation, Sun spots solar cycles},
year = 2011,
month = nov,
volume = 84,
number = 5,
eid = {056407},
pages = {056407},
doi = {10.1103/PhysRevE.84.056407},
adsurl = {http://esoads.eso.org/abs/2011PhRvE..84e6407K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{M78,
author = {Moffatt, H. K.},
year = {1978},
publisher = {Cambridge, England, Cambridge University Press},
title = {Magnetic Field Generation in Electrically Conducting
Fluids},
}
@ARTICLE{LPPH91,
author = {{Lattimer}, J.~M. and {Prakash}, M. and {Pethick}, C.~J. and
{Haensel}, P.},
title = "{Direct URCA process in neutron stars}",
journal = {Phys. Rev. Lett.},
keywords = {Neutrinos, Neutron Stars, Nuclear Fusion, Particle Energy, Early Stars, Spectral Bands, Supernova 1987a},
year = 1991,
month = may,
volume = 66,
pages = {2701-2704},
doi = {10.1103/PhysRevLett.66.2701},
adsurl = {http://adsabs.harvard.edu/abs/1991PhRvL..66.2701L},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{P79,
author = {E. Parker},
year = { 1979 },
title = {Cosmical Magnetic Fields},
publisher = {Oxford University Press, New York},
}
@book{KR80,
author = {F. Krause and K. H. R\"{a}dler},
year = {1980},
title = {Mean-Field Magnetohydrodynamics and Dynamo Theory},
publisher = {Pergamon, Oxford},
}
@ARTICLE{SKR66,
author = {{Steenbeck}, M. and {Krause}, F. and {R{\"a}dler}, K.-H.},
title = "{Berechnung der mittleren Lorentz-Feldst{\"a}rke $\overline{\bm{v}\times\bm{B}}$ f{\"u}r ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kr{\"a}fte beeinflu{\ss}ter Bewegung}",
journal = {Zeitschrift Naturforschung Teil A},
year = 1966,
month = apr,
volume = 21,
pages = {369},
doi = {10.1515/zna-1966-0401},
adsurl = {http://adsabs.harvard.edu/abs/1966ZNatA..21..369S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{TVV12,
author = {{Tashiro}, H. and {Vachaspati}, T. and {Vilenkin}, A.},
title = "{Chiral effects and cosmic magnetic fields}",
journal = {\prd},
year = 2012,
month = nov,
volume = 86,
number = 10,
eid = {105033},
pages = {105033},
doi = {10.1103/PhysRevD.86.105033}
}
@ARTICLE{SiglLeite2016,
author = {{Sigl}, G. and {Leite}, N.},
title = "{Chiral magnetic effect in protoneutron stars and magnetic field spectral evolution}",
journal = {JCAP},
year = 2016,
month = jan,
volume = 1,
eid = {025},
pages = {025},
doi = {10.1088/1475-7516/2016/01/025}
}
@ARTICLE{DS15,
author = {{Dvornikov}, M. and {Semikoz}, V.~B.},
title = "{Magnetic field instability in a neutron star driven by the electroweak electron-nucleon interaction versus the chiral magnetic effect}",
journal = {\prd},
year = 2015,
month = mar,
volume = 91,
number = 6,
eid = {061301},
pages = {061301},
doi = {10.1103/PhysRevD.91.061301},
adsurl = {http://adsabs.harvard.edu/abs/2015PhRvD..91f1301D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{DvornikovSemikoz2015,
author = {{Dvornikov}, M. and {Semikoz}, V.~B.},
title = "{Energy source for the magnetic field growth in magnetars driven by the electron-nucleon interaction}",
journal = {\prd},
year = 2015,
month = oct,
volume = 92,
number = 8,
eid = {083007},
pages = {083007},
doi = {10.1103/PhysRevD.92.083007},
adsurl = {http://adsabs.harvard.edu/abs/2015PhRvD..92h3007D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{JKO98,
author = {{Jedamzik}, K. and {Katalini{\'c}}, V. and {Olinto}, A.~V.},
title = "{Damping of cosmic magnetic fields}",
journal = {\prd},
year = 1998,
month = mar,
volume = 57,
doi = {10.1103/PhysRevD.57.3264},
adsurl = {http://adsabs.harvard.edu/abs/1998PhRvD..57.3264J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BJ04,
author = {{Banerjee}, R. and {Jedamzik}, K.},
title = "{Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present}",
journal = {\prd},
year = 2004,
month = dec,
volume = 70,
number = 12,
eid = {123003},
pages = {123003},
doi = {10.1103/PhysRevD.70.123003},
adsurl = {http://adsabs.harvard.edu/abs/2004PhRvD..70l3003B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{ArnoldEtAl2000,
author = {{Arnold}, P. and {Moore}, G.~D. and {Yaffe}, L.~G.},
title = "{Transport coefficients in high temperature gauge theories (I): leading-log results}",
journal = {J. High Energy Phys.},
year = 2000,
month = nov,
volume = 11,
eid = {001},
pages = {001},
doi = {10.1088/1126-6708/2000/11/001},
adsurl = {http://adsabs.harvard.edu/abs/2000JHEP...11..001A}
}
@ARTICLE{BFR15,
author = {{Boyarsky}, A. and {Fr{\"o}hlich}, J. and {Ruchayskiy}, O.},
title = "{Magnetohydrodynamics of chiral relativistic fluids}",
journal = {\prd},
year = 2015,
month = aug,
volume = 92,
number = 4,
eid = {043004},
pages = {043004},
doi = {10.1103/PhysRevD.92.043004}
}
@book{ZRS83,
author = { Ya. B. Zeldovich and A. A. Ruzmaikin and D. D. Sokoloff},
title = {\em Magnetic Fields in Astrophysics},
publisher = {Gordon and Breach, New York },
year = {1983}
}
@ARTICLE{Kelly1973,
author = {{Kelly}, D.~C.},
title = "{Electrical and Thermal Conductivities of a Relativistic - Erate Plasma}",
journal = {\apj},
year = 1973,
month = jan,
volume = 179,
pages = {599},
doi = {10.1086/151898},
adsurl = {http://adsabs.harvard.edu/abs/1973ApJ...179..599K}
}
@article{Vilenkin:80a,
author = {Vilenkin, A.},
journal = {Phys.~Rev. D},
pages = {3080-3084},
title = {{Equilibrium parity violating current in a magnetic
field}},
volume = {22},
year = {1980}
}
@inproceedings{Frohlich:2000en,
author = {Fr\"{o}hlich, J\"{u}rg and Pedrini, Bill},
booktitle = {Mathematical Physics 2000},
editor = {A.~S.~Fokas and A.~Grigoryan and T.~Kibble and
B.~Zegarlinski},
publisher = {World Scientific Publishing Company},
series = {International Conference on Mathematical Physics
2000, Imperial college (London)},
title = {{New applications of the chiral anomaly}},
year = {2000}
}
@inproceedings{Frohlich:2002fg,
author = {Fr\"{o}hlich, J\"{u}rg and Pedrini, Bill},
booktitle = {Statistical Field Theory},
editor = {A.~Cappelli and G.~Mussardo},
publisher = {Kluwer},
title = {{Axions, quantum mechanical pumping, and primeval
magnetic fields}},
year = {2002}
}
@article{Tsokos:85,
author = {Tsokos, K.},
journal = {Phys.~Lett.~B},
pages = {413},
title = {{Topological mass terms and the high temperature
limit of chiral gauge theories}},
volume = {157},
year = {1985}
}
@ARTICLE{DvornikovSemikoz2017,
author = {{Dvornikov}, M. and {Semikoz}, V.~B.},
title = "{Influence of the turbulent motion on the chiral magnetic
effect in the early universe}",
journal = {\prd},
year = 2017,
month = feb,
volume = 95,
number = 4,
eid = {043538},
pages = {043538},
doi = {10.1103/PhysRevD.95.043538}
}
@article{Fukushima:08,
author = {Fukushima, Kenji and Kharzeev, Dmitri E. and
Warringa, Harmen J.},
journal = {Phys.~Rev. D},
pages = {074033},
title = {{The Chiral Magnetic Effect}},
volume = {78},
year = {2008}
}
@book{RSS88,
author = {A. Ruzmaikin and A. M. Shukurov and D. D. Sokoloff},
year = { 1988 },
title = {Magnetic Fields of Galaxies},
publisher = {Kluwer Academic, Dordrecht},
}
@ARTICLE{JS97,
author = {{Joyce}, M. and {Shaposhnikov}, M.},
title = "{Primordial Magnetic Fields, Right Electrons, and the Abelian Anomaly}",
journal = {Phys.~Rev.~Lett.},
year = 1997,
month = aug,
volume = 79,
pages = {1193}
}
@ARTICLE{BRS08,
author = {{Brandenburg}, A. and {R{\"a}dler}, K.-H. and {Schrinner}, M.
