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ABSTRACT

Context. The mean-field theory of magnetized stellar convection gives rise to two distinct in-

stabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a

negative effective magnetic pressure instability (NEMPI) operating in thestrongly stratified sur-

face layers. The latter might be important in connection with magnetic spot formation. However,

the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent

direct numerical simulations (DNS) have shown a subsequent increase in the growth rate.

Aims. We examine quantitatively whether this increase in the growth rate of NEMPI can be ex-

plained by anα2 mean-field dynamo, and whether both NEMPI and the dynamo instability can

operate at the same time.

Methods. We use both DNS and mean-field simulations (MFS) to solve the underlying equa-

tions numerically either with or without an imposed horizontal field. We use thetest-field method

to compute relevant dynamo coefficients.

Results. DNS show that magnetic flux concentrations are still possible up to rotation rates above

which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth

rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the

growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong

gravity and large turbulent magnetic diffusivity.

Conclusions. Magnetic flux concentrations are still possible for rotation rates above which dy-

namo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is

about 5 hours, with dynamo action commencing in the layers beneath.

Key words. Sun: sunspots – Sun: dynamo – turbulence – magnetohydrodynamics (MHD) –

hydrodynamics

1



S. Jabbari et al.: Magnetic flux concentrations from dynamo-generated fields

1. Introduction

The appearance of surface magnetic fields in the Sun presentssome peculiar characteristics, such

as being strongly concentrated into discrete spots. The origin and depth of such magnetic flux

concentrations has long been the subject of considerable speculation. A leading theory by Parker

(1955) interprets the emergence of such spots as the result of magnetically buoyant flux tubes at a

depth of some 20 Mm. This magnetic field must be the result of a dynamo, but magnetic buoyancy

also leads to the buoyant rise and subsequent loss of those magnetic structures. It was therefore

thought that the dynamo should operate mainly at or even below the bottom of the convection

zone where magnetic buoyancy could be stabilized by a subadiabatic temperature gradient (Parker,

1975). This led eventually to the idea that sunspots might bea direct consequence of dynamo-

generated flux tubes that rise all the way from the bottom of the convection zone to the surface (e.g.,

Caligari et al., 1995). However, Schüssler (1980, 1983) emphasized early on that such fields would

easily lose their systematic east–west orientation while ascending through the turbulent convection

zone. D’Silva & Choudhuri (1993) estimated that a magnetic field strength of about100 kG would

be needed to preserve the overall east–west orientation (Hale et al., 1919) and also to produce the

observed tilt angle of active regions known as Joy’s law.

A great deal of effort has gone into determining the conditions under which magnetic flux ropes

may or may not be able to rise buoyantly across the convectionzone. Emonet et al. (1998) deter-

mined for the first time the basic minimum twist thresholds for the survival of twisted magnetic flux

ropes during the rise. Subsequent studies were based on different types of numerical simulations,

which tested the underlying hypotheses and looked for othereffects, such as the robustness against

background convective motions (Jouve et al., 2013) and magnetic flux erosion by reconnection

with the background dynamo field (Pinto et al., 2013). These studies, as well as many others (see,

e.g., Fan, 2008, 2009, and references therein) specificallylooked at which flux-rope configurations

are able to reproduce the observed emergent polarity tilt angles (Joy’s law).

The observed variation in the number of sunspots in time and latitude is expected to be linked

to some kind of large-scale dynamo, as was modeled by Leighton et al. (1969) and Steenbeck

& Krause (1969) long ago. This led Schüssler (1980) to propose a so-called flux-tube dynamo

approach that would couple the buoyant rise of thin flux tubesto their regeneration. However, even

today the connection between dynamos and flux tubes is done byhand (see, e.g., Choudhuri et

al., 2007; Miesch & Dikpati, 2014), which means that an ad hocprocedure is invoked to link flux

tube emergence to a mean-field dynamo. Of course, such tubes,or at least bipolar regions, should

ultimately emerge from a sufficiently well-resolved and realistic simulation of solar convection.

While global convective dynamo simulations of Nelson et al. (2011, 2013, 2014) show magnetically

buoyant magnetic flux tubes of≈ 40 kG field strength, they do not yet address bipolar region

formation. Indeed, solar surface simulations of Cheung et al. (2010) and Rempel & Cheung (2014)

demonstrate that bipolar spots do form once a magnetic flux tube of10 kG field strength is injected

at the bottom of their local domain (7.5Mm below the surface). On the other hand, the deep solar

simulations of Stein & Nordlund (2012) develop a bipolar active region with just1 kG magnetic

field injected at the bottom of their domain. While these simulations taken together outline what

might occur in the Sun, they do not necessarily support the description of spots as a direct result of

thin flux tubes piercing the surface (e.g. Caligari et al., 1995).
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A completely different suggestion is that sunspots developlocally at the solar surface, and that

their east–west orientation would reflect the local orientation of the mean magnetic field close to

the surface. The tilt angle would then be determined by latitudinal shear producing the observed

orientation of the meridional component of the magnetic field (Brandenburg, 2005a). One of the

possible mechanisms of local spot formation is the negativeeffective magnetic pressure instability

(NEMPI; see Kleeorin et al., 1989, 1990; Kleeorin & Rogachevskii, 1994; Kleeorin et al., 1996;

Rogachevskii & Kleeorin, 2007). Another potential mechanism of flux concentration is related

to a turbulent thermo-magnetic instability in turbulence with radiative boundaries caused by the

suppression of turbulent heat flux through the large-scale magnetic field (Kitchatinov & Mazur,

2000). The second instability has so far only been found in mean-field simulations (MFS), but not

in direct numerical simulations (DNS) nor in large-eddy simulations (LES). By contrast, NEMPI

has recently been found in DNS (Brandenburg et al., 2011) andLES (Brandenburg et al., 2014) of

strongly stratified fully developed turbulence.

