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Abstract
The emergence of dipolar magnetic features on the solar surface is an idealization. Most of the magnetic
flux emergence occurs in complex multipolar regions. Here we show that the surface pattern of magnetic
structures alone can reveal the sign of the underlying magnetic helicity in the nearly force-free coronal
regions above. The sign of the magnetic helicity can be predicted to good accuracy by considering the
three-dimensional position vectors of three spots on the sphere ordered by their relative strengths at the
surface and compute from them the skew product. This product, which is a pseudo scalar, is shown to be
a good proxy for the sign of the coronal magnetic helicity.

Keywords: Sun: magnetic fields — Sun: corona — dynamo — Magnetohydrodynamics (MHD) — turbu-
lence — Methods: numerical

1. Introduction
The Sun’s magnetic field manifests itself through

sunspots in white light and magnetograms in polarized
light. The resulting pattern is generally rather complex
and never in the form of a symmetric pair of spots that is
usually shown in text books; see, e.g., Parker (1979). Just
like a human face, both halves are never perfectly identical
to their actual mirror images. In fact, certain aspects of the
solar surface pattern are distinctly different from each other
in the northern and southern hemispheres. This aspect has
been explored by Sara Martin (1998a,b, 2003) and others
(Canfield et al. 1999; Magara & Longcope 2001; Gibson
et al. 2002); see also Panasenco & Martin (2008); Panasenco
et al. (2011, 2013) for recent accounts of those studies.

The purpose of this letter is to propose a simple recipe by
which a pseudo scalar can be constructed that can be used
to estimate the sign of the underlying magnetic helicity that
is responsible for creating the surface magnetic field. To
appreciate the motivation behind this way of thinking, we
must recall that a pseudo scalar is a rather special type of
mathematical construct. If one finds a way of constructing
such a quantity from some physical object, it changes its
sign when constructing it from a mirror image of the same
object. A common example are the cyclones on the Earth’s
weather map that look different from their mirror images.
Mathematically, a pseudo scalar can be constructed from
the downward direction given by the gravity vector g and
the local angular velocity vector Ω, which is an axial vector.
If one draws this vector by indicating the sense of rotation
rather than through an arrow on one of the two ends, it is
evident that viewing it in a mirror results in the opposite
sense of rotation. Therefore, the sign of the dot product
g ·Ω changes. It is therefore a pseudo scalar. In the Earth
and in the Sun, it is this pseudo scalar that governs the
sign of several other relevant pseudo scalars such as the
kinetic, magnetic, and current helicities; see Brandenburg
& Subramanian (2005) for a review.

One may now speculate that the construction of any
pseudo scalar in a system must be related to some other
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pseudo scalar in that system, even though the causal rela-
tionship may not immediately be evident. Consider now a
seemingly absurd looking example of a pseudo scalar,

Q = (n̂1 × n̂2) · n̂3, (1)

constructed from the normalized position vectors n̂1, n̂2,
and n̂3 of three different spots on the solar surface. In this
definition Q is independent of the sphere radius. Their un-
signed fluxes are |Φ1|, |Φ2|, and |Φ3|, and they are ordered
such that |Φ1| < |Φ2| < |Φ3|,

Remarkably, the direction of the magnetic field does not
enter, and we do not even need a vector-magnetogram. All
that is required is any triple of spots that can somehow be
ordered, for example by their strength, as explained above.

In this letter, we test the idea outlined above by consider-
ing synthetic line-of-sight magnetograms and constructing
from those a nearly force-free magnetic field in the corona
on top of it. Such a magnetic field is in general always he-
lical, so we can compute the sign of the magnetic helicity
and compare it with the sign of Q. The idea of constructing
a pseudo scalar Q from the position vectors of individual
sources is not new and has been applied to the arrival direc-
tions of energetic GeV photons coming from extragalactic
sources in the sky (Tashiro et al. 2014; Chen et al. 2015;
Tashiro & Vachaspati 2015), who found evidence for a neg-
ative sign throughout all of the sky, which they associated
with the possibility of a helical primordial magnetic field
with negative helicity in all of the Universe. In their case,
the arrival directions of GeV γ rays in the sky is the result of
magnetic deflection of pair-created particles resulting from
the interaction of TeV photons from blazars with the extra-
galactic background light. In the present case, the location
of spots on the solar or stellar surface is a more direct con-
sequence of a dynamo-generated magnetic field somewhere
beneath the surface (Brandenburg 2005).

