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ABSTRACT
We show that at large magnetic Prandtl numbers, the Lorentz force does work on the flow at small scales and

drives fluid motions, whose energy is dissipated viscously.This situation is opposite to that in a normal dynamo,
where the flow does work against the Lorentz force. We computethe spectral conversion rates between kinetic
and magnetic energies for several magnetic Prandtl numbersand show that normal (forward) dynamo action
occurs on large scales over a progressively narrower range of wavenumbers as the magnetic Prandtl number
is increased. At higher wavenumbers, reversed dynamo action occurs, i.e., magnetic energy is converted back
into kinetic energy at small scales. We demonstrate this in both direct numerical simulations forced by volume
stirring and in large eddy simulations of solar convectively driven small-scale dynamos. Low density plasmas
such as stellar coronae tend to have large magnetic Prandtl numbers, i.e., the viscosity is large compared with
the magnetic diffusivity. The regime in which viscous dissipation dominates over resistive dissipation for large
magnetic Prandtl numbers was also previously found in largeeddy simulations of the solar corona, i.e., our
findings are a more fundamental property of MHD that is not just restricted to dynamos. Viscous energy dis-
sipation is a consequence of positive Lorentz force work, which may partly correspond to particle acceleration
in close-to-collisionless plasmas. This is, however, not modeled in the MHD approximation employed. By
contrast, resistive energy dissipation on current sheets is expected to be unimportant in stellar coronae.
Subject headings: dynamo — hydrodynamics — MHD — turbulence — Sun: corona, dynamo

1. INTRODUCTION

The magnetic fields of planets, stars, accretion discs, and
galaxies are all produced and maintained by a turbulent dy-
namo (Zeldovich et al. 1983). Dynamos work through the
conversion of kinetic into magnetic energy. This energy con-
version is characterized by the flow field doing work against
the Lorentz force. It has been known for some time that this
energy conversion also depends on the microphysical value
of the magnetic Prandtl number, PrM ≡ ν/η, the ratio of
kinematic viscosityν to magnetic diffusivityη (Brandenburg
2009, 2011). The larger the value of PrM , the larger is also the
ratio of kinetic to magnetic energy dissipation (Brandenburg
2014). This is plausible, because large viscosity means large
viscous dissipation (ǫK ), and large magnetic diffusivity or re-
sistivity means large resistive dissipation (ǫM ). Large values
of PrM are generally expected to occur at low densities, for
example in the solar corona (PrM ≈ 1010; see Rempel 2017)
and in galaxies (PrM ≈ 1011; see Brandenburg and Subrama-
nian 2005).

In the steady state,ǫM must be equal to the rate of kinetic to
magnetic energy conversion. This becomes clear when look-
ing at an energy flow diagram; see Figure 1(a). It shows
that magnetic energy can only be supplied through work done
against the Lorentz force,J×B, whereJ = ∇×B/µ0 is the
current density,B is the magnetic field, andµ0 is the vacuum
permeability. Exactly the same amount of energy must even-
tually also be dissipated resistively. This implies that atlarge
magnetic Prandtl numbers, not only must most of the energy
be dissipated viscously, but also the magnetic energy dissipa-
tion must be small. Therefore, also the work done against the
Lorentz force must be small, which suggests that the dynamo

should be an inefficient one.
A large magnetic Prandtl number implies that the magnetic

diffusivity is small, so one would have expected the dynamo
to be efficient, because it suffers less dissipation. This imme-
diately leads to a puzzle. How can a dynamo be efficient in
the sense of experiencing low energy dissipation, but at the
same time inefficient in the sense of having small energy con-
version?

Here is where our suggestion of a reversed dynamo comes
in. A reversed dynamo is one that does workby the Lorentz
force—and not against it, as in a usual dynamo. Thus, it cor-
responds to driving velocity by the Lorentz force and hence
to a conversion of magnetic to kinetic energy. Therefore, the
idea is that the flow is indeed an inefficient dynamo, but only
at large scales (LS), where kinetic energy is converted to mag-
netic energy. At small scales (SS), however, magnetic energy
begins to dominate over kinetic energy, leading therefore to
an efficient conversion of magnetic into kinetic energy. This
means we have a reversed dynamo, as sketched in Figure 1(b),
where we show the flow of energy separately for LS and SS.
To test this idea, we analyze solar convection simulations and
perform idealized simulations of isotropically forced homo-
geneous nonhelical turbulence over a range of different mag-
netic Prandtl numbers and calculate the spectrum of magnetic
to kinetic energy transfer.