As demonstrated in earlier work (Brandenburg et al., 2013, 2014), NEMPI can lead to the for-

mation of equipartition-strength magnetic spots, which are reminiscent of sunspots. Even bipolar

spots can form in the presence of a horizontal magnetic field near the surface (see Warnecke et

al., 2013). For this idea to be viable, NEMPI and the dynamo instability would need to operate in

reasonable proximity to each other, so that the dynamo can supply the magnetic field that would

be concentrated into spots, as was recently demonstrated byMitra et al. (2014). In studying this

process in detail, we have a chance of detecting new joint effects resulting from the two insta-

bilities, which is one of the goals of the present paper. However, these two instabilities may also

compete against each other, as was already noted by Losada etal. (2013). The large-scale dynamo

effect relies on the combined presence of rotation and stratification, while NEMPI requires strati-

fication and large enough scale separation. On the other hand, even a moderate amount of rotation

suppresses NEMPI. In fact, Losada et al. (2012) find significant suppression of NEMPI when the

Coriolis number Co= 2Ωτ is larger than about 0.03.

Here,Ω is the angular velocity andτ the turnover time of the turbulence, which is related to the

rms velocityurms and the wavenumberkf of the energy-carrying eddies viaτ = (urmskf)
−1. For

the solar convection zone, the Coriolis number,

Co= 2Ω/urmskf , (1)

varies from2 × 10−3 (at the surface usingτ = 5min) to 5 (at the bottom of the convection zone

usingτ = 10days). The value Co= 0.03 corresponds to a turnover time as short as two hours,

which is the case at a depth of≈ 10Mm.

The strength of stratification, on the other hand, is quantified by the nondimensional parameter

Gr = g/c2skf ≡ (kfHρ)
−1, (2)

whereHρ = c2s/g is the density scale height,cs is the sound speed, andg is the gravitational

acceleration. In the cases considered by Losada et al. (2012, 2013), the stratification parameter

was Gr= 0.03, which is rather small compared with the estimated solar value of Gr= 0.16 (see

the conclusions of Losada et al., 2013). One can expect that larger values of Gr would result in

correspondingly larger values of the maximum permissible value of Co, for which NEMPI is still

excited, but this has not yet been investigated in detail.
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The goal of the present paper is to study rotating stratified hydromagnetic turbulence in a pa-

rameter regime that we expect to be at the verge between NEMPIand dynamo instabilities. We do

this by performing DNS and MFS. In MFS, the study of combined NEMPI and dynamo instability

requires suitable parameterizations of the negative effective magnetic pressure andα effects using

suitable turbulent transport coefficients.

2. DNS study

We begin by reproducing some of the DNS results of Losada et al. (2013), who found the sup-

pression of the growth rate of NEMPI with increasing values of Co and a subsequent enhancement

at larger values, which they interpreted as being the resultof dynamo action in the presence of

an externally applied magnetic field. We also use DNS to determine independently the expected

efficiency of the dynamo by estimating theα effect from kinetic helicity measurements and by

computing bothα effect and turbulent diffusivity directly using the test-field method (TFM).

2.1. Basic equations

In DNS of an isothermally stratified layer (Losada et al., 2013), we solve the equations for the

velocityU , the magnetic vector potentialA, and the densityρ in the presence of rotationΩ,

DU

Dt
=

1

ρ
J ×B − 2Ω×U − νQ+ F + f , (3)

∂A

∂t
= U ×B − ηJ , (4)

∂ρ

∂t
= −∇ · ρU , (5)

whereD/Dt = ∂/∂t+U ·∇ is the advective derivative,Ω = Ωẑ is the angular velocity,

F = g − c2s∇ ln ρ (6)

determines the hydrostatic force balance,ν is the kinematic viscosity,η is the magnetic diffusivity

due to Spitzer conductivity of the plasma,

−Q = ∇2U +∇∇ ·U/3 + 2S∇ ln ρ, (7)

−J = ∇2A−∇∇ ·A, (8)

are the modified vorticity and the current density, respectively, where the vacuum permeabilityµ0

has been set to unity,

B = B0 +∇×A (9)

is the total magnetic field,B0 = (0, B0, 0) is the imposed uniform field, and

Sij =
1
2
(∂jUi + ∂iUj)− 1

3
δij∇ ·U (10)

is the traceless rate-of-strain tensor. The forcing function f consists of random, white-in-time,

plane, nonpolarized waves with a certain average wavenumber kf . The turbulent rms velocity is

approximately independent ofz with urms = 〈u2〉1/2 ≈ 0.1 cs. The gravitational acceleration

g = (0, 0,−g) is chosen such thatk1Hρ = 1, so the density contrast between bottom and top

is exp(2π) ≈ 535 in a domain−π ≤ k1z ≤ π. Here,Hρ = c2s/g is the density scale height
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andk1 = 2π/L is the smallest wavenumber that fits into the cubic domain of sizeL3. We adopt