In the solar corona, a force-free magnetic field can be
constructed using a potential field extrapolation method.
Only the line-of-sight magnetic field Bz(x, y) at the bot-
tom boundary is needed. No magnetic helicity can readily
be constructed from this, and yet, a certain sign of the
resulting magnetic helicity is somehow encoded in the pho-
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tospheric magnetic pattern, provided it looks different from
its mirror image, as alluded to above. This is indeed what
was found in the recent work of Bourdin et al. (2018) using
data from simulations of Bourdin et al. (2013).

Any distribution of Bz(x, y, z∗, 0) at the surface z = z∗
can be used to construct a potential field B = ∇ϕ, where
ϕ(x, y, z) obeys Bz(x, y, z∗, 0) = ∂ϕ/∂z at z = z∗. At later
times, however, Bz(x, y, z∗, t) changes on the boundary as
the magnetic field patches expand due to diffusive and dy-
namical processes. The field then evolves through a se-
quence of new non-potential nearly force-free states, with
the current density being parallel to the magnetic field,
which imply local current helicity.

The purpose of this work is to study the connection be-
tween the original orientation of spots, as characterized by
the pseudo scalar Q, and the sign of the resulting magnetic
helicity in the volume above. For this purpose, we solve for
the magnetic field numerically using ambipolar diffusion as
a relaxation method to construct approximately force-free
magnetic fields above three- and four-spot arrangements as
the lower boundary condition.

2. Method
2.1. Ambipolar relaxation approach

To construct an approximately force-free equilibrium
magnetic field B, one often uses the magneto-frictional ap-
proach (Yang et al. 1986), which corresponds to solving the
induction equation with a velocity that is proportional to
the Lorentz force, J ×B, where J = ∇×B/µ0 is the cur-
rent density and µ0 is the vacuum permeability. One usu-
ally divides this velocity by B2 to enhance the relaxation
rate in regions of weak magnetic field (Valori et al. 2007),
but this is here purposely ignored, so our effective advection
velocity is v = (τ/ρ)J×B, where τ is some relaxation time,
ρ is some density, which is assumed constant. Inserting this
into the induction equation, the electromotive force v ×B
becomes proportional to (J ×B)×B = (J ·B)B −B2J ,
so the uncurled evolution equation for the magnetic vector
potential A, where B = ∇×A, can be written as

∂A

∂t
= αADB − (ηAD + η)µ0J , (2)

where αAD = (τ/ρ) (J ·B) is a term reminiscent of the α ef-
fect in mean-field electrodynamics (Krause & Rädler 1980),
ηAD = (τ/ρ)B2 is an effective magnetic diffusivity which
is what gives ambipolar diffusion its name, η is the usual
Spitzer diffusivity, and the Weyl gauge has been adopted
in Equation (2). Ambipolar diffusion is known to lead to
the formation of sharp structures such as current sheets
between nearly force-free regions in space (Brandenburg &
Zweibel 1994). This is an important feature that appears
here more pronounced than in the magneto-frictional ap-
proach, which motivates our choice of employing ambipolar
diffusion.

To formulate the potential field boundary condition, we
employ the Fourier transformed magnetic vector potential

Ã(kx, ky, z, t) =
∫
A(x, y, z, t) eik·rd2r, (3)

where k = (kx, ky) and r = (x, y). On the lower and upper
z boundaries, we thus have

∂Ã

∂z
= −|k|Ã(kx, ky, z∗, t), (4)

where z∗ denotes the locations of the boundaries. One of
them is the lower surface, which we will from now on assume
to be at z = 0, and the other is at the top of the domain.
Note that on both boundaries we assume the field to fall
off with increasing values of z, which is not the standard
situation on the lower boundary, if the region beneath it
was supposed to be a vacuum. It is, however, a natural
choice in the present context where the magnetic field is
assumed to be initially potential inside the computational
domain (Bourdin et al. 2013).

We use this formulation to set the Fourier-transformed
magnetic vector potential in the ghost zones just outside
the computational domain. This corresponds to setting
boundary conditions for the derivative of all three compo-
nents of Ã, as stated above. We solve Equation (2) numer-
ically using the Pencil Code1 using a resolution of 643

meshpoints. The total vertical magnetic flux is always zero
since A is periodic in x and y and we balance out Bz at the
bottom.

