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ABSTRACT

The ohmic decay of magnetic fields in the crusts of neutron stars is generally believed to be governed
by Hall drift which leads to what is known as a Hall cascade. Here we show that helical and fractionally
helical magnetic fields undergo strong inverse cascading like in magnetohydrodynamics (MHD), but
the magnetic energy decays more slowly with time t: ∝ t−2/5 instead of ∝ t−2/3 in MHD. Even for a
nonhelical magnetic field there is a certain degree of inverse cascading for sufficiently strong magnetic
fields. The inertial range scaling with wavenumber k is compatible with earlier findings for the forced
Hall cascade, i.e., proportional to k−7/3, but in the decaying cases, the subinertial range spectrum
steepens to a novel k5 slope instead of the k4 slope in MHD. The energy of the large-scale magnetic field
can increase quadratically in time through inverse cascading. For helical fields, the energy dissipation
is found to be inversely proportional to the large-scale magnetic field and proportional to the fifth
power of the root-mean square (rms) magnetic field. For neutron star conditions with an rms magnetic
field of a few times 1014 G, the large-scale magnetic field might only be 1011 G, while still producing
magnetic dissipation of 1033 erg s−1 for thousands of years, which could manifest itself through X-ray
emission. Finally, it is shown that the conclusions from local unstratified models agree rather well
with those from stratified models with boundaries.
Subject headings: MHD — stars: neutron — turbulence

1. INTRODUCTION

Over the first hundreds of years after the freezing of
the crust of a neutron star (NS), magnetic dissipation
is believed to power the X-ray emission observed in the
central compact objects of supernova remnants. At the
same time, the large-scale magnetic field, as character-
ized by its dipole field strength, is not strong enough
to explain this directly as a result of magnetic dissipa-
tion; see Gourgouliatos et al. (2016, 2018, 2020) for the
motivation. Moreover, the magnetic field would decay
too slowly to explain the observed emission. A plausible
mechanism may therefore be the “turbulent” decay of a
small-scale magnetic field in the NS’s crust (Vainshtein
et al. 2000). Such an enhanced decay with correspond-
ingly enhanced Joule dissipation could be driven by the
nonlinearity from the Hall effect (Hollerbach & Rüdiger
2002, 2004). Following Goldreich & Reisenegger (1992),
we refer to this process simply as Hall cascade, keeping
in mind that no motions are involved.
Traditionally, NS magnetic fields are explained as the

result of compressive amplification of a large-scale mag-
netic field in the NS’s progenitor. However, this expla-
nation ignores the fact that the NS is fully convective
during the first tens of seconds of its lifetime (Epstein
1979). Not only would this have destroyed a preexisting
magnetic field, but it would have produced a potentially
much stronger one from scratch (Thompson & Duncan
1993). Compared with the short time scales of such NS
convection, the rotation is usually slow. It is therefore
questionable whether this process alone could explain the
large-scale magnetic field in supernova remnants. In-
stead, it is possible that the crust of the NS is dominated
by a small-scale (turbulent) magnetic field at the time of

freezing. However, rotation may still be responsible for
causing the turbulence to be at least partially helical.
This could be crucial for moderating the speed of the
decay of the small-scale magnetic field. It could also ex-
plain the gradual amplification of a large-scale magnetic
field through inverse cascading (Cho 2011).
In the NS crust, ions are immobile, so the electric cur-

rent J is carried by the electrons alone. Their velocity is
therefore −J/ene, where e is the elementary charge and
ne is the number density of electrons (see, e.g., Cho &
Lazarian 2009). The evolution of the magnetic field B
with time t is then given by

∂B

∂t
= ∇×

(
−
J ×B

ene
− ηµ0J

)
, J =

1

µ0
∇×B, (1)

where η = 1/µ0σel is the magnetic diffusivity with µ0

being the magnetic permeability, and σel is the elec-
tric conductivity. The nonlinearity in Equation (1) re-
sembles that of the vorticity equation in hydrodynamics
(Goldreich & Reisenegger 1992), although there are also
significant differences. For example, Wareing & Holler-
bach (2010) noted that, unlike usual turbulence, where
smaller eddies are advected by larger ones, this is not
the case in the Hall cascade. It is also known that the
inertial range follows a k−7/3 magnetic energy spectrum
with wavenumber k (Biskamp et al. 1996, 1999), which is
steeper than the Kolmogorov k−5/3 kinetic energy spec-
trum.
Meanwhile, significant progress has been made in un-

derstanding the decay of hydrodynamic and magnetohy-
drodynamics (MHD) turbulence, both with and without
magnetic helicity. The work of Brandenburg & Kahni-
ashvili (2017) used the instantaneous scaling exponents
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p and q in the scalings of mean energy density E ∝ t−p

and correlation length ξ ∝ tq versus time t. They found
that, as the solution approached selfsimilar scaling, p and
q settled toward a specific point in a pq diagram. Partic-
ularly familiar cases are p = 10/7 and q = 2/7 when the
Loitsiansky integral is conserved (Batchelor & Proudman
1956), p = 6/5 and q = 2/5 when the Saffman integral
is conserved (Saffman 1967), or p = q = 2/3 when the
magnetic helicity is conserved (Biskamp & Müller 1999).
In view of these new diagnostics, it is timely to revisit
the evolution of magnetic fields in the Hall cascade.
In this paper, we study the initial value problem of

Equation (1) for small-scale (turbulent) magnetic fields.
Unlike Rheinhardt & Geppert (2002), who considered an
initially large-scale magnetic field that becomes unstable
and then leads to the production of small-scales, we fol-
low here the proposal of Goldreich & Reisenegger (1992)
and consider the case of an initially small-scale field that
continues to decay, but with the possibility of a nonva-
nishing magnetic helicity, which is a conserved quantity
also in the Hall cascade (Cho 2011).
In addition to the turbulent conversion into Joule heat,

we study the power law decay of magnetic energy and of
the peak wavenumber of the energy spectrum. We re-
strict ourselves to Cartesian geometry with coordinates
x = (x, y, z). We focus on the case of triply periodic do-
mains. This facilitates the use of Fourier spectra as our
principal means of diagnostics and is best suited to ad-
dress generic decay properties of the Hall cascade. How-
ever, to address the relevance of these idealized models to
real NS crusts, we also consider stratified cases where the
electron density and electric conductivity increase with
height in an approximately realistic way. In those cases
we use nonperiodic boundary conditions in the vertical
direction. The use of standard three-dimensional Fourier
transformation is then still possible, but as a diagnostic
means it is not ideal unless Fourier transformation is only
employed in the horizontal direction. We begin by pre-
senting our basic model and study some of its relevant
properties.