Cartesian coordinates(x, y, z), with periodic boundary conditions in thex andy directions and

stress-free, perfectly conducting boundaries at top and bottom (z = ±Lz/2). In most of the cal-

culations, we use a scale separation ratiokf/k1 of 30, so Gr= 0.03 is still the same as in earlier

calculations. We use a fluid Reynolds number Re≡ urms/νkf of 36, and a magnetic Prandtl num-

ber PrM = ν/η of 0.5. The magnetic Reynolds number is therefore ReM = PrMRe= 18. These

values are a compromise between having bothkf and Re large enough for NEMPI to develop at

an affordable numerical resolution. The value ofB0 is specified in units ofBeq0 =
√
ρ0 urms,

whereρ0 = 〈ρ〉 is the volume-averaged density, which is constant in time. The local equipartition

field strength isBeq(z) =
√
ρ urms. In our units,k1 = cs = µ0 = ρ0 = 1. However, time is

specified as the turbulent-diffusive timet ηt0k21, whereηt0 = urms/3kf is the estimated turbulent

diffusivity. We also use DNS to compute these values more accurately with the TFM. The sim-

ulations are performed with the PENCIL CODE (http://pencil-code.googlecode.com), which uses

sixth-order explicit finite differences in space and a third-order accurate time-stepping method. We

use a numerical resolution of2563 mesh points, which was found to be sufficient for the parameter

regime specified above.

2.2. At the verge between NEMPI and dynamo

The work of Losada et al. (2013) suggested that for Gr= 0.03 and Co≥ 0.03, NEMPI becomes

strongly suppressed, and that for still larger values, the growth rate increases again. This was tenta-

tively associated with dynamo action, but it was not investigated in further detail. We now consider

such a case with Co= 0.09. This is a value that resulted in a rather low growth rate, while the esti-

mated growth rate would be still subcritical for dynamo action. Following the work of Losada et al.

(2013), we impose here a horizontal magnetic field in they direction with a strength of0.05Beq0,

which was previously found to be in the optimal range for NEMPI to develop (Kemel et al., 2012a).

To bring out the structures more clearly, it was found to be advantageous to present mean mag-

netic fields by averaging over they direction and over a certain time interval∆t. We denote such

averages by an overbar, e.g.,By. Once a dynamo develops, we expect a Beltrami-type magnetic

field withBx phase shifted relative toBy by π/2 (Brandenburg, 2001). These are force-free fields

with ∇×B = kB such asB ∝ (sin kz, cos kz, 0), for example.

Figure 1 shows visualizations ofBx andBy together with the effective magnetic pressure,Peff

(defined below), at different times for a value of Co that is around the point where we expect onset

of dynamo action. As in earlier work without rotation (Kemelet al., 2013),By varies between 0 to

2B0. Furthermore,Bx is found to vary in the range±2B0. In Fig. 2, thex extent of the domain is

twice as big:−2π < k1x < 2π. In Fig. 3 we show the result for Co= 0.22, where a Beltrami-type

field with aπ/2 phase shift betweenBx andBy is well developed. For smaller values of Co, there

are structures (e.g., fort/τ = 1.8 atx/Hρ ≈ 1.5 and fort/τ = 2.4 atx/Hρ ≈ 1.5 and−2) that

are reminiscent of those associated with NEMPI. This can be seen by comparing Fig. 1 with Fig. 4

of Kemel et al. (2013) or Fig. 3 of Losada et al. (2013). When thedomain is twice as wide, the

number of structures simply doubles. A similar phenomenon was also seen in the simulations of

Kemel et al. (2012b). For larger values of Co, NEMPI is suppressed and theα2 dynamo, which

generates mean magnetic field of a Beltrami-type structure,becomes more strongly excited.
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Fig. 1. Visualization ofBx/Beq0 andBy/B0 together with effective magnetic pressure for different times.

HereΩ = 0.15, Co= 0.09, Gr = 0.033, andkf/k1 = 30.

The effective magnetic pressure shown in Figs. 1–3 is estimated by computing thexx compo-

nent of the total stress from the fluctuating velocity and magnetic fields as

∆Π
f

xx = ρ (u2
x − u2

0x) +
1
2
(b2 − b20)− (b2x − b20x), (11)

where the subscript0 refers to the case withB0 = 0. We then calculate (Brandenburg et al., 2012a)

qp = −2∆Π
f

xx/B
2. (12)

Here,qp(β) is a function ofβ = B/Beq(z). We then calculatePeff = 1
2
(1 − qp)β

2, which is the

effective magnetic pressure divided byB2
eq. We note thatPeff shows a systematicz dependence

and is negative in the upper part. Variations in thex direction are comparatively weak and therefore

do not show a clear correspondence with the horizontal variations ofBy.

As in earlier work (Brandenburg et al., 2011), we characterize the strength of resulting struc-

tures by an amplitudeBk of a suitably low wavenumber Fourier mode (k/k1 = 1 or 2), which is

based on the magnetic field in the upper part of the domain,2 ≤ z/Hρ ≤ π. In Fig. 4 we compare

the evolution ofBk/Beq0 for runs with different values of Co. For comparison, we alsoreproduce
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Fig. 2. Like Fig. 1, but for a wider domain.

the first few runs for Co= 0.006–0.13, where we usedk/k1 = 1 in all cases. It turns out that

for the new cases with Co= 0.09 and0.22, the growth ofBk/Beq0 is not as strong as for the

cases with smaller Co. Furthermore, as is also evident from Figs. 1 and 2, the structures are now

characterized byk/k1 = 2, while for Co = 0.22 they are still characterized byk/k1 = 1. The

growth for all three cases (Co= 0.09, both for normal and wider domains, as well as Co= 0.22)

is similar. However, given that the typical NEMPI structures are not clearly seen for Co= 0.22,

it is possible that the growth of structures is simply overwhelmed by the much stronger growth

due to the dynamo, which is not reflected in the growth ofBk/Beq0, whose growth is still mainly

indicative of NEMPI. In this sense, there is some evidence ofthe occurrence of NEMPI in both

cases.