Mahajan et al. (2005) introduced the concept of a reversed
dynamo in the context of large-scale dynamos leading to the
formation of large-scale flows that are driven simultaneously
with the large-scale field by microscopic fields and flows. In
our investigation, we focus on small-scale dynamos and show
that small-scale flows are driven by the Lorentz force when



2

FIG. 1.— Energy flow diagrams for (a) a standard dynamo and (b) a dynamo at LS with a reversed dynamo at SS. Dashed arrows indicate relatively weak flows
of energy.

PrM ≫ 1. The spectral range over which this microscopic
reverse dynamo is operational is found to be PrM dependent
and is largest in the high PrM regimes.

2. DYNAMO SIMULATIONS AND ANALYSIS

We consider two types of dynamo simulations. On the one
hand, we perform direct numerical simulations (DNS; as in
Brandenburg 2014), where viscous and magnetic dissipation
are solved for explicitly, and large eddy simulations (LES),
where these terms are modeled. In both cases, we vary the
ratio of kinetic to magnetic energy dissipation to examine our
ideas about reversed dynamo action.

Our main analysis tool is the spectrum of energy conver-
sion, defined as (Rempel 2014)

Tu(k) = ℜ
∑

k−<|k|≤k+

ũk · ˜(J ×B)
∗

k
, (1)

wherek± = k ± δk/2, δk = 2π/L is the wavenumber in-
crement and also the smallest wavenumberk1 ≡ δk in the
domain of side lengthL, tildes denote Fourier transformation
either in all three directions in the homogeneous DNS or in
the two horizontal directions in the inhomogeneous LES, and
ℜ denotes the real part.

The LES of Rempel (2014, 2018) are designed to model the
solar convection zone and use realistic physics such as multi-
frequency radiation transport and a realistic equation of state
allowing for partial ionization effects. Here, the flow is driven
by the convection resulting from radiative surface coolingat
a rate high enough so that radiative diffusion leads to a su-
peradiabatic stratification, which is Schwarzschild unstable.
This model is periodic in the two horizontal directions, but
not in the vertical. The employed LES approach allows for
different diffusivity settings in the momentum and induction
equations resulting in the flexibility to change the effective nu-
merical magnetic Prandtl number; see Equation (10) of Rem-
pel (2014). Beneath the solar photosphere, PrM is still well
below unity, so the purpose of changing its value is solely
to demonstrate the effect of such a change on the dynamo in
the LES with the MURaM code (V̈ogler et al. 2005). How-
ever, the same code will later also be applied to a model of
the solar corona where the actual value of PrM is much larger

than unity. Here, however, we analyze the solar convection
setups that were described in Rempel (2018) with effective
numerical (or pseudo) PrM on the order of0.088, 1.77, and
54.6. It is important to note that the pseudo PrM = 0.088 and
1.77 cases have approximately the same Reynolds number,
Re, but different magnetic Reynolds number, ReM , whereas
the PrM = 1.77 and54.6 cases have the same ReM , but dif-
ferent Re. Note that PrM = ReM/Re.

We should note that, owing to the strong vertical stratifi-
cation of the densityρ in the LES, we have modified Equa-
tion (1) by computingTu(k) with the Fourier transforms
asρ1/2u andJ × B/ρ1/2, where overbars denote horizon-
tal averaging. However, the choice of aρ1/2 was some-
what arbitrary and one could have used insteadρ1/3, because
ρ(z)u3

rms(z) is known to be an approximation to the convec-
tive flux which, in turn, is expected to be approximately con-
stant through the convection zone. Note that the multiplica-
tion and division by the same factor does not affect the di-
mension ofTu(k). Incidently, aρ1/3 factor has also been
advocated by Kritsuk et al. (2007) in the context of super-
sonic interstellar turbulence. In the present simulations, how-
ever,ρ1/3urms is seen to increase slightly with height, while
ρ1/2urms decreases slightly, so the latter choice is equally
well justified.