2. THE MODEL

2.1. Units and NS parameters

We consider a Hall cascade with a characteristic
wavenumber k0, which is where the spectrum peaks ini-
tially. It is related to the spherical harmonic degree ℓ,
where most of the energy resides, through k0 = ℓ/R,
where R is the NS radius. For reasons that will be given
below, we will consider time-dependent values of η for
many of our models. We therefore also define a repre-
sentative constant η0 that can be chosen to be equal to
the initial value of η. In the stratified cases, the surface
values of η and ne are denoted by η0 and ne0, respec-
tively. We present the results in nondimensional form by
introducing the following units

[x] = k−1
0 , [t] = (η0k

2
0)

−1, [B] = ene0µ0η0. (2)

This implies that the current density is measured in units
of [J ] = [B] k0/µ0. We will also be interested in the
magnetic dissipation, ǫ = ηµ0〈J

2〉. It has dimensions of
energy density per unit time, or [ǫ] = e2n2

e0µ0η
3
0k

2
0.

Using µ0 = 4π × 10−7 TmA−1, e = 1.60 × 10−19 As,
ne0 = 2.5 × 1040 m−3, and η0 = 4 × 10−8 m2 s−1 (Gour-

gouliatos et al. 2016, 2020), we have [B] = 2 × 1012 G,
where 1G = 10−4 T has been used. With ℓ = 10
(Gourgouliatos et al. 2016, 2020) and R = 104 m, we
have k0 = 10−3 m−1, so [t] = 0.8Myr. We also have
[ǫ] = 1.3 × 109 Jm−3 s−1. To obtain the total (electro-
magnetic and neutrino) luminosity L from Joule dissi-
pation, we have to multiply ǫ by the volume, which we
take to be 1012 m3 for a 1 km thick layer around the NS.
For the luminosity, we then find [L] = 1.3× 1028 erg s−1,
where we have used 1 J = 107 erg. To express our simu-
lation results in dimensionful units, we multiply by the
appropriate units given above.
Before introducing fully nondimensional units in the

next section, we point out that one could introduce a nor-
malized magnetic field as B′ = B/eneµ0, which has di-
mensions of m2 s−1, i.e., the same as the magnetic diffu-
sivity, and also the same as the velocity potential (scalar
and vector). This is a natural choice, but it is somewhat
unexpected given that in MHD one rather tends to think
of the magnetic field as a velocity. This difference is sig-
nificant in that it implies a dimensional argument for the
resulting turbulence spectrum that is different from that
in MHD. We return to this in Sect. 2.7.

2.2. The basic equation

In Equation (1), we replace B = B′eneµ0η0, to scale
out both the Hall coefficient and η0 in Equation (1); see,
e.g., Rheinhardt & Geppert (2002). This implies that
instead of varying the Hall coefficient, we study the be-
havior for different magnetic field strengths. For the rest
of this paper, we drop the primes.
To preserve the solenoidality of the magnetic field at

all times, it is convenient to solve the induction equation
with the Hall term for the magnetic vector potential A.
In the unstratified case, we solve the equation

∂A

∂t
= −J ×B − ηJ + f , J = ∇×B, (3)

where B = ∇ ×A is the magnetic field in terms of the
magnetic vector potential, and f is a stochastic forcing
function that is used in some our cases studied below.
The minus sign in Equation (3) is insignificant and could
have been scaled out as well.
In the stratified case, we choose the domain to be in

the range −d ≤ z ≤ 0, where d is the depth and z =
0 is the position of the surface. We adopt the profile
function ζ(z) = (1− z/He)

4 with ne ∝ ζ and η ∝ ζ−2/3

(Gourgouliatos et al. 2016, 2020), where He is the scale
height for the electron density and ζ = 1 at the top.
This formulation is accurate enough for the purpose of
the present investigation, although more realistic profiles
could be computed; see Chamel & Haensel (2008) for a
review on the theory of the stratification of neutron star
crusts. Instead of Equation (3), we now solve

∂A

∂t
= −

J ×B

ζ
−

ηJ

ζ2/3
, (4)

and instead of periodic boundary conditions, we use a
pseudo-vacuum condition (ẑ × B = 0) on z = 0 and a
perfect conductor condition (ẑ ×A = 0 with ẑ ·B = 0)
on z = −d.
In the unstratified, triply periodic cases, we consider

two types of initial fields: one with a broken power law
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spectrum and one that is obtained by driving the sys-
tem for a short amount of time with a monochromatic
forcing. In the stratified case, we only consider a bro-
ken power law spectrum without initial forcing, which is
why we have omitted the f term in Equation (4). These
procedures are described in the following two sections.

2.3. Broken power law initial conditions, f = 0

As in Brandenburg & Kahniashvili (2017) and Bran-
denburg et al. (2017), we construct the initial condition
for the magnetic vector potential A(x, 0) from a ran-
dom three-dimensional vector field in real space that is δ-
correlated in space. In the following, hats denote Fourier
transformation in all three directions. We transform this
field into Fourier space and construct the magnetic field
as B̂(k) = ik × Â(k). We then scale the magnetic field
by a function of k = |k| such that we obtain the desired
initial spectrum. We also apply the projection operator
Pij = δij − kikj/k

2 to make A divergence free, and add
a certain fraction σ (not to be confused with the elec-
tric conductivity σel) to make the resulting field helical.
Thus, we have

Bi(k) = B0 (Pij(k)− iσǫijlkl/k) gj(k)S(k), (5)

where gj(k) is the Fourier transform of a δ-correlated
vector field in three dimensions with Gaussian fluctua-
tions, k0 is now identified with the initial wavenumber
of the energy-carrying eddies, and S(k) determines the
spectral shape with (Brandenburg et al. 2017)

S(k) =
k
−3/2
0 (k/k0)

α/2−1

[1 + (k/k0)2(α+7/3)]1/4
. (6)

For a given value of B0, the resulting initial value of the
root-mean square (rms) magnetic field Brms, which will

be denoted by B
(0)
rms, is usually somewhat larger. For

k0/k1 = 180, for example, we find B
(0)
rms/B0 ≈ 3.2 when

σ = 0, and B
(0)
rms/B0 ≈ 4.5 when σ = 1.

This broken power law initial condition is also used
in the stratified cases. The application of nonperiodic
boundary conditions in the z direction may cause sharp
gradients in places, but this never led to any noticeable
effects.

2.4. Monochromatic initial driving, f 6= 0

In some cases, we apply in Equation (3) monochro-
matic forcing with the f term during a short initial time
interval 0 ≤ t ≤ tini to produce an initial condition for
the rest of the simulation, when f = 0. In some cases,
when we are interested in stationary turbulence, we also
keep f 6= 0 during the entire time of the simulation.
When forcing is on, we select randomly at each time
step a phase −π < ϕ ≤ π and the components of the
wavevector k from many possible discrete wavevectors
in a certain range around a given value k0. In this way,
the adopted forcing function

f(x, t) = Re{N f̃(k, t) exp[ik · x+ iϕ]} (7)

is white noise in time and consists of plane waves with
average wavenumber k0. Here, x is the position vector
and N = [J ][B](η0k

2
0δt)

1/2 is a normalization factor,

where δt is the time step. The Fourier amplitudes are

f̃i = (δij − iσǫijlkl/k) f̃
(0)
j /

√
1 + σ2, (8)

where f̃
(0)

(k) = (k× e)/[k2 − (k · e)2]1/2 is a nonhelical
forcing function. Here, e is an arbitrary unit vector that
are not aligned with k. Note that |f |2 = 1. We con-
sider both σ = 0 and σ = 1, corresponding to nonhelical
and maximally helical cases. The forcing is only enabled
during the time interval 0 ≤ t ≤ t1, where t1 is the ac-
tual starting time of the simulation. In this sense, this
forcing procedure can be considered as part of the initial
condition.