2.2. Gauge-independent magnetic helicity
To characterize the magnetic helicity in a gauge-

independent fashion, we use the formulation of Finn & An-
tonsen, Jr. (1985); see their Equation,(5), which is identical
to the relative helicity of Berger & Field (1984), and apply
it to the semi-infinite test volume V (z),

HM(z) =
∫∫∫ ∞

z

(A+Apot) · (B −Bpot) dz dy dx. (5)

We use a potential field extrapolation from the vertical
magnetic field Bz at the base of this test volume V as ref-
erence field, Bpot = ∇ × Apot. Computing the helicity
difference between two test volumes above heights z and
z+ ∆z, we obtain the gauge-independent magnetic helicity
contained in small horizontal slices of thickness ∆z as

∆HM(z; ∆z) = HM(z)−HM(z + ∆z). (6)

Here we simply use the grid distance of our simulation as
∆z = 2π/64. We stop the integration at the upper bound-
ary of our simulation domain, where the magnetic field is
almost potential, so that the error we make in our limited
integration is negligible. As required by Finn & Antonsen,
Jr. (1985), the magnetic fields normal to the boundaries of
the integration volume are identical. Because our setup is
periodic in the horizontal directions, all assumptions on the
boundaries of V apply only to the boundaries in z.

2.3. Arrangement of spots of different strengths
We consider configurations of N spots of different

strengths |Φ1| < |Φ2| < ... < |ΦN | as

Bz(x, y, z0, t) =
N∑
λ=1

Φλ e−(r−rλ)2/2σ2
/

(2πσ2
λ), (7)

where rλ are the positions of the spots with magnetic fluxes
Φλ for λ = 1, 2, ..., N , where N = 3 in this case.

We construct observables from spherical polar coordi-
nates (r, θ, φ) at the surface as

n̂ = (sin θ cosφ, sin θ sinφ, cos θ). (8)

1 https://github.com/pencil-code

https://github.com/pencil-code
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To map the corners of a triangle onto the sphere, we choose
two neighboring unit vectors ê1 and ê2 on the sphere to
define a local coordinate system spanned by the unit vectors
ξ̂ and η̂ given by ξ = ê2 − ê1 and η = ξ × ê1. Thus,

n̂λ = ê1 + Mr̂λ for λ = 1, ..., N, (9)

where M = (ξ̂, η̂) is a 2 × 3 matrix consisting of the two
column vectors ξ̂ and η̂. In practice, we take ê1 = (1, 0, 0)
and ê2 = (sin 30◦, cos 30◦, 0). The matrix M describes the
conversion of planar two-dimensional position vectors rλ
onto the position vector n̂λ on the unit sphere. In this
formulation, position differences rλ−rλ′ are then measured
in radian. To obtain the corresponding values in degrees,
we multiply by 180◦/π.

2.4. Three-spot arrangements
We begin with a triangular configuration with positions

r1 = (`, 0), r2 = (0, `), r3 = (`, `) (A–C), (10)

with indices (1, 2, 3) corresponding to spots of strengths
Φ1/Φ0 = 1, Φ2/Φ0 = 2, and Φ3/Φ0 = −3, where Φ0 is an-
other constant and ` is the spot separation. This particular
choice for the three values of |Φλ| ensures vertical mag-
netic flux balance, although this is not actually required,
as will be shown further below. We associate the posi-
tions (r1, r2, r3) with different permutations of the fluxes
(Φ1,Φ2,Φ3); see Table 1.

The three spots, referred to as cases A–C in Equa-
tion (10), are arranged in a mathematically positive (anti-
clockwise) sense around their center of mass. The same
three-spot arrangement, but with only positive polarities,
will be referred to as cases A –C .