},
title = "{Scale dependence of alpha effect and turbulent diffusivity}",
journal = {\aap},
year = 2008,
month = may,
volume = 482,
pages = {739}
}
@article{Son:2009tf,
author = {Son, Dam T. and Surowka, Piotr},
journal = {Phys.~Rev.~Lett.},
pages = {191601},
title = {{Hydrodynamics with Triangle Anomalies}},
volume = {103},
year = {2009}
}
@ARTICLE{BL14,
author = {{Beresnyak}, A. and {Li}, H.},
title = "{Basic Bell-MHD Turbulence}",
journal = {\apj},
year = 2014,
month = jun,
volume = 788,
eid = {107},
pages = {107}
}
@ARTICLE{AlekseevEtAl1998,
author = {{Alekseev}, A.~Y. and {Cheianov}, V.~V. and {Fr{\"o}hlich}, J.
},
title = "{Universality of Transport Properties in Equilibrium, the Goldstone Theorem, and Chiral Anomaly}",
journal = {Phys.~Rev.~Lett.},
year = 1998,
month = oct,
volume = 81,
pages = {3503}
}
@ARTICLE{RW85,
author = {{Redlich}, A.~N. and {Wijewardhana}, L.~C.~R.},
title = "{Induced Chern-Simons terms at high temperatures and finite densities}",
journal = {Phys.~Rev.~Lett.},
keywords = {General properties of perturbation theory, Charge conjugation parity time reversal and other discrete symmetries},
year = 1985,
month = mar,
volume = 54,
pages = {970}
}
@article{BS05,
author = {A. Brandenburg and K. Subramanian},
year = { 2005 },
title = { },
journal = {Phys. Rept. },
volume = {417},
pages = { 1 },
}
@article{KR82,
author = {N. Kleeorin and A. Ruzmaikin},
year = { 1982 },
title = {Dynamics of the average turbulent helicity in a magnetic field},
journal = {Magnetohydrodynamics {\bf No. 2}},
volume = {2},
pages = {17-24},
}
@article{KRR95,
author = {N. Kleeorin and I. Rogachevskii and A. Ruzmaikin},
year = { 1995 },
title = { },
journal = {\aap},
volume = {297},
pages = { 159 },
}
@article{GD94,
author = {A. Gruzinov and P. H. Diamond and Phys. Rev. Lett.},
year = { 1994 },
title = { },
volume = {72},
pages = { 1651 },
}
@article{KR99,
author = {N. Kleeorin and I. Rogachevskii},
year = { 1999 },
title = { },
journal = {Phys. Rev. E },
volume = {59},
pages = { 6724 },
}
@article{KMRS2000,
author = {N. Kleeorin and D. Moss and I. Rogachevskii and D. Sokoloff},
year = { 2000 },
title = { },
journal = {Astron. Astrophys.},
volume = {361},
pages = { L5 },
}
@article{BF00,
author = {E. G. Blackman and G. Field},
year = { 2000 },
title = { },
journal = {\apj},
volume = {534},
pages = { 984 },
}
@article{BB02,
author = {{Blackman}, E.~G. and {Brandenburg}, A.},
title = "{Dynamic Nonlinearity in Large-Scale Dynamos with Shear}",
journal = {\apj},
eprint = {astro-ph/0204497},
keywords = {Magnetic Fields, Magnetohydrodynamics: MHD, Turbulence},
year = 2002,
month = nov,
volume = 579,
pages = {359-373},
doi = {10.1086/342705},
adsurl = {http://esoads.eso.org/abs/2002ApJ...579..359B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{RK03,
author = {I. Rogachevskii and N. Kleeorin},
year = { 2003 },
title = { },
journal = {Phys. Rev. E },
volume = {68},
pages = { 036301 },
}
@article{RK04,
author = {I. Rogachevskii and N. Kleeorin},
year = { 2004 },
title = { },
journal = {Phys. Rev. E },
volume = {70},
pages = { 046310 },
}
@article{KR08,
author = {N. Kleeorin and I. Rogachevskii},
year = { 2008 },
title = { },
journal = {Phys. Rev. E },
volume = {77},
pages = { 036307 },
}
@article{SS14,
author = {S. Sridhar and N. K. Singh},
year = { 2014 },
title = { },
journal = {\mnras},
volume = {445},
pages = { 3770 },
}
@article{RS75,
author = {P. H. Roberts and A. M. Soward},
year = { 1975 },
title = { },
journal = {\aap},
volume = {296},
pages = { 49 },
}
@book{MY75,
author = {A. S. Monin and A. M. Yaglom},
year = { 1975 },
title = {Statistical Fluid Mechanics},
publisher = {MIT Press, Cambridge, Massachusetts},
pages = {Vol. 2.},
}
@article{O70,
author = {S. A. Orszag},
year = { 1970 },
title = { },
journal = {J. Fluid Mech. },
volume = {41},
pages = { 363 },
}
@book{Mc90,
author = {W. D. McComb},
year = { 1990 },
title = {The Physics of Fluid Turbulence},
publisher = {Clarendon, Oxford},
}
@article{PFL76,
author = {A. Pouquet and U. Frisch and J. Leorat},
year = { 1976 },
title = { },
journal = {J. Fluid Mech. },
volume = {77},
pages = { 321 },
}
@article{KRR90,
author = {N. Kleeorin and I. Rogachevskii and A. Ruzmaikin},
year = { 1990 },
title = { },
journal = {Zh. Eksp. Teor. Fiz. },
volume = {97},
pages = { 1555 },
note = { [Sov. Phys. JETP {\bf 70}, 878 (1990)]},
}
@ARTICLE{KZ08,
author = {{Kulsrud}, R.~M. and {Zweibel}, E.~G.},
title = "{On the origin of cosmic magnetic fields}",
journal = {Rep. Prog. Phys.},
year = 2008,
month = apr,
volume = 71,
number = 4,
eid = {046901},
pages = {046901}
}
@ARTICLE{KulsrudAnderson1992,
author = {{Kulsrud}, R.~M. and {Anderson}, S.~W.},
title = "{The spectrum of random magnetic fields in the mean field dynamo theory of the Galactic magnetic field}",
journal = {\apj},
year = 1992,
month = sep,
volume = 396,
pages = {606},
doi = {10.1086/171743},
adsurl = {http://adsabs.harvard.edu/abs/1992ApJ...396..606K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{PEtAl15,
author = {{Pandey}, K.~L. and {Choudhury}, T.~R. and {Sethi}, S.~K. and
{Ferrara}, A.},
title = "{Reionization constraints on primordial magnetic fields}",
journal = {\mnras},
year = 2015,
month = aug,
volume = 451,
pages = {1692}
}
@ARTICLE{KEtAl13,
author = {{Kahniashvili}, T. and {Maravin}, Y. and {Natarajan}, A. and
{Battaglia}, N. and {Tevzadze}, A.~G.},
title = "{Constraining Primordial Magnetic Fields through Large-scale Structure}",
journal = {\apj},
year = 2013,
month = jun,
volume = 770,
eid = {47},
pages = {47}
}
@ARTICLE{R87,
author = {{Rees}, M.~J.},
title = "{The origin and cosmogonic implications of seed magnetic fields}",
journal = {Q.~J.~R.~Astron.~Soc.},
year = 1987,
volume = 28,
pages = {197}
}
@article{RNBE2012,
author = {Rogachevskii, Igor and Kleeorin, Nathan and
Brandenburg, Axel and Eichler, David},
journal = {\apj},
pages = {6},
title = {{Cosmic ray current-driven turbulence and mean-field
dynamo effect}},
volume = {753},
year = {2012}
}
@ARTICLE{AWML03,
author = {{Akiyama}, S. and {Wheeler}, J.~C. and {Meier}, D.~L. and {Lichtenstadt}, I.