2.3. Kinetic helicity

We begin by considering a fixed value of Gr equal to that used byLosada et al. (2013) and by

varying Co. For small values of Co, their data agreed with theMFS of Losada et al. (2012). For

faster rotation, one eventually crosses the dynamo threshold. This is also the point at which the

growth rate begins to increase again, although it now belongs to a different instability than for

small values of Co. The underlying mechanism is theα2-dynamo, which is characterized by the

dynamo number

Cα = α/ηTk1, (13)

whereα is the typical value of theα effect (here assumed spatially constant),ηT = ηt + η is the

sum of turbulent and microphysical magnetic diffusivities, andk1 is the lowest wavenumber of the

magnetic field that can be fitted into the domain. For isotropic turbulence,α andηt are respectively
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Fig. 3. Like Fig. 1, but forΩ = 0.35, so Co= 0.22.

proportional to the negative kinetic helicity and the mean squared velocity (Moffatt, 1978; Krause

& Rädler, 1980; R̈adler et al., 2003; Kleeorin & Rogachevskii, 2003)

α ≈ α0 ≡ − 1
3
τω · u, ηt ≈ ηt0 ≡ 1

3
τu2, (14)

whereτ = (urmskf)
−1, so that (Blackman & Brandenburg, 2002; Candelaresi & Brandenburg,

2013)

Cα = −ǫk ǫfkf/k1. (15)

Here,ǫk is a free parameter characterizing possible dependencies on the forcing wavenumber, and

ǫf is a measure for the relative kinetic helicity. Simulationsof Brandenburg et al. (2012b) and

Losada et al. (2013) showed that

ǫf ≡ ω · u/kfu2
rms ≈ ǫf0 Gr Co (Gr Co<∼ 0.1), (16)

whereǫf0 is yet another non-dimensional parameter on the order of unity that may depend weakly

on the scale separation ratio,kf/k1, and is slightly different with and without imposed field. In

the absence of an imposed field, Brandenburg et al. (2012b) found ǫf0 ≈ 2 usingkf/k1 = 5.
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Fig. 4. Comparison of the evolution ofBk/Beq0 for runs with different values of Co. In the first panelk/k1 =

1, while in the second panelk/k1 = 2 for the two runs with Co= 0.09 (label W refers to the wider box in

thex direction), andk/k1 = 1 for the run with Co= 0.22.

However, both an imposed field and a larger value ofkf/k1 lead to a slightly increased value of

ǫf0. Our results are summarized in Fig. 5 for cases with and without imposed magnetic fields. Error

bars are estimated as the largest departure of any one third of the full time series. The relevant

points of Losada et al. (2013) giveǫf0 ≈ 2.8. For Gr Co>∼ 0.5, the results of Brandenburg et al.

(2012b) show a maximum with a subsequent decline ofǫf with increasing values of Co. However,

although it is possible that the position of this maximum maybe different for other values of Gr, it

is unlikely to be relevant to our present study where we focuson smaller values ofCα near dynamo

onset. Thus, in conclusion, Eq. (16) seems to be a useful approximation that has now been verified

over a range of different values ofkf/k1.

2.4. Test-field results

Our estimate forCα is based on the reference valuesα0 andηt0 that are defined in Eq. (14) and

represent approximations obtained from earlier simulations of helically forced turbulence (Sur et

al., 2008). In the present study, helicity is self-consistently generated from the interaction between
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Fig. 5. Dependence ofǫf on Gr Co obtained in DNS with imposed field (open symbols, red) and without

(closed symbols, blue), forkf/k1 = 30. The black symbols connected by a dotted line correspond to the

values of Brandenburg et al. (2012b) forkf/k1 = 5. The horizontal lines correspond to the dynamo threshold

for the two values ofkf/k1.

rotation and stratification. As an independent way of computing α andηt, we now use the test-

field method (TFM). It consists of solving auxiliary equations describing the evolution of magnetic

fluctuations,bpq, resulting from a set of several prescribed mean or test fields,Bpq. We solve for

the corresponding vector potentialapq with bpq = ∇× apq,

∂apq

∂t
= u×Bpq +U × bpq + (u× bpq)′ + η∇2apq, (17)

where(u× bpq)′ = u× bpq − u× bpq is the fluctuating part of the electromotive force and

Bic = x̂i cos kz, Bis = x̂i sin kz, i = 1, 2, (18)

are the four test fields, which can show a cosine or sine variation with z, while x̂1 = (1, 0, 0) and

x̂2 = (0, 1, 0) are unit vectors in the two horizontal coordinate directions. The resultingbpq are

used to compute the electromotive force,Epq = u× bpq, which is then expressed in terms ofBpq

andJpq = ∇×Bpq as

Epq
i = αijB

pq

j − ηijJ
pq

j . (19)

By doing this for all four test field vectors, thex andy components of each of them gives eight

equations for the eight unknowns,α11, α12, ...,η22 (for details see Brandenburg, 2005b).

With the TFM, we obtain the kernelsαij andηij , from which we compute

α = 1
2
(α11 + α22), ηt =

1
2
(η11 + η22), (20)

γ = 1
2
(α21 − α12), δ = 1

2
(η21 − η12). (21)
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Fig. 6. TFM coefficients versus scale separation ratio,k/kf , for Co = 0.59, ReM = 18, B0y/Beq0 = 0.05,

g̃ = 1, andηk1/cs = 2× 10
−4.

