Calculation of E and B Polarization

Sayan Mandal

March 22, 2018

1. Our Calculations

We take an electric field \mathbf{E} and a magnetic field \mathbf{B}, and construct the combined field,

$$
\begin{equation*}
\mathbf{F}=\alpha \mathbf{E}+\beta \mathbf{B} \tag{1}
\end{equation*}
$$

Now, we create the quantity,

$$
\begin{equation*}
P(x, y)=\left(F_{x}+i F_{y}\right)^{2} \tag{2}
\end{equation*}
$$

In Fourier space, we have,

$$
\begin{equation*}
\tilde{\mathcal{E}}(k)+i \tilde{\mathcal{B}}(k)=\tilde{P}(k) e^{-2 i \psi_{k}}, \quad \psi_{k}=\tan ^{-1} \frac{k_{y}}{k_{x}} \tag{3}
\end{equation*}
$$

Going back to physical space, we get the E and B polarizations.

1.1. \quad A Single Function f

We take a single function $f(x, y)$ and get the fields as,

$$
\begin{equation*}
E_{i}=\partial_{i} f, \quad B_{i}=\epsilon_{i j} \partial_{j} f \tag{4}
\end{equation*}
$$

This gives us the following real and imaginary parts of $P(x, y)$,

$$
\begin{align*}
& \operatorname{Re}[P(x, y)]=\left(\alpha^{2}-\beta^{2}\right)\left[\left(\partial_{x} f\right)^{2}-\left(\partial_{y} f\right)^{2}\right]+4 \alpha \beta\left[\left(\partial_{x} f\right)\left(\partial_{y} f\right)\right] \\
& \operatorname{Im}[P(x, y)]=2\left[\left(\alpha^{2}-\beta^{2}\right)\left(\partial_{x} f\right)\left(\partial_{y} f\right)+\alpha \beta\left\{\left(\partial_{y} f\right)^{2}-\left(\partial_{x} f\right)^{2}\right\}\right] \tag{5}
\end{align*}
$$

We can see that the cases $(\alpha, \beta)=(1,0)$ and $(\alpha, \beta)=(0,1)$ differ only by a sign, as far as $P(x, y)$ is concerned. And so, with the choice,

$$
\begin{equation*}
f(x, y)=\cos x \cos y \tag{6}
\end{equation*}
$$

we get the polarization patterns in Fig.1.

Figure 1: E and B Polarization when \mathbf{E} and \mathbf{B} are both derived from a single function $f(x, y)$.

1.2. Two Functions f and g

If have two functions $f(x, y)$ and $g(x, y)$, such that,

$$
\begin{equation*}
E_{i}=\partial_{i} f, \quad B_{i}=\epsilon_{i j} \partial_{j} g \tag{7}
\end{equation*}
$$

we get,

$$
\begin{align*}
& \operatorname{Re}[P(x, y)]=\alpha^{2}\left[\left(\partial_{x} f\right)^{2}-\left(\partial_{y} f\right)^{2}\right]-\beta^{2}\left[\left(\partial_{x} g\right)^{2}-\left(\partial_{y} g\right)^{2}\right]+2 \alpha \beta\left[\left(\partial_{x} f\right)\left(\partial_{y} g\right)+\left(\partial_{x} g\right)\left(\partial_{y} f\right)\right] \\
& \operatorname{Im}[P(x, y)]=2\left[\alpha^{2}\left(\partial_{x} f\right)\left(\partial_{y} f\right)-\beta^{2}\left(\partial_{x} g\right)\left(\partial_{y} g\right)+\alpha \beta\left\{\left(\partial_{y} f\right)\left(\partial_{y} g\right)-\left(\partial_{x} f\right)\left(\partial_{x} g\right)\right\}\right] \tag{8}
\end{align*}
$$

In this case, with,

$$
\begin{equation*}
f(x, y)=\cos x \cos y, \quad g(x, y)=\sin x \sin y \tag{9}
\end{equation*}
$$

we get the polarization patterns in Fig,2,
The bottom row of Fig 2 is a bit strange. However, if we skew the ratioo a bit $(\alpha=1, \beta=4)$, we get something like Fig. 3 .

2. Formulae in Durrer Book

Let us start with eq.(1) where the fields are given either by eq. (7) (and by eq. (4)). We now construct the tensor,

$$
\begin{align*}
P_{i j}=F_{i} F_{j} & =\left(\alpha E_{i}+\beta B_{i}\right)\left(\alpha E_{j}+\beta B_{j}\right) \tag{10}\\
& =\alpha^{2} E_{i} E_{j}+\alpha \beta\left(E_{i} B_{j}+B_{i} E_{j}\right)+\beta^{2} B_{i} B_{j}
\end{align*}
$$

Figure 2: E and B Polarization when \mathbf{E} and \mathbf{B} are both derived from respectively from $f(x, y)$ and $g(x, y)$.

Figure 3: E and B Polarization when \mathbf{E} and \mathbf{B} are both derived from respectively from $f(x, y)$ and $g(x, y)$, and $\alpha=1, \beta=4$.