2.5. Spectral diagnostics

In the triply periodic cases, we study the evolution of
magnetic energy and magnetic helicity spectra which are
defined as (cf. Brandenburg & Nordlund 2011)

E(k) = 1
2

∑

k
−
<|k|≤k+

|B̂(k)|2, H(k) = Re
∑

k
−
<|k|≤k+

Â · B̂∗, (9)

where k± = k ± δk/2 and δk = 2π/d is the wavenumber
increment and also the smallest wavenumber

k1 ≡ δk = 2π/d (10)

in our cube of side length d. The helicity spectrum H(k)
is not to be confused with the electron scale height He.
We also compute the corresponding magnetic energy and
helicity transfer spectra (Rempel 2014)

TE(k) = −Re
∑

k
−
<|k|≤k+

Ĵk · ̂(J ×B)
∗

k
, (11)

TH(k) = −Re
∑

k
−
<|k|≤k+

B̂k · ̂(J ×B)
∗

k
. (12)

In the case when f 6= 0, there are also source terms
SE(k) and SH(k) that are defined analogously to TE(k)
and TH(k), but with J × B being replaced by f . The
magnetic energy and helicity spectra then obey

∂

∂t
E(k, t) = 2TE(k, t)− 2ηk2E(k, t) + 2SE(k, t), (13)

∂

∂t
H(k, t) = 2TH(k, t)− 2ηk2H(k, t) + 2SH(k, t). (14)

The mean magnetic energy and helicity densities are de-
fined as E = 〈B2〉/2 and H = 〈A · B〉 in terms of the
magnetic energy and helicity spectra as

∫
E(k, t) dk = E(t),

∫
H(k, t) dk = H(t). (15)

The rms magnetic field can be obtained through Brms =
(2E)1/2. We define the magnetic correlation length ξ as

ξ(t) =

∫
k−1E(k, t) dk

/∫
E(k, t) dk. (16)

We define the instantaneous exponents describing the
growth of ξ(t) and the decay of E(t) as

q(t) = d ln ξ/d ln t, p(t) = −d ln E/d ln t. (17)
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Those play important roles in describing the nature of the
turbulence in different cases (cf. Brandenburg & Kahni-
ashvili 2017). To quantifying inverse cascading, we use
a variable similar to p, but now for the large-scale mag-
netic field only. Because we expect the magnetic field
to increase at large scales, it will be defined with a plus
sign, i.e.,

pLS(t) = d ln ELS/d ln t, (18)

where ELS(t) =
∫ 3k1

k1
E(k, t) dk, which is an arbitrar-

ily chosen compromise between relying only on a single
wavenumber (just k1) and some other weighted average
that takes the entire spectrum into account, but empha-
sizes the low wavenumbers.

2.6. Invariance under rescaling

In connection with decaying hydrodynamic and MHD
turbulence studies, Olesen (1997) was the first to make
use of the invariance of the MHD equations under rescal-
ing of space and time coordinates, along with a corre-
sponding rescaling of the other dependent variables. A
similar procedure applies analogously to Equation (3),
which is invariant under the following rescaling:

t = τt′, x = τ qx′, η = τ2q−1η′, (19)

A = τ3q−1A′, B = τ2q−1B′, J = τ q−1J ′.

Inserting these variables into Equation (3), the resulting
equation in the primed quantities has the same form as
Equation (3) in its original formulation. This requires
that η ∝ tr where r = 2q − 1. For q < 1/2, r is negative
so tr becomes singular for t → 0. Therefore, we use in
such cases

η(t) = η0[max(1, t/t0)]
r, (20)

where t0 is the time below which η is assumed fixed.
It should be noted that the scaling in Equation (19) is

different from that found in MHD, where, ignoring the
density factor, [B] = [x]/[t] ∝ τ q−1. This difference is
significant and results in new relationships between p and
q. We return to this in the next section.
In view of the limited dynamical range available in nu-

merical simulations of decaying turbulence, the use of a
time-dependent η implies significant computational ad-
vantages in that a suitably defined Lundquist number is
then approximately constant over much of the duration
of the run. It allows us to identify selfsimilar scaling
properties. In particular, since both Brms and η decay in
time, we can characterize a “typical” Brms by specifying
the temporal average of their normalized ratio, namely

B̃rms ≡ 〈Brms/(eneµ0η)〉. (21)

Similarly, the magnetic dissipation can be expressed in a
similar fashion as

ǫ̃ ≡ 〈ǫ/(e2n2
eµ0η

3/ξ2)〉, (22)

where not only η decreases, but ξ increases such that the
normalization factor of ǫ decreases in a similar fashion.
Furthermore, since ξ increases with time, the averaged
ratio

η̃ ≡ 〈tη/ξ2〉 (23)

is another quantity that we quote for our runs to char-
acterize the effective value of η.

The definitions of B̃rms, ǫ̃, and η̃ remain somewhat
problematic in that they are averages over ratios that
can still show a residual trend, so the result depends on
the time interval of averaging. However, for the purpose
of this paper, we only want to provide a first orientation.
We should keep this caveat in mind when those values
are quoted below.

2.7. Dimensional argument for inertial range scaling

Biskamp et al. (1996) where the first to suggest a k−7/3

inertial range spectrum scaling based on an energy trans-
fer rate proportional to the cube of the electron veloc-
ity potential. Wareing & Hollerbach (2009) proposed
a slightly different scaling proportional to k−5/2, but
did not suggest any phenomenology for that. It is clear
that dimensional arguments cannot emerge when one ex-
presses the magnetic field in velocity units, as is usually
done in MHD (see also Cho & Lazarian 2009). A physi-
cally more meaningful normalization for the Hall cascade
is in terms of diffusivity units by noting that B/eneµ0

(where B is here in Tesla) has dimensions of m2 s−1.
In those units, E(k) has dimensions m5 s−2, and ǫ has
dimensions m4 s−3. Making the ansatz

E(k) = CHallǫ
akb (24)

with exponents a and b and the dimensionless coefficient
CHall, we find, on dimensional grounds, a = 2/3 and
b = −7/3, which is consistent with the result of Biskamp
et al. (1996), although the coefficient CHall has not previ-
ously been introduced in this form, nor have estimates for
its value been provided. Results for CHall will be given
below, separately for helical and nonhelical turbulence.
In the time-dependent case, given that E(k, t) has now

different dimensions than in MHD, we have to adapt the
corresponding arguments of Olesen (1997) and Branden-
burg & Kahniashvili (2017) for selfsimilar solutions. If
solutions are selfsimilar, the simultaneous dependence on
k and t can be captured by a function φ, which depends
only on the scaled wavenumber kξ(t), such that the peak
of the spectrum is always at kξ(t) ≈ 1. In addition, the
decrease of the amplitude of the spectrum with time is
compensated by the prefactor ξ−β with some exponent
β, so we have

E
(
kξ(t), t

)
= ξ−βφ(kξ). (25)

We must require E itself to be invariant under rescaling,

E → E′τ5q−2 ∝ ξ−βτ−βqφ(kξ), (26)

so we must require that 5q − 2 = −βq, and therefore
β = 2/q − 5. This relation is similar to that in MHD,
except that the 5 is then replaced by 3.
Let us relate this now to the decay law for energy,

which is of the form E ∝ t−p. Since

E(t) =

∫
E(k, t) dk ∝ ξ−β , (27)

and using ξ ∝ tq, we have p = (1+β)q, just like in MHD;
see Equation (6) of Brandenburg & Kahniashvili (2017).
This implies that, in the pq diagram, selfsimilar solutions
must lie on the line

p = 2(1− 2q) (selfsimilarity line), (28)
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TABLE 1
Selfsimilarity parameters for different values of β.