Figure 2 shows the corresponding magnetic and kinetic en-
ergy spectra,EM(k) andEK(k), respectively, together with
the spectral transfer functions for the three cases with dif-
ferent pseudo PrM . Since the domain is periodic horizon-
tally, but stratified vertically, we consider here only the hori-
zontal Fourier transforms when computing power spectra and
transfer functions. In addition, quantities are averaged over
a height range of800 km ranging from700 to 1500 km be-
neath the solar photosphere. Unlike the DNS, the LES setup
is dimensional, representing a volume of6.144 × 6.144 ×
3.072 Mm3 in the solar photosphere. Consequently, the LES
results presented in the following discussion are dimensional
as well.

By contrast, the DNS are statistically fully isotropic and
homogeneous, so periodicity is assumed in all three direc-
tions and the flow is driven by volume forcing with plane
monochromatic nonhelical waves with random phases and
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FIG. 2.— Ei(k) (left) andTu(k) (right) for the LES of Rempel (2018). Open blue (filled red) symbols denote negative (positive) values corresponding to
dynamo (reversed dynamo) action. The values of the numerical pseudo PrM are (a,b) 0.088, (c,d) 1.77, and (e,f) 54.6.

wavevectorsk(t) that are selected randomly at each time step
such thatk− < |k(t)| ≤ k+ with k± = kf ± δk/2 and
kf = 4 k1; see Brandenburg (2001) for details. We use an
isothermal equation of state with constant isothermal sound
speedcs. The typical Mach number based on the rms velocity
varies betweenurms/cs ≈ 0.056 for the largest value of PrM

and0.11 for the smallest value. We usually vary bothν andη
as we change the value of PrM .

In Figure 3, we showEi(k) for i = K,M andTu(k) for
eight homogeneous DNS at different values of PrM ranging
from 0.01 to 2000. We normalizeTu(k) by ρ0u3

rms, whereρ0
is the initial (and mean) density andurms is the root-mean-
square (rms) velocity. We clearly see that at small values of
PrM , Tu(k) is negative at almost all values ofk, correspond-
ing to work done against the Lorentz work. At larger val-
ues of PrM , however, we see a progressively larger span of
wavenumbers at small scales, whereTu(k) is now positive.
This corresponds to reversed dynamo action. Similar results
are also seen in the LES presented in Figure 2. For moderate
values of PrM , EM(k) andEK(k) show a short range with
k−5/3 Kolmogorov scalings. For large values of PrM , how-
ever,EK(k) has a much steeper spectrum.

As PrM increases, the areas under the positive and negative
parts ofTu(k),

T+
u =

∫ ∞

k∗

Tu(k) dk, T−
u = −

∫ k∗

0

Tu(k) dk, (2)

respectively, become almost equal; see Figure 4(a), where
T±
u is normalized by kfρ0u

3
rms for the DNS and by

〈ρ(z)urms(z)
3〉 for the LES. However, given that there is al-

ways magnetic dissipation at the rateǫM = 〈ηµ0J
2〉, the dif-

ference betweenT+
u andT−

u cannot vanish completely, but
we have insteadT+

u −T−
u + ǫM = 0. (We recall thatT−

u > 0
by our definition.) The rest of the energy is dissipated vis-
cously at the rateǫK = 〈2ρνS2〉, whereS is the traceless
rate-of-strain tensor; see Brandenburg (2014) for details.

In both the DNS and the LES, we see that the wavenum-
berk∗, whereTu(k) changes sign, moves toward smaller val-
ues as PrM increases. This is shown in Figure 4(b), where
k∗ follows an approximate Pr−1/4

M scaling for the DNS. For
PrM >∼ 200, however, this scaling is seen to level off. This
is expected, because in the present case the system also has
to sustain a dynamo. For PrM < 0.1, however, the scaling
is somewhat steeper. Our values ofk∗ are typically about ten
times smaller than the kinetic energy dissipation wavenumber,
kν = (ǫK/ν3)1/4, although both quantities scale similarly for
PrM below five; compare with the green open symbols in Fig-
ure 4(b). The three data points ofk∗ from the LES are also
shown in Figure 4(b) and suggest a trend that is compatible
with that found in the DNS. As seen from Figure 2(b), in the
LES, Tu(k) does not change sign for PrM < 0.1. We can
therefore only assume thatk∗ is beyondkmax ≈ 800Mm−1.