In Table 1 we compare the sign of Q with the gauge-
independent magnetic helicity; left-handed systems (L)
have a positive Q value and generate negative helicity signs.
We show the total magnetic (M) and current (C) helicities,
where we sum separately the positive (+) and negative (−)
parts in our domain that we compute as

HM± =
∑
z|∆HM(z)≷0∆HM(z),

HC± =
∑
z|∆HC(z)≷0∆HC(z), (11)

with ∆HC(z) being the total current helicity contained in
the horizontal slice of volume 4π2∆z. In the tables, we
give normalized values as H6M± ≡ 106HM±. The total
helicities of the whole domain may be obtained by summing
the negative and positive helicities:

HM = HM+ +HM− ,

HC = HC+ +HC− . (12)

Magnetic helicity values from the upper part of the do-
main are denoted by ↑. The current helicity values denoted
with ↓ are strongly influenced by the lower boundary and
are therefore disregarded.

It turns out that the value of Q is proportional to `2. In
particular, for the triangular arrangement of the spots given
by Equation (10), we have Q = ±`2 for positive (negative)
permutations of the spot’s fluxes (Φ1,Φ2,Φ3). Conversely
for a flipped arrangement of spots (A’–C’), we also find—
not surprisingly—a flipped sign of Q. These three spots are
now arranged in a mathematically negative sense around
their center of mass.

Table 1
Triangular cases with multiples of Φ0 at the positions (r1, r2, r3).

Some numbers are displayed in italics to indicate a systematic trend.

# Φ Q/`2 H6M+ H6M− HC+ HC−
A (3,−1,−2) +1 ↑ +3.17 −2.22 +0.39 −35.0
A’ (−1, 3,−2) −1 +2.22 ↑ −3.17 +35.0 −0.39
A (3, 1, 2) +1 ↑ +10.2 −0.23 +1.36 −3.18
A ’ (1, 3, 2) −1 +0.23 ↑ −10.2 +3.18 −1.36
B (−1,−2, 3) +1 +0.17 −8.99 +0.07 −10.9
B’ (−2,−1, 3) −1 +8.99 −0.17 +10.9 −0.07
B (1, 2, 3) +1 +0.30 −3.68 ↓ +4.46 −0.01
B’ (2, 1, 3) −1 +3.68 −0.30 +0.01 ↓ −4.46
C (−2, 3,−1) +1 +0.00 −31.8 +8.78 −15.0
C’ (3,−2,−1) −1 +31.8 −0.00 +15.0 −8.78
C (2, 3, 1) +1 +0.00 −5.68 +0.70 −3.88
C ’ (3, 2, 1) −1 +5.68 −0.00 +3.88 −0.70

Numerically, we find that for large values of `, corre-
sponding to angular separations of spots in excess of 20◦,
the ratio |Q|/`2 drops significantly below unity. In general,
Q/`2 is twice the area of the triangle spanned by the three
points, so, by comparison, for a configuration consisting of
an equilateral triangle, we have Q/`2 = ± sin 60◦ for spots
of increasing strength in the positive (negative) mathemat-
ical sense.

In Figure 1, we show visualizations of Bz, |J |, and J ·B
at the bottom surface. We recall that the configurations
A and A’, B and B’, and as well as C and C’, each have
opposite signs of current helicity. We confirmed that the
polarities of the different patches is not important for the
sign of the current helicity, but it is instead the orientation
of spots of increasing strength. In the visualizations of Bz,
patches of increasing strengths are arranged in a clockwise
sense, while those of A’–C’ are in an anti-clockwise sense.
Comparing A–C with A’–C’, we see that the current sheets
are flipped about the diagonal, which is indicated by a long-
dashed line.

The images of J · B look more complex than those of
Bz and |J |, because patches of opposite sign are now much
smaller than the patches of Bz. However, one sees clearly
that one is a mirror image of the other after a sign flip of
J ·B. Apart from this, there is no change in the relative
dominance of one sign relative to the other and one would
not be able to tell the sign of the xy averages 〈J · B〉xy
judging just based on the sign of the local patches of J ·B.
This demonstrates that what really matters in the end are
both the sign of Q and the values of the unsigned flux of
all spots, which is only obtained after averaging over all the
patches.

Remarkably, as alluded to above, the sign of the polari-
ties is not important for generating helicity. In cases A –C ,
where all spots have the same polarity, we see that they also
generate magnetic and current helicities, but less strongly
so than compared to the arrangements A–C that have dif-
ferent signs in their polarities. The current densities of the
unipolar cases A –C are of course stronger on the outer con-
tour of the three-spot region. The angles between J and B
have a less complex pattern. This is expected because of
the less complex magnetic topology in the unipolar regions.