β q p r comment

0 2/5 = 0.40 2/5 = 0.40 −0.20 〈A ·B〉 = const
1 2/6 = 0.33 4/6 = 0.86 −0.33 〈A2

⊥
〉 = const ?

2 2/7 = 0.29 6/7 = 0.86 −0.43 Saffman-type scaling
3 2/8 = 0.25 8/8 = 1.00 −0.50
4 2/9 = 0.22 10/9 = 1.11 −0.56 Loitsiansky-type scaling

which is steeper than the corresponding line p = 2(1− q)
in MHD.
As in MHD, the relevant values of β and q depend on

the physics governing the decay. If the decay is governed
by magnetic helicity (Cho 2011), which has now dimen-
sions [x]5/[t]2, then q = 2/5 and β = 0. Whether or not
there can be other relevant quantities in the nonhelical
case analogous to the Loitsiansky integral (β = 4) or the
Saffman integral (β = 2) is unclear. In MHD, the case
β = 1 has been associated with the possibility that some
locally projected squared vector potential, A2

⊥, may be
conserved (Brandenburg et al. 2015). Some of our simu-
lations point to a possible relevance of lines with β = 2–3
in the pq diagram. In Table 1 we summarize the other
associated coefficients for several values of β.
The result E ∝ ξ−β in Equation (27) is a consequence

of integrating φ(kξ) over all kξ, which gives just a num-
ber, leaving only ξ−β outside the integral. In the calcu-
lation of ELS, however, only a fixed k range matters, so
the result depends on the slope of α of the subinertial
range and the slope β of the envelope, and therefore we
expect pLS = (α − β)q. Using β = 2/q − 5 and α = 5
(see below), this gives pLS = 10q − 2.

2.8. Numerical simulations

For our numerical simulations we use the Pencil
Code (https://github.com/pencil-code) which is a pub-
lic MHD code that is particularly well suited for sim-
ulating turbulence. In practice, both B0 and η0 were
varied, but the decisive control parameter is just a ratio
B0/eneµ0η. However, in all the tables and plots pre-
sented below, we express the results in normalized form.
The numerical resolution is 10243 meshpoints in most of
the cases presented below. A summary of all simulations
is given in Tables 2 and 3. Here, t2 denotes the end time
of the simulation. In Runs A–F, the start time is t = 0,
but our data analysis commences at t = t1. The dif-
ferent values of t2 are partly explained by the different
speeds at which ξ grows and also the different numerical
time steps, making runs with stronger magnetic field less
economic to run. We usually spend 1–7 days per run
on 1024 processors on a Cray XC40, where a time step
takes about 0.4 s. The run directories for simulations are
publicly available; see Brandenburg (2020).

3. RESULTS

3.1. Inertial range for stationary case

We begin by making contact with previous work and
verify that the expected k−7/3 inertial range scaling is
obtained in the stationary case. To simulate this, we
invoke the forcing term f during the entire time of the
simulation. We choose k0 = 2k1. The resulting spec-

tra, compensated by ǫ−2/3k7/3, are shown in Figure 1
for nonhelical and helical forcings. Note that the k−7/3

scaling is reproduced in both cases. Furthermore, there
is no (or not the usual) diffusive subrange. The lack of a
diffusive subrange was already emphasized by Wareing &
Hollerbach (2010), which they ascribed to nonlocal spec-
tral energy transfer. This lack of a diffusive subrange
is related to the fact that the highest derivative in the
linear and nonlinear terms in Equations (3) and (4) is
the same, i.e., both terms are proportional to J . Earlier
simulations (Biskamp et al. 1996, 1999; Cho & Lazar-
ian 2004) used hyperviscosity, which leads to an artifi-
cial dissipative cutoff, precluding any statements about
a naturally occurring cutoff.
By compensating the spectra with ǫ−2/3k7/3, the value

of CHall in Equation (24) can be read off from Figure 1
as the height of the plateau. We find CHall ≈ 2.7 in the
nonhelical case (Run II) and CHall ≈ 1.6 in the helical
case (Run III); see Table 3. For Run I with stronger
forcing, however, we find CHall ≈ 2.7, but this could
be because the resulting magnetic field strength is here
too large for the numerical resolution, so the value of ǫ
could be underestimated and therefore the compensated
value appears too large. Note also that TE(k) has been
scaled by η−1

0 ǫ−2/3k1/3, which allows us to see that Equa-
tion (13) is approximately obeyed. In the helical cases,
the current helicity displays a forward cascade (Bran-
denburg and Subramanian 2005). We therefore write

k2H(k, t) = Chel
Hallǫ

2/3
H k−2, which follows from dimen-

sional arguments analogous to those for E(k, t). Here,
Chel

Hall is a new coefficient and ǫH = 2η
∫
k2H(k, t) dk is

the magnetic helicity dissipation. However, our simula-
tion results for k4H(k, t) do not show a plateau, so we
refrain here from pursuing this question further.

3.2. Nonhelical decay

We now consider a nonhelical initial magnetic field.
The case where an initial magnetic field is obtained via
short-term monochromatic driving is shown in Figure 2,
where we present the resulting spectra at different times.
To see whether the magnetic helicity plays a role in our
simulations, we plot |kH(k, t)/2| together with E(k, t).
This representation is useful because of the realizability
condition, which states that

|kH(k, t)/2| ≤ E(k, t), (29)

so we see immediately at which wavenumbers the in-
equality is closest to saturation. Since H(k, t) can have
either sign, we use red (blue) symbols to indicate pos-
itive (negative) values. We see that, at early times,
|kH(k, t)/2| is much smaller than E(k, t). This changes
at later times after E(k, t) has dropped by several orders
of magnitude. It is possible that the realizability condi-
tion limits further decay of E(k, t), even though H(k, t)
does not have a definite sign.
By comparison, the case with an initial power law spec-

trum is shown in Figure 3 for weak and strong magnetic
fields. It turns out that, depending on the strength of the
initial magnetic field, there is always a certain amount of
inverse transfer, i.e., the spectral energy increases with
time at small k, so pLS > 0. This confirms earlier find-
ings by Cho & Lazarian (2009), Wareing & Hollerbach
(2009), and Cho (2011).
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TABLE 2
Parameters for the unstratified models.