We normalizeα andηt by their respective values obtained for large magnetic Reynolds numbers

defined in Eq. (14), and denote them by a tilde, i.e.,α̃ = α/α0 andη̃t = ηt/ηt0. We use the latter

normalization also forδ, i.e., δ̃ = δ/ηt0, but expect its value to vanish in the limit of zero angular

velocity. No standard turbulent pumping velocity is expected (Krause & R̈adler, 1980; Moffatt,

1978), because the rms turbulent velocity is independent ofheight. However, this is not quite true.

To show this, we normalizeγ byurms and present̃γ = γ/urms. In this normalization, the molecular

value is given byη/η0 = 3/ReM .

We consider test fields that are constant in time and vary sinusoidally in thez direction. We

choose certain values ofk between 1 and 60 and also vary the value of Co between 0 and about

1.06 while keeping Gr= 0.033 fixed. In all cases where the scale separation ratio is held fixed, we

usedkf/k1 ≈ 30, which is larger than what has been used in earlier studies (Brandenburg et al.,

2008b), wherekf/k1 was typically 5.

In Figure 6 we show the dependence of the coefficients on the normalized wavenumber of the

test field,k/kf . The three coefficients̃α, η̃t, andδ̃ show the same behavior of the form of

σ̃ = σ̃0/
(

1 + ℓ2σk
2
)

(22)

for σ̃ = α̃, η̃t, or δ̃, while for γ̃ we use

γ̃ = γ̃0 + γ̃2ℓ
2
γk

2/
(

1 + ℓ2γk
2
)

, (23)

whereγ̃0 = 0.01, γ̃2 = 0.06, andℓγ = 2.5. These results have been obtained for Co= 0.59 and

B0y/Beq0 = 0.05. Again, error bars are estimated as the largest departure ofany one third of the

full time series.
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Fig. 7. TFM coefficients versus Coriolis number, Co, fork/kf = 1, ReM = 18, B0y/Beq0 = 0.05, g̃ = 1,

andηk1/cs = 2× 10
−4.

Most of the coefficients are only weakly dependent on the value of Co, exceptγ andδ. The

former varies approximately as

γ̃ = γ̃0 + γ̃2
ΩCo2, (24)

whereγ̃0 = 0.85 andγ̃2
Ω = 2.6. Here and in the following, we keepk/kf = 1/30. For the same

value ofk/kf , the functional form forδ shows a linear increase with Co, i.e.,δ̃ = δ̃0Co where

δ̃0 = 0.036. Figure 7 shows that̃α is nearly independent of the Coriolis number. This result should

be compared with Figs. 2a, 3a, and 4a of Kleeorin & Rogachevskii (2003), where a theory of the

α versus the Coriolis number was developed for large fluid and magnetic Reynolds numbers. It

turns out that the new values ofα andηt that have been obtained now with the TFM are somewhat

different from previous TFM studies that originally estimated (̃α ≈ 0.8 andη̃t ≈ 1.15). The TFM

results now suggestǫk = 0.6 in Eq. (15). The reason for this discrepancy cannot just be the fact

that helicity is now self-consistently generated, becausethis was also the case in the earlier work of

Brandenburg et al. (2012b). The only plausible reason is thelarge value ofkf/k1 that is now much

larger than before (30 compared to5 in most previous studies), which explains the reason for our

choice of the subscript inǫk .

The origin of weak pumping found in Figs. 6 and 7 is unclear. For a weak mean magnetic field,

pumping of the magnetic field can cause not only inhomogeneous distributions of the velocity

fluctuations (Krause & R̈adler, 1980; Moffatt, 1978) or magnetic fluctuations (Rädler et al., 2003),

but also non-uniform distribution of the fluid density in thepresence either of small-scale dynamo

or turbulent convection (Rogachevskii & Kleeorin, 2006). In our simulations there is no small-scale

dynamo effect, because ReM is too low. There is also no turbulent convection possible inour setup.

12



S. Jabbari et al.: Magnetic flux concentrations from dynamo-generated fields

The pumping effect is also not connected with the nonlinear effects; see Fig. 2 in Rogachevskii &

Kleeorin (2004).

3. MFS study

We now want to see whether the suppression of NEMPI and the subsequent increase in the re-

sulting growth rate can be reproduced in MFS. In addition to aparameterization for the negative

effective magnetic pressure in the momentum equation, we add one for the electromotive force.

The important terms here are theα effect and the turbulent magnetic diffusivity, whose combined

effect is captured by the quantityCα, which is defined in Eq. (13) and related to DNS parameters

in Eq. (15). In contrast to DNS, the advantage of MFS is that they can more easily be extended to

astrophysically interesting conditions of large Reynoldsnumbers and more complex geometries.

3.1. The model

Our MFS model is in many ways the same as that of Jabbari et al. (2013), where parameterizations

for negative effective magnetic pressure and electromotive force where, for the first time, consid-

ered in combination with each other. Their calculations were performed in spherical shells without

Coriolis force, while here we apply instead Cartesian geometry and do include the Coriolis force.