In Table 1 we show the corresponding values ofT+
u andT−

u
for the solar LES simulations. Similar to Figure 4(b), we find
thatT−

u only shows a small dependence on PrM , whereasT+
u

(transfer of inverse dynamo) is increasing with PrM , reducing
the net energy transferT−

u −T+
u in the high pseudo PrM case.

It should also be noted that the sign change in the transport
term occurs only in the work done against the Lorentz force
discussed above. By contrast, magnetic energy must always
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FIG. 3.— Ei(k) (left) andTu(k) (right) for the DNS of Runs A–H (except Run E’). Open blue (filled red) symbols denote negative (positive) values corre-
sponding to dynamo (reversed dynamo) action. The values of PrM are (a,b) 0.01, (c,d) 0.05, (e,f) 0.2, (g,h) 5, (i,j) 20, (k,l) 100, (m,n) 500, and (o,p) 2000. The
scalings ofk−5/3 (e) andk−4.2 (o) are given for reference.

be gained at all wavenumbers, i.e., in the steady state, the
corresponding transport term involving

TJ(k) = ℜ
∑

k−<|k|≤k+

J̃k · ˜(u×B)
∗

k
(3)

must always be positive at all wavenumbers so as to balance
the resistive losses, which are proportional toη|J̃k|

2 and thus
positive definite. Looking at Figure 1(b), this simply means
that the transfer of magnetic energy from LS to SS must be
strong enough to overcome not only the resistive losses, but
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FIG. 4.— Dependence of (a)T±
u and (b)k∗ on PrM for the DNS (solid lines) and comparison with the LES (dashed lines). In panel (b), the dotted continuation

of the solid line indicates the expected breakdown of the∼ Pr−1/4
M scaling for PrM >∼ 200. The green open symbols showkν/10k1 for comparison. The

question mark on the leftmost LES data point indicates thatk∗ is here only constrained to be> kmax for these small values of PrM .

TABLE 1
RESULTS FROM SOLARLES.

Pseudo PrM T+
u [erg cm−3 s−1] T−

u [erg cm−3s−1] k∗ [Mm−1] ǫK /ǫM ρu3
rms (〈ρ|u|3〉) [109 erg cm−2 s−1]

0.088 0 152 > kmax 0.27 11.5 (19.4)
1.77 67 179 123 0.92 9.05 (15.0)
54.6 104 154 63 4.15 5.64 (9.06)

TABLE 2
SUMMARY OF THE DNS RUNS.

Run νk1/cs ηk1/cs Re ReM PrM urms/cs brms/cs ǫK /ǫT ǫM /ǫT ǫK /ǫM kν/k1 kη/k1 res.
A 1× 10−6 1× 10−4 73000 730 0.01 0.110 0.051 0.01 0.98 0.01 1500 130 5763

B 5× 10−6 1× 10−4 15000 730 0.05 0.110 0.051 0.06 0.94 0.07 640 130 5763

C 1× 10−5 5× 10−5 6800 1400 0.20 0.102 0.056 0.13 0.87 0.15 450 220 5763

D 5× 10−5 1× 10−5 960 4800 5.00 0.072 0.051 0.53 0.47 1.15 170 540 5763

E 2× 10−4 1× 10−5 230 4700 20.00 0.070 0.057 0.60 0.40 1.51 65 560 5763

E’ 2× 10−3 1× 10−4 27 540 20.00 0.081 0.046 0.70 0.30 2.31 14 1105763

F 1× 10−3 1× 10−5 43 4300 100.00 0.064 0.061 0.65 0.35 1.87 21 560 5763

G 1× 10−3 2× 10−6 31 16000 500.00 0.047 0.041 0.81 0.19 4.35 20 1500 11523

H 4× 10−3 2× 10−6 9 19000 2000.00 0.056 0.065 0.85 0.15 5.85 8 1600 11523

NOTE. — Italics values forkν/k1 andkη/k1 are outside the reliable range.

also those associated with the driving of SS kinetic energy
through reversed dynamo action. In this sense, the dynamo
must be very efficient at LS.