Run f0 B0/[B] B
(0)
rms/[B] σ0 −r k0/k1 t1/[t] t2/[t] η̃ B̃rms ǫ̃ pLS p q comment

A 0 200 600 0 0.43 180 0.2 4600 0.13 80 2× 104 0.5 0.9 0.3 β = 3 → 2
B 0 2000 6000 0 0.43 180 0.1 500 0.024 600 3× 106 1.4 0.8 0.3 β ≈ 2
C 0 2000 6000 10−3 0.43 180 0.1 1000 0.020 800 6× 106 1.5 0.4 0.4 β = 2 → 0
C’ 0 3000 10000 10−3 0.20 180 0.1 100 0.040 300 5× 105 1.8 0.5 0.4 β = 2 → 0
D 0 2000 6000 10−2 0.43 180 0.1 50 0.012 1500 3× 107 2.5 0.4 0.4 β = 2 → 0
E 0 2000 8000 1 0.43 180 0.001 10 0.003 6000 2× 108 2.5 0.4 0.4 β = 0
F 0 200 1000 1 0 180 0.01 16 0.02 1000 6× 106 1.3 0.6 0.3 β = 0
a 4× 10−4 150 350 0 0.43 60 0.02 1800 0.09 130 7× 104 0.8 0.9 0.3 β ≈ 2
b 4× 10−3 1500 3500 0 0.43 60 0.02 75 0.015 1100 1× 107 1.3 1.0 0.3 β ≈ 2
c 3× 10−2 1500 4000 1 0.43 60 0.02 4 0.004 5000 2× 108 2.2 0.4 0.4 β = 0

The resolution is 10243 mesh points for Runs A–F and 5123 mesh points for Runs a–c.

TABLE 3
Model parameters for stationary turbulence.

Run f0 σ0 B̃rms ǫ̃rms CHall

I 4× 10−2 0 1450 15× 107 4.5
II 4× 10−3 0 300 2× 106 2.7
III 4× 10−3 1 360 7× 105 1.6

The resolution is 5123 mesh points and k0/k1 = 2 in all three cases.

Fig. 1.— Stationary Hall cascade for Run II without helicity (a)
and Run III with helicity (b). Solid (dotted) parts of the lines
denote positive (negative) values.

In Figure 4 we show the pq diagram for Run A. Note
the convergence of the point (p, q) toward the selfsimi-
larity line with p ≈ 0.9 and q ≈ 0.3. We have chosen to
plot pLS in the same plot, although it reflects different
physics not related to β. It simply allows us to obtain
a visual impression of how pLS changes. In the present

Fig. 2.— E(k, t) (solid black lines) and H(k, t) (dotted lines) with
positive (negative) values indicated by red (blue) closed (open)
symbols for the nonhelical Runs a and b. The vertical dash-dotted
lines show the positions where kξ = 1.

case, we see that pLS approaches the value 0.5.

3.3. Approach to k5 scaling

Our initial conditions usually have a k4 subinertial
range spectrum. In the cosmological context, such a
spectrum is motivated by causality requirements for
early times (Durrer & Caprini 2003). It follows from
a δ-correlated magnetic vector potential, so the shell-
integrated spectrum of A corresponds to that of white
noise and that of B corresponds to that of blue noise.
Looking at Figure 3(b), we see that the k4 spectrum

gradually evolves toward k5. This steepening is rather
remarkable and has never been seen in MHD. In MHD,
by contrast, it is known that, in the presence of magnetic
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Fig. 3.— Similarly to Figure 2, but for (a) Run A and (b) Run B
with weak and strong fields.

Fig. 4.— pq diagram showing p (red symbols) and pLS (blue sym-
bols) versus q for Runs A and B in panels (a) and (b), respectively.
Larger symbols indicate later times. The selfsimilarity line (solid)
and the pLS = 10q − 2 line (dashed) of Sect. 2.7 are also shown.

Fig. 5.— Similarly to Figure 2, but for (a) Run E and (b) Run c,
which have different initial conditions, but are both fully helical.

helicity, a shallower initial spectrum involves gradually
toward a k4 spectrum; see Figure 3(a) of Brandenburg &
Kahniashvili (2017).
Inverse transfer, on the other hand, has been seen in

nonhelical MHD with strong magnetic fields (Branden-
burg et al. 2015), but here the effect is much more pro-
nounced. This can be qualitatively explained by the non-
linearity of Equation (3), because we have seen that the
nonhelical inverse transfer is stronger for a stronger mag-
netic fields. Therefore, the peak of the magnetic energy
spectrum, where the field is stronger, is expected to move
faster toward lower wavenumbers than the lower parts
where the field is weaker. This is seen in Figure 3(a),
where the magnetic field is weaker and the spectrum re-
mains somewhat shallower than k5.

3.4. Fully helical initial fields

Next, we demonstrate the effect of finite magnetic he-
licity. It is well known that its presence constrains the
mean magnetic energy density from below, so that

E(t) ≥ |H|/2ξ(t), (30)

which is similar to the spectral realizability condition
mentioned above. Since H is nearly constant, E(t) can
only decrease if ξ(t) increases at the same rate, and there-
fore p = q.
In Figure 5 we plot E(k, t) at times separated by a

factor of 101/3 ≈ 2.15. We also plot the normalized heli-
city, kH(k, t)/2. We see that it quickly begins to evolve
underneath a flat envelope. Note that the amplitude of
the spectrum is unchanged with time, so the exponent
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Fig. 6.— Similar to Figure 4, but for Run E.

Fig. 7.— Visualization of Bz on the periphery of the computa-
tional domain for Runs A and E at a time when k0ξ(t) ≈ 24.

β in Equation (25) must be zero. The same behavior
is seen in a case where the initial spectrum is driven by
short-term forcing; see Figure 5(b). In the pq diagram,
the solution displays a drift of the point (p, q) along the
β = 0 line toward the point p = q = 2/5; see Figure 6.

Fig. 8.— (a) Magnetic energy spectrum (red) and scaled mag-
netic helicity spectrum (blue), and (b) the corresponding transfer
spectra of magnetic energy and scaled magnetic helicity for Run A.
Solid (dotted) line sections denote positive (negative) values.

Fig. 9.— Same as Figure 8, but for Run E.

In Figure 7 we show visualizations of Bz on the pe-
riphery of the computational domain for Runs A and E.
Both figures look remarkably similar, so the presence of
helicity bears no obvious imprint on such a scalar repre-
sentation of the magnetic field.
In Figures 8 and 9, we show magnetic energy and heli-

city spectra along with the corresponding transfer spec-
tra at the last time in the simulation. While in the helical
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Fig. 10.— Similarly to Figure 2, but for Runs D and C and
fractional initial magnetic helicity with (a) σ = 10−2, and (b)
σ = 10−3.

case (Run E), kH(k, t)/2 is almost equal to E(k, t) for
k values near the position of the spectral magnetic en-
ergy peak, it is about 10 times weaker in the nonhelical
case (Run A). If time were to continue to grow, the dif-
ference between the two lines would decrease further; cf.
Figure 3. The magnetic energy has a clear k5 subinertial
range spectrum and a k−3 inertial range spectrum. The
helicity spectra are a bit steeper both for kξ < 1 and
kξ > 1.