},
title = "{The Magnetorotational Instability in Core-Collapse Supernova Explosions}",
journal = {\apj},
year = 2003,
month = feb,
volume = 584,
doi = {10.1086/344135},
adsurl = {http://adsabs.harvard.edu/abs/2003ApJ...584..954A},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{FW06,
author = {{Ferrario}, L. and {Wickramasinghe}, D.},
title = "{Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis}",
journal = {\mnras},
year = 2006,
month = apr,
volume = 367,
pages = {1323-1328},
doi = {10.1111/j.1365-2966.2006.10058.x},
adsurl = {http://adsabs.harvard.edu/abs/2006MNRAS.367.1323F},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{TZ15,
author = {{Turolla}, R. and {Zane}, S. and {Watts}, A.~L.},
title = "{Magnetars: the physics behind observations. A review}",
journal = {Rep. Prog. Phys.},
year = 2015,
month = nov,
volume = 78,
number = 11,
eid = {116901},
pages = {116901},
doi = {10.1088/0034-4885/78/11/116901},
adsurl = {http://adsabs.harvard.edu/abs/2015RPPh...78k6901T},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{MPM15,
author = {{Mereghetti}, S. and {Pons}, J.~A. and {Melatos}, A.},
title = "{Magnetars: Properties, Origin and Evolution}",
journal = {\ssr},
year = 2015,
month = oct,
volume = 191,
pages = {315-338},
doi = {10.1007/s11214-015-0146-y},
adsurl = {http://adsabs.harvard.edu/abs/2015SSRv..191..315M},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{B97-NonlinearMagnetohydrodynamics,
author = {Biskamp, D.},
publisher = {Cambridge University Press},
series = {Cambridge monographs on plasma physics},
title = {Nonlinear Magnetohydrodynamics},
year = {1997},
isbn = {9780521599184}
}
@ARTICLE{KB17,
author = {{Kaspi}, V.~M. and {Beloborodov}, A.~M.},
title = "{Magnetars}",
journal = {\araa},
year = 2017,
month = aug,
volume = 55,
doi = {10.1146/annurev-astro-081915-023329},
adsurl = {http://adsabs.harvard.edu/abs/2017ARA%26A..55..261K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BM99PhRvL,
author = {{Biskamp}, D. and {M{\"u}ller}, W.-C.},
title = "{Decay Laws for Three-Dimensional Magnetohydrodynamic Turbulence}",
journal = {Phys. Rev. Lett.},
year = 1999,
month = sep,
volume = 83,
doi = {10.1103/PhysRevLett.83.2195},
adsurl = {http://adsabs.harvard.edu/abs/1999PhRvL..83.2195B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@book{M12-QuantumPlasmadynamicsMagnetized,
author = {Melrose, D.},
publisher = {Springer New York},
series = {Lecture Notes in Physics},
title = {Quantum Plasmadynamics: Magnetized Plasmas},
year = {2012},
isbn = {9781461440451},
url = {https://books.google.com/books?id=Doe6BQAAQBAJ}
}
@book{AS85,
author = {{Artsimovich}, L.~A. and {Sagdeev}, R.~Z.},
publisher = {Benjamin, New York},
title = {Plasma Physics for Physicists},
year = {1985}
}
@ARTICLE{B14,
author = {{Brandenburg}, A.},
title = "{Magnetic Prandtl Number Dependence of the Kinetic-to-magnetic Dissipation Ratio}",
journal = {\apj},
year = 2014,
month = aug,
volume = 791,
eid = {12}
}
@article{B04,
author = {{Bell}, A.~R.},
journal = {\mnras},
month = sep,
pages = {550},
title = {{Turbulent amplification of magnetic field and
diffusive shock acceleration of cosmic rays}},
volume = {353},
year = {2004},
doi = {10.1111/j.1365-2966.2004.08097.x}
}
@ARTICLE{SOJ97,
author = {{Sigl}, G. and {Olinto}, A.~V. and {Jedamzik}, K.},
title = "{Primordial magnetic fields from cosmological first order phase transitions}",
journal = {\prd},
year = 1997,
volume = 55,
pages = {4582}
}
@ARTICLE{GR01,
author = {{Grasso}, D. and {Rubinstein}, H.~R.},
title = "{Magnetic fields in the early Universe}",
journal = {\physrep},
year = 2001,
volume = 348,
pages = {163}
}
@Article{TW88,
title = "{Inflation-produced, large-scale magnetic fields}",
author = {Turner, M.~S. and Widrow, L.~M.},
journal = {Phys.~Rev.~D},
volume = {37},
number = {10},
pages = {2743},
numpages = {11},
year = {1988}
}
@ARTICLE{B16,
author = {{Beck}, R.},
title = "{Magnetic fields in spiral galaxies}",
journal = {\aapr},
year = 2016,
month = dec,
volume = 24
}
@ARTICLE{K16,
author = {{Kharzeev}, D.~E. and {Liao}, J. and {Voloshin}, S.~A. and {Wang}, G.