2.5. Four-spot arrangements
In an attempt to generalize our approach to multiple

spots, we now also consider four-spot arrangements with
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Figure 1. Overview of Bz(x, t) (red: Bz < 0, blue: Bz > 0), current density (linear gray scale), and 〈J ·B〉xy at an evolved snapshot at t = 7
time units at the bottom boundary. The gray dashed line indicates the symmetry axis between cases X and X′; see also Table 1. The letters L
and R in the panels of |Bz | refer to left and right hands, respectively. The handedness is L in all panels X and R for all X′; see Section 2.6.

r1 = (0, 0), r2 = (`, 0), r3 = (`, `), r4 = (0, `), (13)

which are referred to as cases D–F’; see Table 2. Each con-
figuration is denoted by the vector

Φ = (Φa, Φb, Φc, Φd) (14)

for each of the positions (r1, r2, r3, r4) being certain per-
mutations of (Φ1,Φ2,Φ3,Φ4), where the four fluxes obey
|Φ1| < |Φ2| < |Φ3| < |Φ4|.

A four-spot arrangement can be analyzed by breaking
it down into four different three-spot arrangements, and
calculating the weighted sum

S =
4∑
i=1

qiφi, (15)

where qi = Qi/`
2 = ±1 is the normalized Q value for tri-

angle i, and φi is the total unsigned flux of each triangle,

Table 2
Quadratic cases with multiples of Φ0 at the positions (r1, r2, r3, r4).
Some numbers are displayed in italics to indicate a systematic trend.

# Φ S H6M+ H6M− HC+ HC−
D (0.5, 1.0, 1.5,−3) +18 +8.70 −1.14 +31.0 −0.35
E (0.5, 1.0,−3, 1.5) −3 +0.18 −6.80 +0.08 −12.9
F (0.5, 1.5, 1.0,−3) +1 +1.10 ↑ −3.01 +14.4 −0.86
E’ (0.5, 1.5,−3, 1.0) +3 +6.80 −0.18 +12.9 −0.08
F’ (0.5,−3, 1.0, 1.5) −1 ↑ +3.01 −1.10 +0.86 −14.4

i.e.,

φ =
c∑

λ=a

|Φλ|, (16)

which is different for each of the four triangles. In Figure 3
we compare the S values for all possible four-spot arrange-
ments and find agreement with the signs and relative mag-
nitudes of the actual magnetic helicity in the lower part of
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Figure 2. Overview of the magnetic and current helicity evolution for the signed and unsigned three-spot configurations as listed in Table 1 at
three times. Time is given in arbitrary time units [tu].

the domain; see Table 2. Values denoted with ↑ are from
the upper part of the domain, where both signs contribute
significantly in Figure 3. We find that the sign changes of
S correlate well with those of the generated helicities in the
lower part of the domain. Also the magnitude of S corre-
lates with the strength of the generated helicities. When
S is small, the correlation with the helicities is less clear.
On the other hand, compared with the three-spot configu-

rations, the correspondence with the actual signs of current
helicity, and sometimes also the relative magnetic helicity,
tend to be the other way around. The reason for this is not
obvious, but the different trends for magnetic and current
helicities suggest that this is connected with helicity effects
from different length scales. Investigating therefore helicity
spectra will be an important future task.
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Figure 3. Similar to Figure 2, but for the four-spot configuration
listed in Table 2.

2.6. Application to solar magnetograms
Nearly force-free magnetic field configurations have been

generated in numerical simulations by several groups
(Gudiksen & Nordlund 2002, 2005a,b; Bingert & Peter
2011; Bourdin et al. 2013) using observed solar magne-
tograms as lower initial and boundary condition, where
the vertical magnetic field was kept fixed. They showed
that random footpoint motions lead to field line braiding
and coronal heating. Force-free magnetic fields are gener-
ally helical, but the initial potential field and the random
footpoint motions were nonhelical, so no net sign of mag-
netic helicity was expected. This turned out not to be the
case. Instead, these simulations produced net magnetic he-
licity, which Bourdin et al. (2018) used to study the verti-
cal variation of the resulting magnetic and current helicity
profiles and the possibility of a magnetic helicity reversal
with height, as has been suggested from studies of mag-
netic helicity in the solar wind (Brandenburg et al. 2011)
and theoretical studies (Warnecke et al. 2011, 2012). The
point of the present work is to provide the theoretical un-
derpinning to why a finite value of the magnetic helicity can
be expected in these simulations that are otherwise statis-
tically mirrorsymmetric. In fact, also the coronal simula-
tions of Rempel (2017) have finite magnetic current helicity
(M. Rempel, private communication), but in their case this
could also be a remnant from the initial magnetic field that
was taken from a large-scale dynamo simulation.