3.5. Fractional magnetic helicity

The case of fractional magnetic helicity is arguably the
most important case, because there is always some he-
licity in any rotating stratified body, and it is usually
never hundred percent. The ratio H/2ξ(t)E is between
−1 and +1 and is a measure of the degree of fractional
magnetic helicity. It turns out that, unlike the case of
usual MHD (Tevzadze et al. 2012), in the Hall cascade,
a very small amount of magnetic helicity (σ = 10−3) can
lead to nearly 100% helicity in a moderate amount of
time; see Figure 10.
The consequences of the realizability condition become

apparent when comparing energy and helicity spectra at
subsequent times in the same plot; see Figure 10. We
see that the normalized helicity spectrum quickly begins
to evolve underneath a flat envelope (with no or a very
small slope).
The spectral magnetic energy is initially much larger

than kH(k, t)/2, because the fractional helicity is small.
Rather soon, however, the magnetic energy spectrum
reaches kH(k)/2 and cannot drop any further. By that

TABLE 4
Examples illustrating the realizability condition for

Runs A–C and E at selected times.

Run tη0k20 E/E0 k0ξ 2ξE/H0 H̃/H0 |H|/H0

A 0.4 1.0000 1.9 298.49 1.30 1.00
1.7 0.3537 2.8 157.51 0.96 0.78
17 0.0513 4.8 39.24 0.54 0.52
170 0.0062 8.6 8.59 0.33 0.32
1700 0.0007 16.0 1.89 0.18 0.18
8100 0.0002 24.1 0.70 0.11 0.11

B 0.17 1.000 2.5 150.82 1.17 1.00
1.7 0.192 5.2 61.19 0.95 0.90
17 0.032 9.9 19.70 0.82 0.80
170 0.005 19.4 6.54 0.70 0.70
810 0.002 30.7 3.08 0.65 0.65

C 0.17 1.0000 2.4 7.95 1.00 1.00
1.7 0.1956 5.2 3.31 0.90 0.90
17 0.0378 10.3 1.26 0.81 0.81
170 0.0107 22.7 0.79 0.73 0.73
1700 0.0041 56.4 0.76 0.68 0.68

E 0.0017 1.0000 1.1 1.06 1.00 1.00
0.017 0.5207 2.2 1.08 1.02 1.02
0.17 0.1981 5.7 1.05 1.01 1.01
1.7 0.0785 14.1 1.04 0.98 0.98
17 0.0313 35.1 1.03 0.97 0.97

E0 and H0 denote the initial values of E and H, respectively.

Fig. 11.— Similar to Figure 4, but for Runs C (for filled symbols)
and C’ (for open symbols).

time, the fractional magnetic helicity has reached nearly
hundred percent at k ≈ ξ−1. Both at smaller and larger
k, however, the magnetic field cannot reach hundred per-
cent, presumably because of a direct cascade of current
helicity for kξ ≫ 1, as in ordinary MHD (Branden-
burg and Subramanian 2005). A current helicity cas-
cade makes k2H(k) nearly parallel to E(k), so kH(k)/2,
which is what is plotted, falls off faster than E(k). Also,
for kξ ≪ 1, the kH(k)/2 spectrum is steeper than that
of E(k), and it even changes sign. Looking at Figure 9,
however, we see that the difference between kH(k)/2 and
E(k) is much less for kξ ≪ 1 than for kξ ≫ 1, so the
steeper slope of kH(k)/2 for kξ ≪ 1 may not be signifi-
cant.
To illustrate the effect of the realizability condition, we

recall that, dividing Equation (29) by k and integrating
over k, we obtain

2ξE ≡ 2

∫
k−1E(k, t) dk ≥

∫
|H(k, t)| dk ≥ |H|. (31)
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In Table 4 we list the four terms for Runs A–C and E at
some selected times, where we have denoted the penul-
timate term by H̃ ≡

∫
|H(k, t)| dk. For the nonhelical

runs (A and B), we find H̃ > |H| at early times, but even

Run C with fractional magnetic helicity obeys H̃ = |H| at
early times. At late times, the fractional helicity, H/2ξE ,
is still only 21% for Run B and 16% for Run A.
The pq diagram in Figure 11 confirms that the point

(p, q) evolves along the selfsimilarity line from β = 2
toward β = 0. There is actually still a small separation
between the red filled symbols and the self similarity line.
In this connection, we recall that we used in all of our
runs the value r = 0.43, although for β → 0, the value
r = 0.20 would have been more appropriate. This is
indeed the case; see the open symbols in Figure 11, for
are done for Run C’.

3.6. Dissipation

An important outcome of our models is the resulting
Joule dissipation. A certain fraction of this energy supply
is believed to power the observed X-ray emission of the
central compact objects of supernova remnants (Gour-
gouliatos et al. 2016, 2018, 2020). However, there is also
neutrino emission from the crust (Viganò et al. 2013).
Therefore, there is no direct equivalence between Joule
dissipation and the final X-ray emission, which depends
on a number of factors, including the resulting thermal
stratification of the crust; see Pons & Viganò (2019) for
a review. With this caveat in mind, we must consider
the “total” luminosities quoted below as upper limits for
the X-ray luminosity.
We have computed the Joule dissipation ǫ from our

models as a function of time. As Brms decreases, ǫ also
decreases. It is useful to plot ǫ versus Brms. The result
is shown in Figure 12 for Runs A, and C–F. In panel
(a), we clearly see that ǫ is a very steep function of
Brms. At the same time as Brms decreases, the large-
scale field increases. This is shown in panel (b) where we
plot BLS = (2ELS)1/2 versus Brms. These dependencies
are also very steep—inversely proportional to be B5

rms.
Since ǫ ∝ B5

rms and BLS ∝ B−5
rms, we have ǫ ∝ B−1

LS ; see
Figure 12(c).
Our work has shown that the magnetic energy and

correlation length depend in power law form on time with
E ∝ t−p and ξ ∝ tq, respectively, where p = 6/7 and q =
2/7 in the nonhelical case with β = 2 and p = q = 2/5
in the helical case with β = 0; see Table 1. Since Joule
dissipation is given by ηµ0J

2, we expect ǫ ∝ ηEξ−2, and
therefore ǫ ∝ t−(r+p+2q) ∝ Bs

rms, with s = 2(r+p+2q)/p.
Thus, we have s = 7/3 ≈ 2.33 in the nonhelical case with
β = 2 and s = 5 in the helical case with p = q = 2/5.
Most of our results show a dependence compatible with

ǫ ∝ B5
rms. Run A shows initially a shallower scaling close

to B3
rms (which would be expected for β = 1), although

the theoretically expected scaling would be shallower.
The scaling of the red line in Figure 12 does perhaps
best describe the values proposed by Gourgouliatos et
al. (2016, 2020) for their global model of NS crusts with
ℓ = 10. The gray lines in Figure 12 highlight a particu-
lar example with a total luminosity Ltot = 1033 erg s−1,
which corresponds to Brms ≈ 6 × 1014 G. Thus, we can

Fig. 12.— (a) Magnetic dissipation and (b) large-scale magnetic
field versus Brms for Runs A (green), C (blue), D (red), E (orange),
and F (black). The plus signs denotes different times increasing
from right to left, separated by a factor 2.15. The straight lines

in (a) and (b) show the B5
rms and B−5

rms scalings, respectively, with
dotted sections denoting departures from the plus symbols. In (a),
we also show the B3

rms scaling for the early phase of Run A.

write

Ltot = 1033
(

Brms

6× 1014 G

)5

erg s−1 (red line). (32)

Figure 12(b) shows that then BLS ≈ 3× 1011 G.
We also see from Figure 12(b) that nonhelical mag-

netic fields do not produce significant large-scale mag-
netic fields (see the green curve). However, because those
fields decay much more rapidly, they also dissipate more
energy for a given field strength. If such a scenario was
to be viable, one would need to have a preexisting large-
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TABLE 5
Parameters for the stratified models.