},
title = "{Chiral magnetic and vortical effects in high-energy nuclear collisions-A status report}",
journal = {Progress in Particle and Nuclear Physics},
year = 2016,
month = may,
volume = 88,
pages = {1}
}
@ARTICLE{BFR12,
author = {{Boyarsky}, A. and {Fr{\"o}hlich}, J. and {Ruchayskiy}, O.},
title = "{Self-Consistent Evolution of Magnetic Fields and Chiral Asymmetry in the Early Universe}",
journal = {Phys. Rev. Lett.},
year = 2012,
month = jan,
volume = 108,
number = 3
}
@ARTICLE{REtAl17,
author = {{Rogachevskii}, I. and {Ruchayskiy}, O. and {Boyarsky},
A. and {Fr{\"o}hlich}, J. and {Kleeorin}, N. and
{Brandenburg}, A. and {Schober}, J.},
title = "{Laminar and turbulent dynamos in chiral
magnetohydrodynamics-I: Theory}",
journal = {\apj},
volume = "846",
year = "2017",
number = "2",
pages = "153",
doi = "10.3847/1538-4357/aa886b",
eprint = "1705.00378",
archivePrefix ="arXiv",
primaryClass = "physics.plasm-ph",
reportNumber = "PREPRINT-NORDITA-2017-39",
SLACcitation = "%%CITATION = ARXIV:1705.00378;%%"
}
@ARTICLE{WEtAl12,
author = {{Widrow}, L.~M. and {Ryu}, D. and {Schleicher}, D.~R.~G. and
{Subramanian}, K. and {Tsagas}, C.~G. and {Treumann}, R.~A.},
title = "{The First Magnetic Fields}",
journal = {\ssr},
year = 2012,
month = may,
volume = 166,
pages = {37-70},
doi = {10.1007/s11214-011-9833-5},
adsurl = {http://adsabs.harvard.edu/abs/2012SSRv..166...37W},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{W02,
author = {{Widrow}, L.~M.},
title = "{Origin of galactic and extragalactic magnetic fields}",
journal = {Rev. Mod. Phys.},
eprint = {astro-ph/0207240},
year = 2002,
volume = 74,
pages = {775}
}
@ARTICLE{C14,
author = {{Charbonneau}, P.},
title = "{Solar Dynamo Theory}",
journal = {\araa},
year = 2014,
month = aug,
volume = 52,
pages = {251}
}
@ARTICLE{P55,
author = {{Parker}, E.~N.},
title = "{Hydromagnetic Dynamo Models}",
journal = {\apj},
year = 1955,
month = sep,
volume = 122,
pages = {293}
}
@ARTICLE{C12,
author = {{Crutcher}, R.~M.},
title = "{Magnetic Fields in Molecular Clouds}",
journal = {\araa},
year = 2012,
month = sep,
volume = 50
}
@ARTICLE{DL09,
author = {{Donati}, J.-F. and {Landstreet}, J.~D.},
title = "{Magnetic Fields of Nondegenerate Stars}",
journal = {\araa},
year = 2009,
volume = 47,
pages = {333},
doi = {10.1146/annurev-astro-082708-101833}
}
@ARTICLE{NV10,
author = {{Neronov}, A. and {Vovk}, I.},
title = "{Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars}",
journal = {Science},
year = 2010,
volume = 328,
pages = {73},
doi = {10.1126/science.1184192}
}
@ARTICLE{KimEtAl1989,
author = {{Kim}, K.-T. and {Kronberg}, P.~P. and {Giovannini}, G. and {Venturi}, T.},
title = "{Discovery of intergalactic radio emission in the Coma-A1367 supercluster}",
journal = {\nat},
year = 1989,
volume = 341,
pages = {720},
doi = {10.1038/341720a0}
}
@ARTICLE{K94,
author = {{Kronberg}, P.~P.},
title = "{Extragalactic magnetic fields}",
journal = {Rep. Prog. Phys.},
year = 1994,
volume = 57,
pages = {325},
doi = {10.1088/0034-4885/57/4/001}
}
@article{KMR96,
author = {N. Kleeorin and M. Mond and I. Rogachevskii},
year = {1996},
title = { },
journal = {\aap},
volume = {307},
pages = { 293 },
}
@article{RK07,
author = {I. Rogachevskii and N. Kleeorin},
year = { 2007 },
title = { },
journal = {Phys. Rev. E },
volume = {76},
pages = { 056307 },
}
@article{RKKB11,
author = {I. Rogachevskii,N. Kleeorin and P. J. K\"apyl\"a and A. Brandenburg},
year = { 2011 },
title = { },
journal = {Phys. Rev. E},
volume = {84},
pages = { 056314 },
}
@article{R80,
author = {K.-H. R\"{a}dler},
year = { 1980 },
title = { },
journal = {Astron. Nachr. },
volume = {301},
pages = { 101 },
}
@article{KR94,
author = {Kleeorin, N. and Rogachevskii, I.},
year = {1994},
title = {Effective Amp\`{e}re force in developed magnetohydrodynamic turbulence},
journal = {Phys. Rev. E},
volume = {50},
pages = {2716},
}
@article{FB99,
author = {G. B. Field and E. G. Blackman and H. Chou},
year = { 1999 },
title = { },
journal = {\apj},
volume = {513},
pages = { 638 },
}
@article{RK00,
author = {I. Rogachevskii and N. Kleeorin},
year = { 2000 },
title = { },
journal = {Phys. Rev. E },
volume = {61},
pages = { 5202 },
}
@article{RKR03,
author = {K.-H. R\"{a}dler and N. Kleeorin and I. Rogachevskii},
year = { 2003 },
title = { },
journal = {Geophys. Astrophys. Fluid Dyn. },
volume = {97},
pages = { 249 },
}
@article{KR03,
author = {N. Kleeorin and I. Rogachevskii},
year = { 2003 },
title = { },
journal = {Phys. Rev. E },
volume = {67},
pages = { 026321 },
}
@ARTICLE{TKBK12,
author = {{Tevzadze}, A.~G. and {Kisslinger}, L. and {Brandenburg}, A. and
{Kahniashvili}, T.},
title = "{Magnetic Fields from QCD Phase Transitions}",
journal = {\apj},
archivePrefix = "arXiv",
eprint = {1207.0751},
primaryClass = "astro-ph.CO",
keywords = {early universe, magnetic fields},
year = 2012,
month = nov,
volume = 759,
eid = {54},
pages = {54},
doi = {10.1088/0004-637X/759/1/54},
adsurl = {http://esoads.eso.org/abs/2012ApJ...759...54T},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{KTBN13,
author = {{Kahniashvili}, T. and {Tevzadze}, A.~G. and {Brandenburg}, A. and
{Neronov}, A.},
title = "{Evolution of primordial magnetic fields from phase transitions}",
journal = {\prd},
year = 2013,
month = apr,
volume = 87,
number = 8,
eid = {083007},
pages = {083007},
doi = {10.1103/PhysRevD.87.083007},
adsurl = {http://adsabs.harvard.edu/abs/2013PhRvD..87h3007K},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{HBD2004,
author = {{Haugen}, N.~E. and {Brandenburg}, A. and {Dobler}, W.},
title = "{Simulations of nonhelical hydromagnetic turbulence}",
journal = {\pre},
year = 2004,
month = jul,
volume = 70,
number = 1,
pages = {016308}
}
@ARTICLE{R12,
author = {{Reiners}, A.},
title = "{Observations of Cool-Star Magnetic Fields}",
journal = {Liv. Rev. Sol. Phys.},
year = 2012,
volume = 9,
pages = {1}
}
@ARTICLE{CHB01,
author = {{Christensson}, M. and {Hindmarsh}, M. and {Brandenburg}, A.
},
title = "{Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence}",
journal = {\pre},
year = 2001,
month = nov,
volume = 64,
number = 5,
doi = {10.1103/PhysRevE.64.056405},
adsurl = {http://adsabs.harvard.edu/abs/2001PhRvE..64e6405C},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BEO96,
author = {{Brandenburg}, A. and {Enqvist}, K. and {Olesen}, P.},
title = "{Large-scale magnetic fields from hydromagnetic turbulence in the very early universe}",
journal = {\prd},
year = 1996,
month = jul,
volume = 54,
doi = {10.1103/PhysRevD.54.1291},
adsurl = {http://adsabs.harvard.edu/abs/1996PhRvD..54.1291B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BEO97,
author = {{Brandenburg}, A. and {Enqvist}, K. and {Olesen}, P.},
title = "{The effect of Silk damping on primordial magnetic fields}",
journal = {Phys. Lett. B},
year = 1997,
month = feb,
volume = 392,
doi = {10.1016/S0370-2693(96)01566-3},
adsurl = {http://adsabs.harvard.edu/abs/1997PhLB..392..395B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BD02,
author = {{Brandenburg}, A. and {Dobler}, W.},
title = "{Hydromagnetic turbulence in computer simulations}",
journal = {Comp. Phys. Comm.},
eprint = {astro-ph/0111569},
year = 2002,
month = aug,
volume = 147,
pages = {471-475},
doi = {10.1016/S0010-4655(02)00334-X},
adsurl = {http://esoads.eso.org/abs/2002CoPhC.147..471B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@INPROCEEDINGS{Bra03,
author = {Brandenburg, Axel},
title = {Computational aspects of astrophysical MHD and turbulence},
booktitle = {Advances in Nonlinear Dynamics},
editor = {{Ferriz-Mas}, A. and {N{\'u}{\~n}ez}, M.},
year = 2003,
pages = {269-344},
issn = {2155-4692},
doi = {10.1201/9780203493137.ch9},
url = {http://dx.doi.org/10.1201/9780203493137.ch9},
isbn = 9780203493137,
journal = {The Fluid Mechanics of Astrophysics and Geophysics},
publisher = {CRC Press},
adsurl = {http://esoads.eso.org/abs/2003and..book..269B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BSRKBFRK17,
author = {{Brandenburg}, A. and {Schober}, J. and {Rogachevskii}, I. and
{Kahniashvili}, T. and {Boyarsky}, A. and {Fr\"ohlich}, J. and
{Ruchayskiy}, O. and {Kleeorin}, N.},
title = "{The turbulent chiral-magnetic cascade in the early universe}",
journal = {ApJL},
archivePrefix = "arXiv",