The evolution equations for mean velocityU , mean vector potentialA, and mean densityρ, are

thus

DU

Dt
=

1

ρ

(

J ×B +∇
qpB

2

2

)

− 2Ω×U − νTQ+ F , (25)

∂A

∂t
= U ×B + αB − ηTJ , (26)

Dρ

Dt
= −ρ∇ ·U ,

whereD/Dt = ∂/∂t+U ·∇ is the advective derivative,

F = g − c2s∇ ln ρ (27)

is the mean-field hydrostatic force balance,ηT = ηt+ η andνT = νt+ ν are the sums of turbulent

and microphysical values of magnetic diffusivity and kinematic viscosities, respectively,α is the

aforementioned coefficient in theα effect,J = ∇×B is the mean current density,

−Q = ∇2U + 1
3
∇∇ ·U + 2S∇ ln ρ (28)

is a term appearing in the viscous force, whereS is the traceless rate of strain tensor of the mean

flow with componentsSij = 1
2
(U i,j +U j,i)− 1

3
δij∇ ·U , and finally∇(qpB

2/2) determines the

turbulent contribution to the mean Lorentz force. Here,qp depends on the local field strength and

is approximated by (Kemel et al., 2012a)

qp(β) =
qp0

1 + β2/β2
p

=
β2
⋆

β2
p + β2

, (29)

whereqp0, βp, andβ⋆ = βpq
1/2
p0 are constants,β = |B|/Beq is the normalized mean magnetic

field, andBeq =
√
ρ urms is the equipartition field strength. For ReM <∼ 60, Brandenburg et al.

13
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(2012a) foundβ⋆ ≈ 0.33 andβp ≈ 1.05/ReM . We use as our reference model the parameters for

ReM = 18, also used by Losada et al. (2013), which yields

βp = 0.058, β⋆ = 0.33 (reference model). (30)

In some cases we also compare withβ⋆ = 0.44, which was found to match more closely the

measured dependence of the effective magnetic pressure onβ by Losada et al. (2013). For vertical

magnetic fields, MFS for a range of model parameters have beengiven by Brandenburg et al.

(2014). In the MFS, we use (Sur et al., 2008)

ηt ≈ ηt0 ≡ urms/3kf (31)

to replacekf = urms/3ηt, so

Gr = 3ηt/urmsHρ (32)

and (Losada et al., 2013)

Co= 2Ω/urmskf = 6Ωηt/u
2
rms. (33)

We now consider separately cases where we vary either Co or Gr. In addition, we also vary the

scale separation ratiokf/k1, which is essentially a measure of the inverse turbulent diffusivity, i.e.,

kf/k1 = urms/3ηtk1 (34)

(see Eq. (31)).

3.2. Fixed value of Gr

The work of Losada et al. (2012) has shown that the growth rateof NEMPI, λ, decreases with

increasing values of the rotation rate. They found it advantageous to expressλ in terms of the

quantity

λ∗0 = β⋆urms/Hρ. (35)

As discussed above, the normalized growth rateλ/λ∗0 shows first a decline with increasing values

of Co, but then an increase for Co> 0.13, which was argued to be a result of the dynamo effect

(Losada et al., 2013). This curve has a minimum at Co≈ 0.13. As rotation is increased further, the

combined action of stratification and rotation leads to increased kinetic helicity and thus eventually

to the onset of mean-fieldα2 dynamo action.

Owing to the effects of turbulent diffusion, the actual value of the growth rate of NEMPI is

always expected to be less thanλ∗0. Kemel et al. (2013) proposed an empirical formula replacing

λ by λ+ ηtk
2, wherek is the relevant wavenumber. This would lead to

λ/λ∗0 ∝ 1− Gr∗/Gr, (36)

with a coefficient Gr∗ = η̃t/3β⋆Ma. However, as we will see below, this expression is not found to

be consistent with our numerical data.

The onset of the dynamo instability is governed by the dynamonumber

Cα = ǫf0 Gr Cokf/k1. (37)
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Fig. 8. Non-dimensional growth rate of NEMPI versus Co for MFS(i) withβ⋆ = 0.33 and MFS(ii) with

β⋆ = 0.44, as well as DNS for Gr= 0.033 andβ0 = 0.05.

For a cubic domain, large-scale dynamo action occurs forCα > 1, which was confirmed by Losada

et al. (2013), who found the typical Beltrami fields for two supercritical cases. They used the

parameters Gr= 0.033 and values of Co up to 0.6. Here we present MFS in two- and three-

dimensional domains for the same values of Gr and a similar range of Co values. In Fig. 8, we

compare the DNS of Losada et al. (2013) with our reference model defined through Eq. (30) and

referred to as MFS(i) as well as with the caseβ⋆ = 0.44, referred to as MFS(ii).

3.3. Larger stratification, smaller scale separation

The expected theoretical maximum growth rate of NEMPI is given by Eq. (35). At zero rotation, we

thus expectλ/λ∗0 ≈ 1. To check this, we performed two-dimensional MFS in a squared domain

of size(2π)2. The result is shown in Fig. 9 for the model parameters given in Eq. (30). When Gr

is small, we find thatλ/λ∗0 ≈ 0.3, which is below the expected value. As we increase Gr,λ/λ∗0

decreases until NEMPI can no longer be detected for Gr>∼ 1.2.