Run σ0 φ0(k1z = −6) φ0(k1z = −3) φ0(k1z = −1)

Bz 0 0.0007 — 0.0070
Cz 0.001 0.006 0.012 0.043
Dz 0.01 0.06 0.12 0.30
Ez 1 — — —
CZ 0.001 0.0003 0.0033 0.013

z ξ0 → 0.003 0.005 0.009
Z ξ0 → 0.001 0.002 0.005

Dashes indicate that a fit would be uncertain. The resolution is 10243.

Fig. 13.— (a) ζ (left axis) and ne (right axis), and (b) ζ−2/3

(left axis) and η (right axis) versus k1z (lower axes) and z (upper
axes) for k1He = 2.9 (solid lines) and k1He = 0.7 (dashed lines).

scale magnetic field. This could lead to more rapid mag-
netic field decay (Brandenburg et al. 2020) and would
need to be studied more carefully.
As already emphasized by Gourgouliatos et al. (2020),

only the large-scale magnetic field of NSs can be obser-
vationally inferred from the spin-down of pulsars. There-
fore, we show in Figure 12(c) ǫ versus BLS. We see that
ǫ now decreases with increasing BLS. The slope is −1
for fractionally helical magnetic fields at late times, as
expected from the aforementioned quintic scalings of ǫ
and BLS with Brms.

3.7. Dissipation in the stratified case

Real NS crusts are strongly stratified with ne and η
varying over several orders of magnitude. The radial
variation of ne was already considered by Vainshtein et
al. (2000) and Hollerbach & Rüdiger (2004), but they
assumed η to be constant. Approximately realistic pro-
files for both ne and η were adopted in the works of
Pons & Geppert (2007) and Viganò et al. (2013) in
two dimensions and Gourgouliatos et al. (2016, 2020)
in three dimensions. Here we adopt the prescription of

Gourgouliatos et al. (2016, 2020), who used the value
He/R = 0.0463 for the scale height. With d/R = 0.1,
this corresponds to k1He = (2π/d)He ≈ 2.9.
The resulting profiles of ne ∝ ζ(z) and η ∝ ζ−2/3 are

shown in Figure 13. For comparison with a stronger and
even more realistic stratification, we also include a case
with k1He = 0.7. We see that at the surface, we have the
values ne = 2.5×1034 cm−3 and η = 4×10−4 cm2 s−1 that
were quoted in Sect. 2.1 in SI units. These values were
also used by Gourgouliatos et al. (2016, 2020), where the
surface conductivity was σel = 1.8× 1023 s−1. This value
is similar to that of Pons & Geppert (2007), who give
surface values for σel of around 1023 s−1 for temperatures
of slightly below 108 K, and somewhat larger values for
smaller temperatures. This conductivity corresponds to
η = c2/4πσel = 7 × 10−4 cm2 s−1 in cgs units, where
c = 3× 1010 cm s−1 is the speed of light. In the strongly
stratified case with k1He = 0.7, ne and η vary between
top and bottom of the domain by four and nearly three
orders of magnitude, respectively. The latter variation is
similar to that in Figure 1 of Pons & Geppert (2007).
We then solve Equation (4) with nonperiodic boundary

conditions in the z direction. We have calculated models
for different values of the initial helicity parameter σ0;
see Table 5 for Runs Bz–Ez, which have the same values
of σ0 as the unstratified counterparts, Runs B–E. We also
list Run CZ, which has k1He = 0.7 and σ = 0.001 (like
Runs C and Cz). As before, we use k0/k1 = 180 in all
stratified cases.
In Figure 14 we show Bz for Runs Bz and Ez at times

η0k
2
0t = 80 and 3.5, respectively, which is when the cor-

relation lengths are comparable in the two runs. We see
that the magnetic structures have larger length scales
in the upper layers. This is primarily a consequence of
the larger magnetic diffusivity there. In the fully helical
case (Run Ez), the formation of larger length scales is
accelerated by the presence of magnetic helicity.
To determine the fractional magnetic helicity as a func-

tion of z and t, we now employ a method that does not
require Fourier transformation. The relevant information
is contained in the ratio,

A ·B/B2 ≡ φξ, (33)

where φ(z, t) is the fractional magnetic helicity, ξ(z, t) is
a suitability defined correlation length, and overbars de-
note xy averaging. Instead of using Equation (16), which
requires Fourier transformation, we compute ξ from the
ratio

ξ2 = A ·B/J ·B. (34)

It is then convenient to determine φ from the quantity

φ2 = A ·B J ·B/(B2)2. (35)

For very small fractional helicities, however, φ2 can oc-
casionally become negative in some places. In all other
cases, however, it is possible to compute φ(z, t).
In Figure 15 we plot the z dependence of ǫ, Brms, and

φ at different times. It turns out that ǫ is largest in
the deeper parts. This is mainly a consequence of Brms

having decayed most rapidly near the surface, where η is
large. We also see from Figure 15(c) that φ grows fastest
in the upper layers.
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Fig. 14.— Similar to Figure 7, but for Runs Bz and Ez.

To study the growth of φ in more detail, we compare in
Figure 16 the time dependence for Runs Bz–Dz and CZ
for three values of z. It turns out that, in an intermediate
range, φ grows approximately algebraically like

φ(z, t) = φ0(z) (t/t0)
2/3. (36)

where t0 was defined in Equation (20). The values of
φ0(z) are listed in Table 5 for k1z = −6, −3, and −1.
The magnetic helicity production in the initially nonheli-
cal Run B is a result of random fluctuations and could
equally well have been of the opposite sign. In that
case, φ2 would normally still be positive, because the
sign of magnetic helicity affects the signs of both A ·B
and J ·B. The square root of their ratio gives ξ and
is shown in the lower panel of Figure 16. It also obeys
power law scaling of the form

ξ(z, t) = ξ0(z) (t/t0)
1/3, (37)

where the ξ0(z) are similar for all three runs, suggesting
that their values are approximately independent of the
magnetic helicity for fixed stratification. The ξ0(z) in-
crease with z; see the last two lines of Table 5 for models