eprint = {1707.03385},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - High Energy Astrophysical Phenomena},
year = 2017,
month = jul,
volume = 845,
eid = {L21},
pages = {L21},
adsurl = {http://esoads.eso.org/abs/2017arXiv170703385B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BK17,
author = {{Brandenburg}, A. and {Kahniashvili}, T.},
title = "{Classes of Hydrodynamic and Magnetohydrodynamic Turbulent Decay}",
journal = {Phys. Rev. Lett.},
archivePrefix = "arXiv",
eprint = {1607.01360},
primaryClass = "physics.flu-dyn",
year = 2017,
month = feb,
volume = 118,
number = 5,
eid = {055102},
pages = {055102},
doi = {10.1103/PhysRevLett.118.055102},
adsurl = {http://esoads.eso.org/abs/2017PhRvL.118e5102B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{V01,
author = {{Vachaspati}, T.},
title = "{Estimate of the Primordial Magnetic Field Helicity}",
journal = {Phys. Rev. Lett.},
year = 2001,
month = dec,
volume = 87,
number = 25,
pages = {251302},
doi = {10.1103/PhysRevLett.87.251302},
adsurl = {http://adsabs.harvard.edu/abs/2001PhRvL..87y1302V},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{GGV95,
author = {{Gasperini}, M. and {Giovannini}, M. and {Veneziano}, G.},
title = "{Primordial magnetic fields from string cosmology}",
journal = {Phys. Rev. Lett.},
year = 1995,
month = nov,
volume = 75,
pages = {3796-3799},
doi = {10.1103/PhysRevLett.75.3796},
adsurl = {http://adsabs.harvard.edu/abs/1995PhRvL..75.3796G},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BBM96,
author = {{Baym}, G. and {B{\"o}deker}, D. and {McLerran}, L.},
title = "{Magnetic fields produced by phase transition bubbles in the electroweak phase transition}",
journal = {\prd},
year = 1996,
month = jan,
volume = 53,
doi = {10.1103/PhysRevD.53.662},
adsurl = {http://adsabs.harvard.edu/abs/1996PhRvD..53..662B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{V91,
author = {{Vachaspati}, T.},
title = "{Magnetic fields from cosmological phase transitions}",
journal = {Phys. Lett. B},
year = 1991,
month = aug,
volume = 265,
pages = {258-261},
doi = {10.1016/0370-2693(91)90051-Q},
adsurl = {http://adsabs.harvard.edu/abs/1991PhLB..265..258V},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{S16,
author = {{Subramanian}, K.},
title = "{The origin, evolution and signatures of primordial magnetic fields}",
journal = {Rep. Prog. Phys.},
year = 2016,
month = jul,
volume = 79,
number = 7,
eid = {076901},
pages = {076901},
doi = {10.1088/0034-4885/79/7/076901},
adsurl = {http://adsabs.harvard.edu/abs/2016RPPh...79g6901S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{DN13,
author = {{Durrer}, R. and {Neronov}, A.},
title = "{Cosmological magnetic fields: their generation, evolution and observation}",
journal = {\aapr},
year = 2013,
month = jun,
volume = 21,
eid = {62},
pages = {62},
doi = {10.1007/s00159-013-0062-7},
adsurl = {http://adsabs.harvard.edu/abs/2013A%26ARv..21...62D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Pavlovic:2016gac,
author = {{Pavlovi{\'c}}, P. and {Leite}, N. and {Sigl}, G.},
title = "{Chiral magnetohydrodynamic turbulence}",
journal = {\prd},
archivePrefix = "arXiv",
eprint = {1612.07382},
year = 2017,
month = jul,
volume = 96,
number = 2,
eid = {023504},
pages = {023504},
doi = {10.1103/PhysRevD.96.023504},
adsurl = {http://adsabs.harvard.edu/abs/2017PhRvD..96b3504P},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{BSR17,
author = {{Brandenburg}, A. and {Schober}, J. and {Rogachevskii}, I.},
title = "{The contribution of kinetic helicity to turbulent magnetic diffusivity}",
journal = {Astron. Nachr.},
year = 2017,
volume = 338,
pages = {790-793},
}
@ARTICLE{1996PhLB..380..253D,
author = {{Davidson}, S.},
title = "{Ingredients and equations for making a magnetic field in the early Universe}",
journal = {Phys. Lett. B},
eprint = {astro-ph/9605086},
year = 1996,
month = feb,
volume = 380,
pages = {253-256},
doi = {10.1016/0370-2693(96)00501-1},
adsurl = {http://adsabs.harvard.edu/abs/1996PhLB..380..253D},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{Giovannini:2003yn,
author = {Giovannini, Massimo},
title = {{The magnetized universe}},
journal = {Int. J. Mod. Phys. D},
year = {2004},
volume = {13},
pages = {391-502},
abstract = {Cosmology, high-energy physics and astrophysics are
converging on the study of large-scale magnetic
fields. While the experimental evidence for the existence of
large-scale magnetization in galaxies, clusters and
superclusters is rather compelling, the origin of the
phenomenon remains puzzling especially in light of the most
recent observations. The purpose of the present review is to
describe the physical motivations and some of the open
theoretical problems related to the existence of large-scale
magnetic fields.},
archiveprefix ={arXiv},
doi = {10.1142/S0218271804004530},
eprint = {astro-ph/0312614},
slaccitation = {%%CITATION = ASTRO-PH/0312614;%%}
}
@ARTICLE{Vachaspati:1994ng,
author = {Vachaspati, Tanmay and Field, George B.},
title = {{Electroweak string configurations with baryon number}},
journal = {Phys. Rev. Lett.},
year = {1994},
volume = {73},
pages = {373-376},
abstract = {In the context of electroweak strings, the baryon number
anomaly equation may be reinterpreted as a conservation law
for baryon number minus helicity. Since the helicity is a
sum of the link and twist numbers, linked or twisted loops
of electroweak string carry baryon number. We explicitly
evaluate the change in the baryon number obtained by
delinking loops of electroweak Z-string. We also estimate
the probability for forming linked loops of U(1) strings
during a phase transition and suggest an alternative
scenario for electroweak baryogenesis.},
archiveprefix ={arXiv},
doi = {10.1103/PhysRevLett.73.373},
eprint = {hep-ph/9401220},
primaryclass = {hep-ph},
slaccitation = {%%CITATION = HEP-PH/9401220;%%}
}
@ARTICLE{FC2000,
author = {{Field}, G.~B. and {Carroll}, S.~M.},
title = "{Cosmological magnetic fields from primordial helicity}",
journal = {\prd},
year = 2000,
month = nov,
volume = 62,
number = 10
}
@inproceedings{Semikoz:2010zua,
author = "Semikoz, V. B.",
title = "{Neutrino Asymmetry and the Growth of Cosmological Seed
Hypermagnetic Fields}",
booktitle = "{Proceedings, 14th Lomonosov Conference on Elementary
Particle Physics (LomCon): Moscow, Russia, August 19-25,
2009}",
year = "2010",
pages = "259-261",
doi = "10.1142/9789814329682_0052",
SLACcitation = "%%CITATION = INSPIRE-1379585;%%"
}
@article{Olesen:1992np,
author = "Olesen, P.",
title = "{On the possible creation of a background W condensate in
the electroweak phase transition}",
journal = "Phys. Lett. B",
volume = "281",
year = "1992",
pages = "300-302",
doi = "10.1016/0370-2693(92)91144-X",
reportNumber = "NBI-HE-92-13",
SLACcitation = "%%CITATION = PHLTA,B281,300;%%"
}
@inproceedings{Enqvist:1994dq,
author = "Enqvist, Kari",
title = "{On primordial magnetic fields}",
booktitle = "{1st International Conference on Strong and Electroweak
Matter (SEWM 1994) Sintra, Portugal, March 23-25, 1994}",
year = "1994",
pages = "143-154",
eprint = "hep-ph/9405315",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "NORDITA-94-6-P-A",
SLACcitation = "%%CITATION = HEP-PH/9405315;%%"
}
@article{Enqvist:1993np,
author = "Enqvist, K. and Olesen, P.",
title = "{On primordial magnetic fields of electroweak origin}",
journal = "Phys. Lett. B",
volume = "319",
year = "1993",
pages = "178-185",
doi = "10.1016/0370-2693(93)90799-N",
eprint = "hep-ph/9308270",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "NBI-HE-93-33",
SLACcitation = "%%CITATION = HEP-PH/9308270;%%"
}
@ARTICLE{Caprini:2009pr,
author = {Caprini, Chiara and Durrer, Ruth and Fenu, Elisa},
title = {{Can the observed large scale magnetic fields be seeded by helical
primordial fields?}},
journal = {JCAP},
year = {2009},
volume = {0911},
pages = {001},
abstrct = {Gravitational wave production induces a strong constraint on the amplitude
of a primordial magnetic field. It has been shown that the nucleosynthesis
bound for a stochastic gravitational wave background implies that
causally generated fields cannot have enough power on large scales
to provide the seeds necessary for the observed magnetic fields in
galaxies and clusters, even by the most optimistic dynamo amplification.