To compare with the LES results, we normalize them corre-
spondingly. In convection,ρ(z)u3

rms(z) is approximately con-
stant, whereρ(z) andurms(z), here with thez argument, indi-
cate horizontally averaged values. It is therefore useful to re-
defineρ0 = 〈ρ u3

rms〉/u
3
rms with urms = 〈u3

rms(z)〉
1/3. From

the simulations of Rempel (2014, 2018) we findρ0u3
rms =

(6...12) × 1010 erg cm−2 s−1 for the normalization of the
spectral transfer rate adopted in Figure 3. The actual values
are listed in Table 1 and compared with the volume average
of ρ|u|3 over the height range of800 km ranging from700
to 1500 km beneath the solar photosphere. This volume av-
erage turns out to be larger than〈ρ u3

rms〉 by a factor of be-
tween 1.6 (for large PrM ) and 1.7 (for small PrM ). The value
is comparable with the typical values seen in Figure 2. In
Figure 4(b), we compareT±

u from the LES, normalized by

kfρ u
3
rms ≈ 20 erg cm−3 s−1, where we have used forkf the

value10Mm−1, which is whereTu(k) has a maximum; see
Figure 2(b).

Interestingly,k∗/kf is larger in the LES than in the DNS;
see Figure 4(b). This could well be a consequence of not hav-
ing estimatedkf correctly. On the other hand, to achieve better
agreement, we would need to use a value ofkf that would be
even larger than10Mm−1, which is already large compared
with the position of the maximum of the magnetic and kinetic
energy spectra of around2.5Mm−1. Another difference be-
tween LES and DNS is the complete absence of positive val-
ues ofTu(k) in the low magnetic Prandtl number LES, which
was indicated in Table 1 by writingk∗ > kmax. This could
be a general property of the LES which are very effective in
removing power at high wavenumbers, but it could also be an
artifact of the DNS being only marginally resolved at large
values of PrM . Yet another possibility is that our vertical av-
eraging over different layers may have contributed to washing
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out the short tail at high wavenumbers. In either case, the
trends with PrM between DNS and LES are clearly the same.

3. CAVEATS

It should be noted that the DNS at extreme magnetic Prandtl
numbers are subject to inaccuracies, whose extent cannot be
fully quantified as yet. At unit magnetic Prandtl number,
the maximum permissible Reynolds number would never be
much larger than the number of mesh points, or, more pre-
cisely, at least for Kolmogorov-type turbulence, the dissipa-
tion wavenumbers for kinetic and magnetic energy dissipa-
tion, kν = (ǫK/ν3)1/4 andkη = (ǫM /η3)1/4, respectively,
should not exceed the Nyquist wavenumber of the mesh,
kNy = π/δx. For ν/η ≫ 1, we havekη ≫ kν , and con-
versely forν/η ≪ 1 we havekη ≪ kν . Thus, the larger of
the two wavenumbers can severely restrict the simulation and
make it numerically unstable. The values ofkν andkη are
listed in Table 2 for Runs A–H.

In the nonlinear regime, however, the rates of energy dissi-
pation are strongly reduced for the longer of the two spectra,
because most of the energy is dissipated through the shorter
of the two spectra; see the red solid line forEM(k) in Fig-
ure 3(a) for PrM = 0.01 and the blue dashed line in Fig-
ure 3(o) for PrM = 2000. This was originally discussed in
the context of small PrM , where one also has a constraint on
the magnetic Reynolds number, which must be large enough
for dynamo action (Brandenburg 2009, 2011). The simula-
tion may then well be stable even for rather extreme magnetic
Prandtl numbers. To what extent we can trust such simula-
tions is unknown, but the similarity with the LES results of
Rempel (2014, 2018) suggests that the opposite signs of the
energy conversion spectrum and LS and SS, as well as the
change of the break pointk∗ with PrM may well be robust.
However, there can be other aspects such as the total energy
conversion rate, which may not be accurate.

4. REVERSED DYNAMO PRIOR TO SATURATION

In the kinematic phase of a dynamo, the magnetic field is
too weak to drive fluid motions. Conversely, the field cannot
resist the fluid motions. To investigate this in more detail,
we consider a simulation of a kinematic dynamo at PrM =
20. However, as explained above, in the kinematic phase it
is not safe to work with Reynolds numbers that are so large
that neitherkν nor kη exceed the Nyquist wavenumberkNy.
We have therefore computed the kinematic phase for a model
with Re= 27 and ReM = 540, wherekν = 14 or kη = 110
are well belowkNy/k1 = 256. The resulting energy spectra
are shown in Figure 5(a).

