
August 18, 2020, Revision: 1.12

Primordial gravitational waves (GWs), observ-
able as stochastic background with the planned
Laser Interferometer Space Antenna (LISA), could
be produced by magnetic fields generated at the
time of the electroweak phase transition. There
is the possibility that they might be helical [1, 2].
Such fields would have decayed more slowly than
nonhelical ones, and would thus have a chance to
survive until the present time [3] to explain the
lower limits on the magnetic field strength inferred
through the non-observation of secondary cascade
photons with FERMI [4]. Such fields could be
generated during the electroweak phase transition
and would undergo forward and inverse cascading
during the entire radiation era until recombination
[5]. The inverse cascade manifests itself through a
shift in the peak of the magnetic energy spectrum
[6, 7]. The forward cascade, on the other hand,
would manifest itself through the development of
a steeper slope of the normalized magnetic helicity
[8], so that the magnetic field is no longer fully heli-
cal at high wavenumbers, if the initial magnetic field
was fully helical at all wavenumbers. This change
would become evident if the development of the new
slope takes a sufficient amount of time. Details of
this process, including its duration, could manifest
themselves in the circular polarization of the result-
ing GW signal. However, the magnetic field will
gradually decay and its ability to contribute to the
resulting GW production diminishes. This can hap-
pen rather rapidly. Therefore, whether or not it is
detectable in the GW signal depends on just how
rapidly the magnetic field starts to decay.

Here, we use direct numerical simulations of pri-
mordial magnetic fields together with the resulting
GW production to investigate the effect of the time-
dependence of the source on the GW signal. We use
the Pencil Code [9] for these calculations, which
is well suited for primordial MHD simulations and
which comes with a GW solver readily available for
our purposes [10]. All simulations have a resolution
of 10243 meshpoints. Earlier analytic work showed
that the degree of circular polarization changes with
wave number if the spectral slopes of the symmetric

and antisymmetric parts of the magnetic correlation
tensor are different from each other, but it stays in-
dependent of k if the spectra have the same slope
[11, 12]. Those analytic calculations have made
use of certain approximations, but recent numerical
work [13] showed that the predictions from the an-
alytical model regarding the degree of polarization
are surprisingly well reproduced by the numerical
simulations.
As we have already mentioned, the decay of the

magnetic field causes a decline of the turbulent driv-
ing of GWs. This decline is further enhanced by
the expansion of the universe, although this effect
is small if the decay time of the turbulence is short
compared with the Hubble time. Mathematically,
this decline in the GW source is caused by an in-
crease of the scale factor a that enters in the denom-
inator of the stress term in the GW equation. Using
conformal time, t =

∫

dtphys/a(tphys), and comov-
ing strain, h = ahphys, where tphys and hphys are
physical time and strain, the linearized GW equa-
tion reads

(

∂2
t −∇2

)

hλ = 6Tλ/t (for t ≥ 1), (1)

where λ = + or × denote the plus or cross polar-
ization modes, which are the two independent ten-
sor modes compatible with the Einstein equations,
and the Tλ are the sums of Reynolds and Maxwell
stresses, projected onto the λ = + or × modes.
For a fully helical magnetic field, the magnetic

energy, and thus also the magnetic stress decay like
Tλ ∼ (t− 1)−2/3; see [14] for a corresponding result
in ordinary MHD, and Refs. [3, 15] for applications
in the cosmological context. For t ≪ 2, this effect is
clearly more important than that of the cosmolog-
ical expansion, which will nevertheless be retained
in our simulations.
The authors of Ref. [16] considered two types

of simulations; (i) one where the initial turbulence
spectrum is given and (ii) one where the magnetic
energy spectrum is driven by the injection of an
electromotive force. Their direct numerical simula-
tions showed that when the initial turbulence spec-
trum is given, the degree of circular polarization
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is independent of the wave number for k > 2k∗,
where k∗ is the wave number of the energy-carrying
scale of the turbulence, i.e., where the magnetic en-
ergy spectrum peaks. On the other hand, when the
magnetic energy spectrum is driven, the degree of
circular polarization declines to zero with increas-
ing value of k. Based on the model of Ref. [11], this
can be understood as a consequence of the fact that
with a given initial spectrum, the magnetic field is
fully helical at all wave numbers, and only at late
times a decline of the degree of circular polarization
of GW could be expected when the current helicity
cascade of the magnetic field gets established and
kHM(k) becomes steeper than EM(k) for k > 2k∗.
To test this idea in detail, we must consider different
time dependencies of the magnetic field. This can-
not be done in a fully selfconsistent model, where
the decay law is always fixed.
To model a slow-down in the decay, we could

“modify” the MHD equations. For example, if the
induction equation is dominated by the Hall effect,
the magnetic energy decay is slower and becomes
proportional to ∼ t−2/5. However, to have a more
controlled experiment, we now consider solutions
of the GW equation where the source term on the
right-hand side is scaled by a time-dependent fac-
tor, F (t), i.e.,

Tλ(x, t) → F (t)Tλ(x, t). (2)

We consider two possibilities. In models of type A,
we compensate or even overcompensate for the de-
cay of the magnetic field. Note, however, that we
preserve the natural temporal fluctuations and the
intrinsic changes of the spectra, including changes
in the location of the peak due to the forward and
inverse cascades, respectively. To an excellent ap-
proximation, the decay of a helical field can be mod-
eled as