Magnetic fields generated at inflation can have high enough amplitude
only if their spectrum is very red. Here we show that helicity, which
leads to an inverse cascade, can mitigate these limits. In particular,
we find that helical fields generated at the QCD phase transition
or at inflation with red spectrum are possible seeds for the dynamo.
Helical fields generated at the electroweak phase transition are
instead excluded as seeds at large scales. We also calculate the
spectrum of gravitational waves generated by helical magnetic fields.
},
archiveprefix = {arXiv},
doi = {10.1088/1475-7516/2009/11/001},
eprint = {0906.4976},
primaryclass = {astro-ph.CO},
slaccitation = {%%CITATION = 0906.4976;%%}
}
@ARTICLE{Durrer:2003ja,
author = {Durrer, Ruth and Caprini, Chiara},
title = {{Primordial Magnetic Fields and Causality}},
journal = {JCAP},
year = {2003},
volume = {0311},
pages = {010},
abstract = {We discuss the implications of causality on a primordial
magnetic field. We show that the residual field on large
scales is much more suppressed than usually assumed and that
a helical component is even more reduced. Due to this strong
suppression, even maximal primordial fields generated at the
electroweak phase transition can just marginally seed the
fields in clusters, but they cannot leave any detectable
imprint on the cosmic microwave background.},
archiveprefix ={arXiv},
doi = {10.1088/1475-7516/2003/11/010},
eprint = {astro-ph/0305059},
slaccitation = {%%CITATION = ASTRO-PH/0305059;%%}
}
@ARTICLE{Saveliev:2012ea,
author = {Saveliev, Andrey and Jedamzik, Karsten and Sigl, Gunter},
title = {{Time Evolution of the Large-Scale Tail of Non-Helical Primordial
Magnetic Fields with Back-Reaction of the Turbulent Medium}},
journal = {Phys. Rev. D},
year = {2012},
volume = {86},
pages = {103010},
abstract = { We present a derivation of the time evolution equations for the energy
content of nonhelical magnetic fields and the accompanying turbulent
flows from first principles of incompressible magnetohydrodynamics
in the general framework of homogeneous and isotropic turbulence.
This is then applied to the early Universe, i.e., the evolution of
primordial magnetic fields. Numerically integrating the equations,
we find that most of the energy is concentrated at an integral wavenumber
scale k_I where the turbulence turn over time equals the Hubble time.
At larger length scales L, i.e., smaller wavenumbers q = 2 \pi /
L << k_I, independent of the assumed turbulent flow power spectrum,
mode-mode coupling tends to develop a small q magnetic field tail
with a Batchelor spectrum proportional to the fourth inverse power
of L and therefore a scaling for the magnetic field of B ~ L^(-5/2).
},
archiveprefix = {arXiv},
doi = {10.1103/PhysRevD.86.103010},
eprint = {1208.0444},
primaryclass = {astro-ph.CO},
reportnumber = {DESY-12-131},
slaccitation = {%%CITATION = ARXIV:1208.0444;%%},
texkey = {Saveliev:2012ea}
}
@ARTICLE{Tavecchio:10,
author = {Tavecchio, F. and others},
title = {{The intergalactic magnetic field constrained by Fermi/LAT
observations of the TeV blazar 1ES 0229+200}},
journal = {\mnras},
year = {2010},
volume = {406},
pages = {L70-L74},
abstract = {TeV photons from blazars at relatively large distances,
interacting with the optical-IR cosmic background, are
efficiently converted into electron-positron pairs. The
produced pairs are extremely relativistic (Lorentz factors
of the order of 1e6 1e7 and promptly loose their energy
through inverse Compton scatterings with the photons of the
microwave cosmic background, producing emission in the GeV
band. The spectrum and the flux level of this reprocessed
emission is critically dependent on the intensity of the
intergalactic magnetic field, B, that can deflect the pairs
diluting the intrinsic emission over a large solid angle. We
derive a simple relation for the reprocessed spectrum
expected from a steady source. We apply this treatment to
the blazar 1ES 0229+200, whose intrinsic very hard TeV
spectrum is expected to be approximately steady. Comparing
the predicted reprocessed emission with the upper limits
measured by the Fermi/Large Area Telescope, we constrain the
value of the intergalactic magnetic field to be larger than
$B \simeq 5\times 10^{-15}$ Gauss, depending on the model of
extragalactic background light.},
archiveprefix ={arXiv},
doi = {10.1111/j.1745-3933.2010.00884.x},
eprint = {1004.1329},
primaryclass = {astro-ph.CO},
slaccitation = {%%CITATION = 1004.1329;%%}
}
@ARTICLE{Dolag:10,
author = {K. Dolag and M. Kachelriess and S. Ostapchenko and R. Tomas},
title = {{Lower limit on the strength and filling factor of extragalactic
magnetic fields}},
journal = {\apj},
year = {2011},
volume = {727},
pages = {L4},
month = sep,
__markedentry = {[ruchay]},
abstract = {High energy photons from blazars can initiate electromagnetic pair
cascades interacting with the extragalactic photon background. The
charged component of such cascades is deflected and delayed by extragalactic
magnetic fields (EGMF), reducing thereby the observed point-like
flux and leading potentially to multi degree images in the GeV energy
range. We calculate the fluence of 1ES 0229+200 as seen by Fermi-LAT
for different EGMF profiles using a Monte Carlo simulation for the
cascade development. The non-observation of 1ES 0229+200 by Fermi-LAT
suggests that the EGMF fills at least 60% of space with fields stronger
than {\cal O}(10^{-16}-10^{-15})G for life times of TeV activity
of {\cal O}(10^2-10^4)yr. Thus the (non-) observation of GeV extensions
around TeV blazars probes the EGMF in voids and puts strong constraints
on the origin of EGMFs: Either EGMFs were generated in a space filling
manner (e.g. primordially) or EGMFs produced locally (e.g. by galaxies)
have to be efficiently transported to fill a significant volume fraction,
as e.g. by galactic outflows.},
comments = {5 pages, 5 eps figures; v2: added discussion of time delays},
eprint = {1009.1782},
oai2identifier = {1009.1782},
owner = {ruchay},
slaccitation = {%%CITATION = 1009.1782;%%},
timestamp = {2011-01-25}
}
@article{Semikoz:2012ka,
author = "Semikoz, V.B. and Sokoloff, D.D. and Valle, J.W.F.",
title = "{Lepton asymmetries and primordial hypermagnetic helicity
evolution}",
journal = "JCAP",
volume = "1206",
pages = "008",
doi = "10.1088/1475-7516/2012/06/008",
year = "2012",
eprint = "1205.3607",
archivePrefix ="arXiv",
primaryClass = "astro-ph.CO",
reportNumber = "IFIC-12-33",
texkey = "Semikoz:2012ka",
SLACcitation = "%%CITATION = ARXIV:1205.3607;%%",
}
@ARTICLE{Giovannini:1997eg,
author = {Giovannini, Massimo and Shaposhnikov, M. E.},
title = {{Primordial hypermagnetic fields and triangle anomaly}},
journal = {Phys. Rev. D},
year = {1998},
volume = {57},
pages = {2186-2206},
archiveprefix ={arXiv},
doi = {10.1103/PhysRevD.57.2186},
eprint = {hep-ph/9710234},
slaccitation = {%%CITATION = HEP-PH/9710234;%%}
}
@article{PRPLM99,
author = {J. A. Pons and S. Reddy and M. Prakash and J. M. Lattimer
and J. A. Miralles},
title = {Evolution of Proto-Neutron Stars},
journal = {ApJ},
volume = {513},
number = {2},
pages = {780},
url = {http://stacks.iop.org/0004-637X/513/i=2/a=780},
year = {1999},
abstract = {We study the thermal and chemical evolution during the