We see that even in this kinematic case, the same trend
of reversed dynamo action occurs in thatTu(k) is positive
at small scales; see Figure 5(b). This is interesting, be-
cause Rempel (2014) found negative values for his kinematic
pseudo PrM ∼ 1 simulations; see the green dashed lines in his
Figure 15(a). This suggests that in his LES, no reversed dy-
namo action is possible in the kinematic regime at PrM ∼ 1.
Thus, the exact location ofk∗/kf may also be affected by the
absolute value of the fluid Reynolds number, which is not very
big in our Run E’, where also PrM is not unity. However, as
the magnetic field in Run E’ saturates, the value ofk∗/kf de-
creases from about 5 to 2. This suggests that saturation of
the dynamo is accomplished, at least partly, by increasing the
wavenumber range where reversed dynamo action occurs. At
higher wavenumbers,30 < k/kf < 50, there is a persistent
range whereTu(k) is negative, which was not seen at larger

Reynolds numbers. It should be noted, however, that Fig-
ure 3(d) gave a hint that a sign reversal in a similar wavenum-
ber range may be possible for slightly different parameters.

The sign reversal ofTu(k) suggests that in the subrange
30 < k/kf < 50, magnetic energy is no longer fully sustained
by the forward cascade of magnetic energy and that it must
partially by supported by forward dynamo action just before
entering the resistive subrange. In the context of the kinetic
energy spectrum in hydrodynamic turbulence, there is a remi-
niscent feature known as the bottleneck, which is caused by a
sufficiently abrupt end of the inertial range (Falkovich 1994).
Whether or not such an analogy is here indeed meaningful can
hopefully be decided in future by appropriate analytic studies.

In Figures 5(c) and (d) we show the contributions toTJ(k)
from stretching and advection:TJ(k) = TStr(k) + TAdv(k).
We follow here the convention of Rempel (2014) and define

TStr(k)= ℜ
∑

k−<|k|≤k+

B̃k ·

[
˜+(B ·∇u)

∗

k
− 1

2
˜(B∇ · u)

∗

k

]
, (4)

TAdv(k)= ℜ
∑

k−<|k|≤k+

B̃k ·

[
˜−(u ·∇B)

∗

k
− 1

2
˜(B∇ · u)

∗

k

]
. (5)

An important reason for including one half of the compres-
sion term,B∇ · u, in both the stretching and advection
terms is that the energy contribution from the latter is a di-
vergence term that vanishes for periodic boundary conditions
under volume averaging, that is,

∫
TAdv(k) dk = 0. The

energy contribution from the former also contains a diver-
gence term, which vanishes for periodic boundaries, while the
remaining contribution equals the work against the Lorentz
force; see Equations (23) and (24) of Rempel (2014). There-
fore, for our DNS with triply periodic boundaries, we have∫
TStr(k) dk =

∫
Tu(k) dk.

Looking at Figures 5(c) and (d), we see thatTStr(k) is posi-
tive for allk andTAdv(k) is negative at smallk and positive at
largek. This agrees with the results of Rempel (2014), who
interpreted the negative (positive) sign ofTAdv(k) at small
(large)k as evidence for a transport of magnetic energy from
LS (where it acts as a loss) to SS (where it acts as a source).
This corresponds to the lower arrow between “magnetic LS”
and “magnetic SS” in Figure 1(b). Note that the break point,
whereTAdv(k) changes sign, does not change much as the
dynamo saturates.

5. APPLICATIONS TO STELLAR CORONAE

The reversed dynamo phenomenon is a property of large
PrM . Since PrM ∝ T 4/ρ (e.g., Brandenburg and Subra-
manian 2005), whereT is the temperature, large PrM tend
to occur in stellar coronae and in galaxies whereρ is very
small. Although dynamo action is always possible when ReM

is large, it can only occur at LS, that is, fork < k∗, because
at SS, or fork > k∗, reversed dynamo action prevails. This
implies that most of the magnetic energy will be returned into
kinetic energy and then dissipated viscously.