Fig. 15.— (a) Dissipation, (b) rms magnetic field, and (c) frac-
tional magnetic helicity versus height for Run Dz for increasing
times, as indicated by the arrows, in steps of 101/2 ≈ 3.2 until
η0k20t = 140.

of series z and Z with k1He = 2.9 and 0.7, respectively.
An important question is how the dissipation prop-

erties in the cases with stratification compare with the
unstratified cases. We therefore show again a parametric
representation of ǫ versus Brms, but now for each hori-
zontal layer separately. The result is shown in Figure 17.
Interestingly, the different curves tend to collapse on top
of each other. Furthermore, we obtain a similar ǫ ∝ B5

rms
scaling as in the unstratified case, but it is now along two
branches that are slightly offset relative to each other.
The upper branch is somewhat shallower (ǫ ∝ B3

rms).
Nevertheless, the values of ǫ and Brms are remarkably
similar to those in the unstratified cases, and are again
compatible with L ≈ 1033 erg s−1 for a Brms of a few
times 1014 G. This can be seen by comparing with the
gray dashed-dotted lines in Figure 12, which have also
been reproduced in Figure 17 at the same position.
The relatively good agreement between Figure 12(a)

and Figure 17 provides some justification for using the
unstratified models as a meaningful local representation
of the Hall cascade in NS crusts. The reason why unstrat-
ified models were previously found to yield a poor repre-
sentation of the case with stratification (Pons & Geppert
2010) is probably related to the fact that those authors
studied a large-scale nonturbulent magnetic field, which
is more sensitive to boundary conditions.
The sudden drop in ǫ for intermediate Brms is proba-
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Fig. 16.— (a) φ(t) for Runs Bz (blue), Cz (red), Dz (back),
and CZ (green) at k1z = −6, −3, and −1, as indicated by the
increasing line thickness. Dotted lines fragments indicate |φ| when
φ is negative. The dash-dotted lines indicate the fits with the φ0(z)
given in Table 5. (b) ξ(t) for k1z = −1 for Runs Bz–Dz and CZ.

Fig. 17.— Similar to Figure 12(a), but for Run Cz (solid lines)
and Run CZ (dashed lines), showing the dependencies separately
for each horizontal layer, except for Run CZ, where only the surface
layers with comparable values of ζ are plotted. Yellow (blue) shades
indicate locations near the bottom (top) of the domain.

bly caused by the gradual transition from a fractionally
helical to a fully helical magnetic field, which occurs here
not only as a function of time, but also as a function of
z. Near the surface, as already shown in Figure 16, this
transition happens earlier than in the deeper parts.
The work of Gourgouliatos et al. (2016, 2020) only used

the moderately strong stratification, where k1He = 2.9.
In addition to possible numerical problems, there is
always the general difficulty for stronger stratification
(smaller values of k1He) that the characteristic time
scales in the problem become very different between top
and bottom of the domain. The time step is limited
mainly by the Hall nonlinearity in the surface layers, but
the evolution in the deeper layers becomes very slow, so

we need a large number of time steps to describe the full
time evolution.

4. CONCLUSIONS

The present work has confirmed that the Hall cas-
cade can liberate a significant amount of dissipative en-
ergy through Joule heating. The resulting heating is
proportional to B5

rms for helical and fractionally heli-
cal magnetic fields. The magnetic fields undergo strong
inverse cascading with a temporal decay significantly
slower (∝ t−2/5) than in MHD (∝ t−2/3). However, even
in the nonhelical cases, there can be inverse cascading,
but only for strong magnetic fields.
We confirmed the k−7/3 inertial range spectrum both

in forced and decaying cases. The nondimensional co-
efficient CHall in this relation has been determined to
be approximately 1.6 in the helical case and 2.7 in the
nonhelical case. However, this was not a major focus of
attention and more accurate determinations should be
performed using dedicated higher resolution simulations.
The current helicity cascade, expected to be proportional
to k−2, is also worth reconsidering. Furthermore, in the
decaying case, we find a steeper subinertial range spec-
trum proportional to k5. It develops independently of
the subinertial range slope of the initial field.
Most of our models predict a rather sensitive depen-

dence of the heating rate on the magnetic field strength
proportional to the fifth power of the rms value. It would
be useful to confirm the generality of this scaling using
global models such as those used by Gourgouliatos et al.
(2016, 2018, 2020). These steep dependencies can po-
tentially be employed as sensitive diagnostic tools that
may give us information about the dominant physical
processes leading to the X-ray emission for the central
compact objects of supernova remnants of different ages.
Before doing this, however, it would be necessary to es-
tablish the detailed connection between Joule dissipation
and X-ray luminosity and to determine the contribution
from neutrino emission.
The inverse cascade in the helical case has been seen

before (Cho 2011), but it was analyzed only at a qual-
itative level. We have quantified this here by plotting
the exponent pLS as a function of q, which we find to
be compatible with a linear relation. The existence of
such a relation was not anticipated. However, our phe-
nomenological scaling relation tends to predict slightly
smaller values of pLS in some cases. This could be re-
lated to finite size effects that lead to a slightly shallower
spectrum at small k and thereby to larger ELS, which
could explain the faster growth. How significant this de-
parture is remains unclear, so this too would be worth
reconsidering.
The mechanism for inverse cascading in the nonhelical

case is not very clear either. It is possible that magnetic
helicity fluctuations could be responsible for this. The
usual fractional magnetic helicity is clearly too small,
but even the value based on the modulus of the mag-
netic helicity spectrum, H̃ =

∫
|H(k, t)| dk, is small and

is equal to |H| at late times; see Table 4. Therefore, this
explanation might not be fully satisfactory.
At late times, our simulations display a self-similar de-

cay. We have seen that the correlation length ξ increases
by a factor of around a hundred by the end of our simula-
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tions; see Figure 10(b). For later times, one would need
to allow for the finite extent of the global spherical shell
geometry of NS crusts, as was already done by Gour-
gouliatos et al. (2016, 2018, 2020). They considered the
peak of the spectral magnetic energy to be at a spherical
harmonic degree of around ℓ = 10–20, which corresponds
to “effective” values of k0 that are already comparable to
k1, the smallest vertical wavenumber in our domain. We
must therefore regard our local simulations as the early
stages of a selfsimilar evolution, after which the finite
shell geometry is best described by global models with
ℓ ∼ R/ξ.
Most of our attention went into the study of local

unstratified models with periodic boundary conditions.
However, it turns out that much of the physics of the
unstratified models can be recovered in the stratified
ones with nonperiodic boundaries at the appropriate
depth. It will be interesting to see whether this simi-
larity between stratified and unstratified models persists
also when studying models where the local temperature
evolution is taken into account. Technically, this should
well be feasible with the Pencil Code. In this con-
nection, we remind the reader that both the code and
the input files are freely available. It would also be use-
ful to couple the present studies to models of the very
early phases of NSs. One would then be able to relax

the assumption of an initial magnetic field that was here
assumed to have the same rms value at all heights. It
should be emphasized, however, that the earlier onset
of growth of magnetic helicity in the upper layers of our
models is not connected with our choice of the initial con-
dition and is just a consequence of η being larger near
the surface.
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