It is conceivable that this decrease may have been caused by the following two factors. First,

the growth rate is expected to increase with Gr, but for fixed scale separation, the resulting den-

sity contrast becomes huge. Finite resolution might therefore have caused inaccuracies. Second,

although the growth rate should not depend onB0 (Kemel et al., 2012a), we need to make sure

that the mode is fully contained within the domain. In other words, we are interested in the largest

growth rate as we vary the value ofB0. Again, to limit computational expense, we tried only a

small number of runs, keeping the size of the domain the same.This may have caused additional

uncertainties. However, it turns out that our results are independent of whether Gr is changed by
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Fig. 9. Normalized growth rate of NEMPI versus stratification parameter Gr that varies with changing gravity,

g, for Co= 0 with constant̃ηt (η̃t = 10
−3 black filled symbols and̃ηt = 10

−2 blue open symbols), or with

changingηt = νt for constant̃g = 2 (red open symbols). The dash-dotted line shows the approximate fit

given by Eq. (40). The inset shows the growth rate normalized by the turnover time as a function of̃g.

changingg or ηt (= νt). This suggests that our results for large values ofg shown in Fig. 9 may in

fact be accurate. To illustrate this more clearly, we rewrite

Gr =
3ηt

urmsHρ
=

3η̃t
k1

cs
urms

g

c2s
= 3η̃tg̃/Ma, (38)

where we have defined

η̃t = ηtk1/cs, g̃ = g/c2sk1 ≡ (k1Hρ)
−1. (39)

Figure 9 shows thatλ/λ∗0 is indeed independent of the individual values ofη̃t and g̃ as long as

Gr is the same. For small values ofg̃ and large diffusivity (̃ηt = 10−2), the velocity evolves in an

oscillatory fashion with a rapid growth and a gradual subsequent decline. In Fig. 9, the isolated data

point atλ/λ∗0 ≈ 0.44 reflects the speed of growth during the periodic rise phase, but it is unclear

whether or not it is related to NEMPI.

In the inset, we plotλ/urmskf versusg̃ itself. This shows that the growth rate (in units of

the inverse turnover time) increases with increasingg̃ whenη̃t is small. However, the growth rate

decreases with increasing̃ηt. When η̃t is larger (corresponding to smaller scale separation), the

growth rate of NEMPI is reduced for the same value ofg̃ and it decreases with̃g wheng̃ >∼ 2.

The decrease ofλ/λ∗0 with increasing values of Gr can be approximated by the formula

λ/λ∗0 ≈ 0.3
/[

1 + 2Gr+ (4Gr)2
]

, (40)

which is shown in Fig. 9 as a dash-dotted line. This expression is qualitatively different from the

earlier, more heuristic expression proposed by Kemel et al.(2013) where the dimensional growth

rate was simply modified by an ad hoc diffusion term of the formηtk
2. In that case, contrary to
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Fig. 10. Normalized growth rate of the combined NEMPI and dynamo instability (solid lines) together with

cases with pure dynamo instability (no imposed field, dashed lines) versusCo for three different values of Gr;

Gr = 0.12 (blue), Gr= 0.21 (red), and Gr= 1.0 (black). In these simulations̃g = 4 andη̃t = 10
−3 (blue

line), g̃ = 3.5, η̃t = 2× 10
−3 (red line), and̃g = 3.5, η̃t = 9.5× 10

−3 (black line).

our MFS, the normalized growth rate would actually increasewith increasing values of Gr (see

Eq. (36)).

3.4. Co dependence at larger stratification

We consider the normalized growth rate of the combined NEMPIand dynamo instabilities as a

function of Co for different values of Gr. As is clear from Fig. 9, using a fixed value ofg and

varyingηt gives us the possibility to increase Gr to larger values of upto 1. In the following we

used this procedure to compare the behavior of the growth rate versus Co for three values of Gr,

0.12, 0.21, and1 (see Fig. 10). It can be seen that the behavior of the curves isindependent of

the values of Gr, but the points where the minima of the curvesoccur moves toward bigger values

of Co as Gr increases. This also happens in the case when thereis only dynamo action without

imposed magnetic field (dashed lines in Fig. 10). One also sees that the increase of the growth rate

with increasing Co is much stronger in the case of larger Gr (compare the lines for Gr= 0.12 with

those for 0.21 and 1). Finally, comparing runs with and without imposed magnetic field, but the

same value of Gr, the growth rate of NEMPI is in most cases below that of the coupled system with

NEMPI and dynamo instability.

In Fig. 10 we see that the dependence ofλ/λ∗0 on Gr is opposite for small and large values of

Co. When Co<∼ 0.05, an increase in Gr leads to a decrease inλ/λ∗0 (compare the Gr= 1 line

with that for 0.21 along a cut through Co= 0.05 in Fig. 10), while for Co>∼ 0.2, an increase in Gr

leads to an increase inλ/λ∗0 (compare all three lines in Fig. 10 along a cut through Co= 0.3). The

second case is caused by the increase of the dynamo numberCα, which is directly proportional to

Gr (see Eq. (37)). On the other hand, for small values of Co, only NEMPI operates, but if Gr in
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Eq. (38) is increased by increasingη̃t rather thañg, the dynamo is suppressed by enhanced turbulent

diffusion (see also Fig. 9). This is related to the fact that the properties of the system depend not just

on Gr and Co, but also onkf/k1 orCα, which is proportional to all three parameters (see Eq. (37)).

4. Discussion and conclusions

The present work has brought us one step closer to being able to determine whether the observable

solar activity such as sunspots and active regions could be the result of surface effects associated

with strong stratification. A particularly important aspect has been the interaction with a dynamo

process that must ultimately be responsible for generatingthe overall magnetic field. Recent global

convective dynamo simulations of Nelson et al. (2011, 2013,2014) have demonstrated that flux

tubes with≈ 40 kG field strength can be produced in the solar convection zone. This is almost

as strong as the≈ 100 kG magnetic flux tubes anticipated from earlier investigations of rising

flux tubes requiring them to not break up and to preserve theireast–west orientation (D’Silva &

Choudhuri, 1993). Would we then still need surface effects such as NEMPI to produce sunspots?