The images of Bz for A and A′ in Figure 1 can be identi-
fied with those of open left (L) or right (R) hands, respec-
tively. Here, the palm corresponds to the biggest spot, the
thumb points to the smallest one, and the four fingers to
the intermediate spot. Their orientation indicates the ex-
pected sign of helicities, where left-handed regions should
generate negative and right-handed ones positive helicity.
The polarity of the spots is of no importance for the sign
of the generated, even though we find that mixed polarities
generate more helicity.

Our work raises the possibility that magnetic helicity can
be determined even from a magnetic field with a 180◦ am-
biguity and, in particular, from the relative arrangement of
sunspots on the solar surface. We have seen in Section 2.4
that helicity is also generated if all spots feature the same
polarity, even though such setups create less helicity than
multipolar ones. This suggests remarkable prospects for fu-
ture work, whose full extent cannot be imagined at present,
given that detailed sunspot observations exist for many cen-
turies.

3. Conclusions
With the help of our model, we have demonstrated that

magnetic helicity is generated above the surface of a star
like the Sun, and that its sign can be determined uniquely
from the horizontal arrangement of magnetic flux concen-
trations and not just, as previously thought, by the twist of
the emerging magnetic field. The source of this magnetic
field is the solar dynamo, and it also determines the sign of
magnetic helicity. This helicity manifests itself in a pow-
erful way through the spot arrangement. We have demon-
strated this by taking an observed solar magnetogram, re-
moving all other signs of magnetic helicity by fitting it to
a potential field, and then finding the original sign of mag-
netic helicity being recovered through the spot arrangement
alone (Bourdin et al. 2018). This illustrates a strong persis-
tence of magnetic helicity characterized by this new aspect
of handedness.

An immediate implication of our work is that the hori-
zontal arrangement of just the line-of-sight magnetic field
or—more precisely—the vertical magnetic field, contributes
to determining the sign of magnetic helicity in the region
above. Such magnetograms have commonly been used in
earlier studies of coronal heating. Although footpoint mo-
tions can lead to random twist of magnetic field lines, the
net effect vanishes, as has been confirmed in the simulations
of Bourdin et al. (2013). Nevertheless, net magnetic helicity
has been detected in those simulations; see Bourdin et al.
(2018). Our present results now give us a theoretical frame-
work with which this surprising fact can be understood. In
the simulations of Bourdin et al. (2013), the underlying so-
lar magnetogram was taken from a location on the southern
hemisphere slightly below the solar equator. Thus, if any
net magnetic helicity is to be expected, it should be positive
(Seehafer 1990). This is indeed what is found in the simula-
tions. This suggests that the sign of magnetic helicity must
have been imprinted on the pattern of the emerged mag-
netic flux at the surface through its complex arrangement
that cannot be modeled using only a pair of spots. Three
or more spots or magnetic flux concentrations are needed
to encode the information about magnetic helicity in the
surface pattern.

Our work has future applications to solar physics and,
perhaps, many other fields. Even just sunspot and starspot
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observations can in principle be used to gather information
about magnetic helicity. Besides the original application of
Tashiro et al. (2014) to extragalactic high energy gamma
rays, other possible applications in astrophysics may in-
clude galactic magnetism, where magnetic helicity was pre-
viously only accessible through Faraday rotation measure-
ments (Oppermann et al. 2011; Brandenburg & Stepanov
2014). Other approaches are conceivable where the sign of
magnetic helicity is in principle accessible through the mea-
surement of what is known as E and B polarization (Seljak
& Zaldarriaga 1997; Kamionkowski et al. 1997), i.e., the
parity-even and parity-odd contributions to the linear po-
larization in the sky (Kahniashvili et al. 2014). The relation
between this and our present work still needs to be eluci-
dated in more detail.
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