Kelvin-Helmholtz phase of the birth of a neutron star,
employing neutrino opacities that are consistently
calculated with the underlying equation of state
(EOS). Expressions for the diffusion coefficients
appropriate for general relativistic neutrino transport in
the equilibrium diffusion approximation are derived. The
diffusion coefficients are evaluated using a
field-theoretical finite-temperature EOS that includes the
possible presence of hyperons. The variation of the
diffusion coefficients is studied as a function of EOS and
compositional parameters. We present results from numerical
simulations of proto-neutron star cooling for internal
stellar properties as well as emitted neutrino energies and
luminosities. We discuss the influence of the initial
stellar model, the total mass, the underlying EOS, and the
addition of hyperons on the evolution of the proto-neutron
star and on the expected signal in terrestrial detectors. We
find that the differences in predicted luminosities and
emitted neutrino energies do not depend much upon the
details of the initial models or the underlying high-density
EOS for early times ( t <10 s), provided that opacities are
calculated consistently with the EOS. The same holds true
for models that allow for the presence of hyperons, except
when the initial mass is significantly larger than the
maximum mass for cold, catalyzed matter. For times larger
than about 10 s, and prior to the occurrence of neutrino
transparency, the neutrino luminosities decay exponentially
with a time constant that is sensitive to the high-density
properties of matter. We also find the average emitted
neutrino energy increases during the first 5 s of evolution
and then decreases nearly linearly with time. In general,
increasing the proto-neutron star mass increases the average
energy and the luminosity of neutrinos, as well as the
overall evolutionary timescale. The influence of hyperons or
variations in the dense matter EOS is increasingly important
at later times. Metastable stars, those with hyperons that
are unstable to collapse upon deleptonization, have
relatively long evolution times, which increase the nearer
the mass is to the maximum mass supportable by a cold,
deleptonized star.}
}
@article{Prakash:1996xs,
author = "Prakash, Madappa and Bombaci, Ignazio and Prakash, Manju and
Ellis, Paul J. and Lattimer, James M. and Knorren, Roland",
title = "{Composition and structure of protoneutron stars}",
journal = "Phys. Rept.",
volume = "280",
year = "1997",
pages = "1-77",
doi = "10.1016/S0370-1573(96)00023-3",
eprint = "nucl-th/9603042",
archivePrefix ="arXiv",
primaryClass = "nucl-th",
reportNumber = "SUNY-NTG-96-11, NUC-MINN-93-23-T",
SLACcitation = "%%CITATION = NUCL-TH/9603042;%%"
}
@article{Yamamoto:2015gzz,
author = "Yamamoto, Naoki",
title = "{Chiral transport of neutrinos in supernovae:
Neutrino-induced fluid helicity and helical plasma
instability}",
journal = "Phys. Rev. D",
volume = "93",
year = "2016",
number = "6",
pages = "065017",
doi = "10.1103/PhysRevD.93.065017",
eprint = "1511.00933",
archivePrefix ="arXiv",
primaryClass = "astro-ph.HE",
SLACcitation = "%%CITATION = ARXIV:1511.00933;%%"
}
@article{Ohnishi:2014uea,
author = "Ohnishi, Akira and Yamamoto, Naoki",
title = "{Magnetars and the Chiral Plasma Instabilities}",
year = "2014",
eprint = "1402.4760",
archivePrefix = "arXiv",
primaryClass = "astro-ph.HE",
reportNumber = "YITP-14-14",
SLACcitation = "%%CITATION = ARXIV:1402.4760;%%"
}
@article{Boyarsky:2012ex,
author = "Boyarsky, Alexey and Ruchayskiy, Oleg and Shaposhnikov,
Mikhail",
title = "{Long-range magnetic fields in the ground state of the
Standard Model plasma}",
journal = "Phys. Rev. Lett.",
volume = "109",
year = "2012",
pages = "111602",
doi = "10.1103/PhysRevLett.109.111602",
eprint = "1204.3604",
archivePrefix ="arXiv",
primaryClass = "hep-ph",
reportNumber = "CERN-PH-TH-2012-112",
SLACcitation = "%%CITATION = ARXIV:1204.3604;%%"
}
@article{Charbonneau:2009ax,
author = "Charbonneau, James and Zhitnitsky, Ariel",
title = "{Topological Currents in Neutron Stars: Kicks, Precession,
Toroidal Fields, and Magnetic Helicity}",
journal = "JCAP",
volume = "1008",
pages = "010",
doi = "10.1088/1475-7516/2010/08/010",
year = "2010",
eprint = "0903.4450",
archivePrefix ="arXiv",
primaryClass = "astro-ph.HE",
SLACcitation = "%%CITATION = ARXIV:0903.4450;%%",
}
%%
@Article{ Dvornikov:2015lea,
author = {{Dvornikov}, M. and {Semikoz}, V.~B.},
title = "{Generation of the magnetic helicity in a neutron star
driven by the electroweak electron-nucleon interaction}",
journal = "JCAP",
number = "05",
volume = "1505",
pages = "032",
doi = "10.1088/1475-7516/2015/05/032",
year = "2015",
eprint = "1503.04162",
archiveprefix ="arXiv",
primaryclass = "astro-ph.HE",
slaccitation = "%%CITATION = ARXIV:1503.04162;%%"
}
@Article{ Sigl:2015xva,
author = {Sigl, G\"unter and Leite, Natacha},
title = "{Chiral Magnetic Effect in Protoneutron Stars and Magnetic
Field Spectral Evolution}",
journal = "JCAP",
volume = "1601",
year = "2016",
number = "01",
pages = "025",
doi = "10.1088/1475-7516/2016/01/025",
eprint = "1507.04983",
archiveprefix = "arXiv",
primaryclass = "astro-ph.HE",
slaccitation = "%%CITATION = ARXIV:1507.04983;%%"
}
@Article{ Dvornikov:2016cmz,
author = "Dvornikov, Maxim",
title = "{Magnetic fields in turbulent quark matter and magnetar
bursts}",
year = "2016",
eprint = "1612.06540",
archiveprefix = "arXiv",
primaryclass = "astro-ph.HE",
slaccitation = "%%CITATION = ARXIV:1612.06540;%%"
}
@ARTICLE{Haensel:95,
author = {{Haensel}, P.},
title = "{URCA Processes in Dense Matter and Neutron Star Cooling}",
journal = {\ssr},
keywords = {dense matter, neutron stars},
year = 1995,
month = nov,
volume = 74,
pages = {427-436},
doi = {10.1007/BF00751429},
adsurl = {http://adsabs.harvard.edu/abs/1995SSRv...74..427H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Urpin:2003wg,
author = "Urpin, V. and Gil, J.",
title = "{Convection in protoneutron stars and the structure of
surface magnetic fields in pulsars}",
journal = {\aap},
volume = "415",
year = "2004",
pages = "305-311",
doi = "10.1051/0004-6361:20034447",
eprint = "astro-ph/0311181",
archivePrefix ="arXiv",
primaryClass = "astro-ph",
SLACcitation = "%%CITATION = ASTRO-PH/0311181;%%"
}
@ARTICLE{BPP69,
author = {{Baym}, G. and {Pethick}, C. and {Pikes}, D.},
title = "{Electrical Conductivity of Neutron Star Matter}",
journal = {\nat},
year = 1969,
month = nov,
volume = 224,
pages = {674-675},
doi = {10.1038/224674a0},
adsurl = {http://adsabs.harvard.edu/abs/1969Natur.224..674B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{Zra14,
author = {{Zrake}, J.},
title = "{Inverse Cascade of Nonhelical Magnetic Turbulence in a Relativistic Fluid}",
journal = {\apjl},
archivePrefix = "arXiv",
eprint = {1407.5626},
primaryClass = "astro-ph.HE",
keywords = {gamma-ray burst: general, magnetic fields, magnetohydrodynamics: MHD, turbulence},
year = 2014,
month = oct,
volume = 794,
eid = {L26},
pages = {L26},
doi = {10.1088/2041-8205/794/2/L26},
adsurl = {http://esoads.eso.org/abs/2014ApJ...794L..26Z},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BKT15,
author = {{Brandenburg}, A. and {Kahniashvili}, T. and {Tevzadze}, A.~G.