The answer might well be yes, because the flux ropes that have been isolated in the visualizations of

Nelson et al. (2011, 2013, 2014) appear to have cross sections that are much larger than sunspots at

the solar surface. Further concentration into thinner tubes would be required if they were to explain

sunspots by just letting them pierce the surface.

Realistic hydromagnetic simulations of the solar surface are now beginning to demonstrate

that≈ 10 kG fields at a depth of≈ 10Mm can produce sunspot-like appearances at the surface

(Rempel & Cheung, 2014). However, we have to ask about the physical process contributing to this

phenomenon. A purely descriptive analysis of simulation data cannot replace the need for a more

prognostic approach that tries to reproduce the essential physics using simpler models. Although

Rempel & Cheung (2014) propose a mechanism involving mean-field terms in the induction equa-

tion, they do not show that their model equations can actually describe the process of magnetic

flux concentration. In fact, their description is somewhat reminiscent of flux expulsion, which was

invoked earlier by Tao et al. (1998) to explain the segregation of magneto-convection into mag-

netized and unmagnetized regions. In this context, NEMPI provides such an approach that can be

used prognostically rather than diagnostically. However,this approach has problems of its own,

some of which are addressed in the present work. Does NEMPI stop working when Co>∼ 0.03?

How does it interact with the underlying dynamo? Such a dynamo is believed to control the overall

sunspot number and the concentration of sunspots to low latitudes.

Our new DNS suggest that, although rotation tends to suppress NEMPI, magnetic flux con-

centrations can still form at Coriolis numbers of Co≈ 0.1. This is slightly larger than what was

previously found from MFS both with horizontal and verticalmagnetic fields and the same value

of Gr. For the solar rotation rate ofΩ ≈ 3 × 10−6 s−1, a value of Co≡ 2Ωτ = 0.1 corresponds

to τ = 5h, which is longer than the earlier MFS values of2 h for a horizontal field (Losada et al.,

2013) and30min for a vertical field (Brandenburg et al., 2014).

Using the TFM, we have confirmed earlier findings regardingα andηt, although for our new

simulations both coefficients are somewhat larger, which ispresumably due to the larger scale

separation. The ratio betweenα andηt determines the dynamo number and is now about 40%

below previous estimates. There is no evidence of other important mean-field effects that could
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change our conclusion about a cross-over from suppressed NEMPI to increased dynamo activity.

We now confirm quantitatively that the enhanced growth past the initial suppression of NEMPI is

indeed caused by mean-field dynamo action in the presence of aweak magnetic field. The position

of the minimum in the growth rate coincides with the onset of mean-field dynamo action that takes

theα effect into account.

For weak or no rotation, we find that the normalized NEMPI growth rate is described by a single

parameter Gr, which is proportional to the product of gravity and turbulent diffusivity, where the

latter is a measure of the inverse scale separation ratio. This normalization takes into account that

the growth rate increases with increasing gravity. The growth rate compensated in this way shows

a decrease with increasing gravity and turbulent diffusivity that is different from an earlier, more

heuristic, expression proposed by Kemel et al. (2013). The reason for this departure is not quite

clear. One possibility is some kind of gravitational quenching, because the suppression is well

described by a quenching factor that becomes important whenGr exceeds a value of around 0.5.

This quenching is probably not important for stellar convection where the estimated value of Gr is

0.17 (Losada et al., 2013). It might, however, help explain mismatches with the expected theoretical

growth rate that was found to be proportional to Gr (Kemel et al., 2013) and that was determined

from recent DNS (Brandenburg et al., 2014).

An important question is whether NEMPI will really be strongenough to produce sunspots

with super-equipartition strength. It has always been clear that NEMPI can only work for a

magnetic field strength that is a small fraction of the local equipartition field value. However,

super-equipartition fields are produced if the magnetic field is vertical (Brandenburg et al., 2013).

Subsequent work showed quantitatively that NEMPI does indeed work at subequipartition field

strengths, but since mass flows mainly along magnetic field lines, the reduced pressure leads to

suction which tends to evacuate the upper parts of the tube (Brandenburg et al., 2014). This is sim-

ilar to the “hydraulic effect” envisaged by Parker (1976), who predicted such downflows along flux

tubes. In a later paper Parker (1978), gives more realistic estimates, but the source of downward

flows remained unclear. Meanwhile, the flux emergence simulations of Rempel & Cheung (2014)

show at first upflows in their magnetic spots (see their Fig. 5), but as the spots mature, a downflow

develops (see their Fig. 7). In their case, because they haveconvection, those downflows can also

be ascribed to supergranular downflows, as was done by Stein &Nordlund (2012). Nevertheless,

in the isothermal simulations of Brandenburg et al. (2013, 2014), this explanation would not apply.

Thus, we now know that the required downflowscan be caused by NEMPI, but we do not know

whether this is also what happens in the Sun.

Coming back to our paper, where NEMPI is coupled to a dynamo, the recent work of Mitra et

al. (2014) is relevant because it shows that intense bipolarspots can be generated in an isothermal

simulation with strongly stratified non-helically driven turbulence in the upper part and a helical

dynamo in the lower part. The resulting surface structure resembles so-calledδ spots that have

previously only been found in the presence of strongly twisted and kink-unstable flux tubes (Linton

et al., 1998). While the detailed mechanism of this work is notyet understood, it reminds us that

it is too early to draw strong conclusions about NEMPI as longas not all its aspects have been

explored in sufficient detail.
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