EM = EM0/[1 + (t− 1)/τ ]2/3. (3)

For the fully helical simulation of Ref. [16], which
is the fiducial model for the experiments presented
here, we find EM0 = 0.0031 and τ = 0.053. In that
case, we choose F (t) = [1 + (t − 1)/τ ]n and vary
the value of n. For n = 2/3, the overall amplitude
of the effective stress stays constant, while for n >
2/3, the decay is overcompensated, so we expect an
accelerated growth of the GW energy.
As we will see below, when n = 2/3, the effect on

the growth of GW energy is very weak, because the
resulting GW amplitude depends decisively on the

Figure 1: Normalized GW and magnetic energies
versus time for models of type A (red) and B (blue).
The black solid and dashed lines refer to GW and
magnetic energies for F (t) = 1.

temporal variation of the source at later times. To
boost the effective temporal frequency of the signal,
we also consider a model where we give regular in-
stantaneous “kicks” to the amplitude of the stress.
This corresponds to a staircase profile for the scal-
ing factor F (t) in front of the stress term, i.e.,

F (t) = 1 + ǫ
∞
∑

m=1

mθ(t−mτ), (4)

where ǫ determines the slope of the increase of F (t),
τ is the interval of kicks (here τ = 0.05), and θ(t) =
1 for t > 0 and 0 otherwise is the Heaviside step
function.
In Figure 1, we present results for the energy evo-

lution for different values of n for models of type A
and for different combinations of ǫ and τ for mod-
els of type B. In all cases, there is a statistically
monotonous increase of EGW. We emphasize that
the GW energies obtained for models with F (t) ≫ 1
reach obviously unrealistically large values, which is
necessary to show that the magnetic influence very
quickly becomes negligible in all realistic situations.
Next, we consider for different times magnetic

and GW energy spectra, EM(k) and EGW(k),
respectively. They are normalized such that
∫

EM(k) dk = EM and
∫

EGW(k) dk = EGW. Oc-
casionally, we also use the GW energy per loga-
rithmic wavenumber interval, ΩGW(k) ≡ kEGW(k).
We see that at early times, the spectra of 2EM(k)
and kHM(k) coincide, as required by the realizabil-
ity condition for a fully helical magnetic field [17].
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Figure 2: Magnetic energy spectra (upper panel)
and fractional magnetic helicity spectra (lower
panel) at t = 1.01, 1.1, 1.2, ..., 1.6, marked by col-
ors ranging from red to green and blue, for the fully
helical run of Ref. [16].

Figure 3: GW energy (upper panel) and degree of
polarization (lower panel) at the same times as in
Figure 2 for a model of type A with n = 2.

At late times, however, the current helicity, whose
spectrum is proportional to k2HM(k), displays a
forward cascade with a slope proportional to k−5/3,
which implies a k−8/3 spectrum for EGW(k); see
Ref. [13].
For small values of n, the GW spectrum dis-

plays at all times the same spectrum for ΩGW(k) ≡
kEGW(k) and the antisymmetric part, ΞGW(k); see

Figure 4: Same as Figure 3, but with n = 5.

Figure 5: Same as Figure 3, but for a model of
type B with ǫ = 1 and τ = 0.01.

Ref. [18] for details. The reason is that at late
times, the magnetic energy is so weak that it can-
not change the GW spectrum noticeably. To get an
idea of how small the effect is in comparison with
the much larger effect of fluctuations, we now in-
crease the value of n beyond n = 2/3. For n = 1,
EGW grows by only 12%; so the results for n = 1
and n = 2/3 can hardly be distinguished from each
other; see the lowermost red and black lines in Fig-
ure 1. For n = 2, for example, the value of EGW(t)
grows by a factor of ≈ 30 compared to the standard
case, but EGW(k, t) shows growth only at k > 2k∗.
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Consequently, the dependence of polarization also
only changes at small k; see Figure 3. For n = 5,
on the other hand, we see a clear growth at all k,
and now P(k) also declines rapidly at high k; see
Figure 4. Here, the GW energy grows obviously to
unrealistically large values.
Finally, we consider models of type B. It turns

out that now EGW(k, t) increases preferentially only
at discrete wave numbers, k = jk∗, with integers
j ≥ 1. The resulting polarization, PGW(k) increases
more smoothly over the full range of wave numbers.
Our work has illuminated some of the more sub-

tle aspects of turbulent GW production by time-
dependent magnetic fields. Here, we have only con-
sidered the case of a given initial magnetic energy
spectrum. This allowed us to produce a magnetic
field that is fully helical at all wave numbers. In the
other case of a driven initial spectrum, considered
in Ref. [16], the fractional magnetic helicity declines
to zero at higher wave numbers. This also happens
in our present models with a given initial spectrum,
but at those later times, the temporal fluctuations
associated with the turbulence are too weak to have
a noticeable effect. To illustrate this more clearly,
we have artificially modified the time dependence of
the stress by applying an F (t) function. Although
the details between models of type A and B are dif-
ferent, they all have in common that the degree of
circular polarization at k ≫ 2k∗ now decreases with
time. However, our work also shows that, if the
initial magnetic spectrum can indeed be assumed
given as fully helical at all wave numbers, the de-
gree of circular polarization at high wave numbers
would indeed be close to 100%.
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