},
title = "{Nonhelical Inverse Transfer of a Decaying Turbulent Magnetic Field}",
journal = {Phys. Rev. Lett.},
archivePrefix = "arXiv",
eprint = {1404.2238},
keywords = {Turbulence, MHD waves, plasma waves turbulence},
year = 2015,
month = feb,
volume = 114,
number = 7,
eid = {075001},
pages = {075001},
doi = {10.1103/PhysRevLett.114.075001},
adsurl = {http://esoads.eso.org/abs/2015PhRvL.114g5001B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{BKMPTV17,
author = {{Brandenburg}, A. and {Kahniashvili}, T. and {Mandal}, S. and
{Pol}, A.~R. and {Tevzadze}, A.~G. and {Vachaspati}, T.},
title = "{Evolution of hydromagnetic turbulence from the electroweak phase transition}",
journal = {\prd},
archivePrefix = "arXiv",
eprint = {1711.03804},
year = 2017,
month = dec,
volume = 96,
number = 12,
eid = {123528},
pages = {123528},
doi = {10.1103/PhysRevD.96.123528},
adsurl = {http://esoads.eso.org/abs/2017PhRvD..96l3528B},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{TD93,
author = {{Thompson}, C. and {Duncan}, R.~C.},
title = "{Neutron star dynamos and the origins of pulsar magnetism}",
journal = {\apj},
keywords = {Dynamo Theory, Neutron Stars, Pulsars, Stellar Convection,
Stellar Magnetic Fields, Stellar Physics, Gamma Ray Bursts,
Stellar Interiors, Supernovae},
year = 1993,
month = may,
volume = 408,
pages = {194-217},
doi = {10.1086/172580},
adsurl = {http://adsabs.harvard.edu/abs/1993ApJ...408..194T},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@article{Kharzeev:07,
author = {Kharzeev, Dmitri E. and McLerran, Larry D. and
Warringa, Harmen J.},
journal = {Nucl. Phys.},
pages = {227},
title = {{The Effects of topological charge change in heavy
ion collisions: 'Event by event P and CP violation'}},
volume = {A803},
year = {2008},
abstract = {Quantum chromodynamics (QCD) contains field
configurations which can be characterized by a
topological invariant, the winding number Q_w.
Configurations with nonzero Q_w break the
charge-parity CP symmetry of QCD. We consider a novel
mechanism by which these configurations can separate
charge in the presence of a background magnetic field
- the "Chiral Magnetic Effect". We argue that
sufficiently large magnetic fields are created in
heavy ion collisions so that the Chiral Magnetic
Effect causes preferential emission of charged
particles along the direction of angular momentum.
Since separation of charge is CP-odd, any observation
of the Chiral Magnetic Effect could provide a clear
demonstration of the topological nature of the QCD
vacuum. We give an estimate of the effect and
conclude that it might be observed experimentally.},
doi = {10.1016/j.nuclphysa.2008.02.298},
}
@article{Hirono:2015rla,
author = "Hirono, Yuji and Kharzeev, Dmitri and Yin, Yi",
title = "{Self-similar inverse cascade of magnetic helicity driven by
the chiral anomaly}",
journal = "Phys. Rev. D",
volume = "92",
year = "2015",
number = "12",
pages = "125031",
doi = "10.1103/PhysRevD.92.125031",
eprint = "1509.07790",
archivePrefix ="arXiv",
primaryClass = "hep-th",
abstract = { For systems with charged chiral fermions, the imbalance of
chirality in the presence of magnetic field generates an
electric current - this is the Chiral Magnetic Effect
(CME). We study the dynamical real-time evolution of
electromagnetic fields coupled by the anomaly to the chiral
charge density and the CME current by solving the
Maxwell-Chern-Simons equations. We find that the CME induces
the inverse cascade of magnetic helicity towards the large
distances, and that at late times this cascade becomes
self-similar, with universal exponents. We also find that in
terms of gauge field topology the inverse cascade represents
the transition from linked electric and magnetic fields
(Hopfions) to the knotted configuration of magnetic field
(Chandrasekhar-Kendall states). The magnetic reconnections
are accompanied by the pulses of the CME current directed
along the magnetic field lines. We devise an experimental
signature of these phenomena in heavy ion collisions, and
speculate about implications for condensed matter systems. },
SLACcitation = "%%CITATION = ARXIV:1509.07790;%%"
}
@ARTICLE{Vilenkin:79,
author = {Vilenkin, A.},
title = {{Macroscopic parity violating effects: neutrino fluxes from
rotating black holes and in rotating thermal radiation}},
journal = {Phys. Rev. D},
year = {1979},
volume = {20},
pages = {1807-1812},
abstract = {Two macroscopic effects of parity nonconservation are
considered. (i) Particle emission by rotating black holes
is shown to be asymmetric. In particular, neutrinos are
emitted preferentially in the direction opposite to the
hole's angular momentum. (ii) It is shown that in a rotating
thermal radiation there exist equilibrium neutrino and
antineutrino currents parallel to the angular velocity
vector.},
doi = {10.1103/PhysRevD.20.1807},
texkey = {Vilenkin:1979ui}
}
@ARTICLE{Wil80,
author = {{Williamson}, J.~H.},
title = "{Low-storage Runge-Kutta schemes}",
journal = {J. Comp. Phys.},
year = 1980,
volume = 35,
pages = {48}
}
% doi = {10.1016/0021-9991(80)90033-9}
@ARTICLE{Jur11,
author = {{Jur{\v c}i{\v s}inov{\'a}}, E. and {Jur{\v c}i{\v s}in}, M. and
{Remeck{\'y}}, R.},
title = "{Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: Two-loop approximation}",
journal = {\pre},
keywords = {Navier-Stokes equations, Field-theoretic formulations and renormalization, Turbulent diffusion, Magnetohydrodynamics and electrohydrodynamics},
year = 2011,
month = oct,
volume = 84,
number = 4,
eid = {046311},
pages = {046311},
doi = {10.1103/PhysRevE.84.046311},
adsurl = {http://adsabs.harvard.edu/abs/2011PhRvE..84d6311J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
@ARTICLE{YBR03,
author = {{Yousef}, T.~A. and {Brandenburg}, A. and {R{\"u}diger}, G.},
title = "{Turbulent magnetic Prandtl number and magnetic diffusivity quenching from simulations}",
journal = {\aap},
eprint = {astro-ph/0302425},
keywords = {magnetohydrodynamics (MHD), turbulence},
year = 2003,
month = dec,
volume = 411,
pages = {321-327},
doi = {10.1051/0004-6361:20031371},
adsurl = {http://adsabs.harvard.edu/abs/2003A%26A...411..321Y},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}