It is not necessarily the case that stellar coronae are dy-
namos since they are primarily driven through magnetic
stresses that build up in response to photospheric footpoint
motions, i.e., the energy is injected into the magnetic energy
reservoir and does not require a conversion from kinetic en-
ergy through a dynamo process. This difference is highlighted
in Figure 6 where we present quantities similar to those in
Figure 5 for the LES dynamo setup with PrM = 54.6 and
a corona setup from Rempel (2017) with PrM = 39. The
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FIG. 5.— (a)EK(k) (blue dashed) andEM(k) (red solid lines) showing the saturation of the dynamo at eight different times for Run E’ with PrM = 20. (b)
The correspondingTu(k), (c)TStr, and (d)TAdv with filled red (open blue) symbols denoting positive (negative) values.

corona is evaluated in the height range of12−24.8 Mm above
the photosphere. In the dynamo case,TStr is positive on al-
most all scales.TAdv is negative on large and positive on
small scales, implying a transport of the magnetic energy in-
duced byTStr to small scales, where it is dissipated most ef-
fectively. In the corona case,TAdv is positive on all scales
since the corona is driven through the Poynting flux gener-
ated by magnetoconvection in the photosphere.TAdv is bal-
anced by a mostly negativeTStr (no dynamo). The energy
is transferred to kinetic energy through aTu, which is posi-
tive on all scales, except for the smallest wavenumber. While
the dynamo case does have the requirementT−

u > T+
u , this

is not the case for the externally driven corona. The scaling
shown in Figure 4(b) is then no longer valid. Indeed, coronal
transfer functions for smaller PrM look qualitatively similar
to the high PrM case presented here, i.e., we do not find the
PrM dependence ofk∗ in this study. However, in a corona
setup with a 4 times larger domain, we found on large scales
a more extended region withTu < 0. In spite of the signif-
icant differences in the underlying transfers, Rempel (2017)
found that even for the corona, PrM determines the value of
the ratioǫK/ǫM , with dominance of viscous dissipation in
the high PrM regime. Specifically, the simulations of Rempel
(2017) that use the coronal arcade setup haveǫK/ǫM ratios
of 0.23, 0.83, and6.6 for PrM = 0.23, 2.3, and39, respec-
tively (averaged over the height range of12−24.8 Mm above
the photosphere). The transfer functions for the latter case are

presented in Figure 6.
It appears that the dependence ofǫK/ǫM on PrM is a more

fundamental property of MHD, whereas the PrM dependence
of k∗ is specific to dynamo setups that do have, in addition,
the constraintT−

u > T+
u . Furthermore, low density plas-

mas with large values of PrM are only weakly collisional, and
therefore departures from Maxwellian particle velocity distri-
butions and other kinetic effects are expected to play a role
(Schekochihin et al. 2009). Much of the kinetic energy may
therefore go directly into particle acceleration.

6. CONCLUSIONS

Our work has highlighted a qualitatively new feature of dy-
namos at large magnetic Prandtl numbers, namely the con-
version of magnetic energy back into kinetic energy at high
wavenumbers or SS. This corresponds to reversed dynamo
action. It is responsible for the dissipation of energy through
viscous heating rather than through very narrow current sheets
that are traditionally thought to be responsible for energydis-
sipation in the corona (Mikic et al. 1988; Galsgaard & Nord-
lund 1996). Current sheets do also occur in large magnetic
Prandtl number simulations, but they are not directly respon-
sible for dissipating significant amounts of energy. Instead,
viscous energy dissipation is found to be the main mechanism
for liberating energy. Viscous energy dissipation is a conse-
quence of positive Lorentz force work, which does occur in
proximity of current sheets. While the resulting plasma flows
can transport kinetic energy away from current sheets, the re-
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FIG. 6.— (a)EK(k) (blue dashed) andEM(k) (red solid lines) for a high PrM dynamo and corona setup. (b) The correspondingTu(k), (c) TStr, and (d)
TAdv with filled red (open blue) symbols denoting positive (negative) values.

sulting viscous dissipation may still happen in close proximity
of current sheets, in particular when PrM is large, and could
therefore remain indirectly connected with them.

In kinetic simulations such as those of Rincon et al. (2016)
and Zhdankin et al. (2017), reversed dynamo action may be
chiefly responsible for particle acceleration. Indeed, thesame
work term that leads to the conversion of magnetic into ki-
netic energy also characterizes first-order acceleration of non-
thermal particles by curvature drift (Beresnyak & Li 2016).It
will therefore be important to verify this aspect of particle en-
ergization in future studies using kinetic simulations. A direct
comparison with our work is hampered by the fact that the
concept of a magnetic Prandtl number does not exist in colli-
sionless plasmas. A natural question would then be, whether
T 4/ρ can be regarded as its proxy, as one would expect if
Spitzer theory were applicable.
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