We now plan to use eq. (5.83) in Durrer's book to calculate \mathcal{E} and $\mathcal{B}(\tilde{\mathcal{E}}$ and $\tilde{\mathcal{B}}$ in the book.)

$$
\begin{aligned}
\mathcal{E}= & 2 \operatorname{div} \operatorname{div} P=2 \partial_{i} \partial_{j} P_{i j}=2 \partial_{i} \partial_{j}\left[\alpha^{2} E_{i} E_{j}+\alpha \beta\left(E_{i} B_{j}+B_{i} E_{j}\right)+\beta^{2} B_{i} B_{j}\right] \\
= & 2 \partial_{i}\left[\alpha^{2}\left\{\left(\partial_{j} E_{i}\right) E_{j}+E_{i}\left(\partial_{j} E_{j}\right)\right\}+\beta^{2}\left\{\left(\partial_{j} B_{i}\right) B_{j}+B_{i}\left(\partial_{j} B_{j}\right)\right\}\right. \\
& \left.+\alpha \beta\left\{\left(\partial_{j} E_{i}\right) B_{j}+E_{i}\left(\partial_{j} B_{j}\right)+\left(\partial_{j} B_{i}\right) E_{j}+B_{i}\left(\partial_{j} E_{j}\right)\right\}\right] \\
= & 2 \alpha^{2}\left[\left(\partial_{i} \partial_{j} E_{i}\right) E_{j}+E_{i}\left(\partial_{i} \partial_{j} E_{j}\right)+\left(\partial_{j} E_{i}\right)\left(\partial_{i} E_{j}\right)+\left(\partial_{i} E_{i}\right)^{2}\right] \\
& +2 \beta^{2}\left[\left(\partial_{i} \partial_{j} B_{i}\right) B_{j}+B_{i}\left(\partial_{i} \partial_{j} B_{j}\right)+\left(\partial_{j} B_{i}\right)\left(\partial_{i} B_{j}\right)+\left(\partial_{i} B_{i}\right)^{2}\right] \\
& +2 \alpha \beta\left[\left(\partial_{i} \partial_{j} E_{i}\right) B_{j}+\left(\partial_{j} E_{i}\right)\left(\partial_{i} B_{j}\right)+\left(\partial_{i} E_{i}\right)\left(\partial_{j} B_{j}\right)+E_{i}\left(\partial_{i} \partial_{j} B_{j}\right)\right. \\
& \left.+\left(\partial_{i} \partial_{j} B_{i}\right) E_{j}+\left(\partial_{j} B_{i}\right)\left(\partial_{i} E_{j}\right)+\left(\partial_{i} B_{i}\right)\left(\partial_{j} E_{j}\right)+B_{i}\left(\partial_{i} \partial_{j} E_{j}\right)\right]
\end{aligned}
$$

Using the facts,

$$
\partial_{i} \partial_{j} \equiv \partial_{j} \partial_{i}, \quad \nabla \cdot \mathbf{B}=0
$$

we can considerably simplify the above expression,

$$
\begin{align*}
\mathcal{E}= & 2 \alpha^{2}\left[\left(\partial_{i} \partial_{j} E_{i}\right) E_{j}+E_{i}\left(\partial_{i} \partial_{j} E_{j}\right)+\left(\partial_{j} E_{i}\right)\left(\partial_{i} E_{j}\right)+\left(\partial_{i} E_{i}\right)^{2}\right]+2 \beta^{2}\left(\partial_{j} B_{i}\right)\left(\partial_{i} B_{j}\right) \tag{11}\\
& +2 \alpha \beta\left[\left(\partial_{i} \partial_{j} E_{i}\right) B_{j}+\left(\partial_{j} E_{i}\right)\left(\partial_{i} B_{j}\right)+\left(\partial_{j} B_{i}\right)\left(\partial_{i} E_{j}\right)+B_{i}\left(\partial_{i} \partial_{j} E_{j}\right)\right]
\end{align*}
$$

2.1. Two Functions f and g

We consider the expressions term by term:

- The β^{2} term:

$$
\left(\partial_{j} B_{i}\right)\left(\partial_{i} B_{j}\right)=\left(\epsilon_{i m} \partial_{j} \partial_{m} f\right)\left(\epsilon_{i m} \partial_{j} \partial_{m} f\right)
$$

Using $\epsilon_{i m} \epsilon_{j n}=\delta_{i n} \delta m n-\delta_{i n} \delta_{j m}$, we get,

$$
\begin{equation*}
\beta^{2}\left(\partial_{j} B_{i}\right)\left(\partial_{i} B_{j}\right)=\beta^{2}\left[\left(\partial_{i} \partial_{m} g\right)\left(\partial_{i} \partial_{m} g\right)-\left(\nabla^{2} g\right)^{2}\right] \tag{12}
\end{equation*}
$$

- The $\alpha \beta$ term:
- The α^{2} term:

