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Abstract

Plunian & Alboussière (2020) have recently pre-
sented an analytic solution to an axisymmetric dy-
namo for an anisotropically conducting medium.
The velocity field corresponds to that of a rigidly
rotating cylinder embedded in a conductor at rest.
Here we present numerical simulations for smooth
angular velocity profiles. We also consider the case
where the anisotropy is confined to be within the
rotating cylinder only.

1 Introduction

A major obstacle in dynamo theory has been the
fact that the magnetic field must always be non-
axisymmetric and therefore three-dimensional. But
this is not strictly true if an allows for the conduc-
tivity to be anisotropic. For that case, Plunian &
Alboussière (2020) found recently a solution which
is extremely remarkable in many respects. (i) Using
cylindrical coordinates, (r, φ, z), the three compo-
nents of the magnetic field depend only on radius r
and height z, but not on the azimuthal angle φ. (ii)
The velocity field is very simple, corresponding to a
rigidly rotating cylinder embedded in a conducting
solid at rest. (iii) The growth rate increases with
increasing conductivity without limit and does not
go to zero as for slow dynamos. (iv) The solution
is given in closed form.
Understanding the properties of such a dynamo

could be of interest not only for the realization of
laboratory dynamos, but also for dynamos in nearly
collisionless plasmas, where the vastness of the full
six-dimensional phase space constitutes a significant
technical challenge. It should be kept in mind, how-
ever, that the experimental realization of such an
anisotropically conducting medium may, in prac-
tice, involve a nonaxisymmetric design. This was
already discussed by Plunian & Alboussière (2020),

who suggested a composite of conducting layers ar-
ranged in a logarithmic spiral interlaced with poorly
contacting or insulating layers.
The connection between dynamos in a medium

of anisotropic conductivity and the homopolar disk
dynamo was already pointed out by Ruderman
& Ruzmaikin (1984). They considered a two-
dimensional dynamo in Cartesian coordinates, for
which Alboussière et al. (2020) found an analytic
solution. A feasible design of the homopolar disk
dynamo was presented by Priede & Avalos-Zúñiga
(2020).
Plunian & Alboussière (2020) emphasize that the

rotation must be retrograde. Dynamo action re-
quires then α > 0. For α < 0, dynamo action occurs
for prograde rotation.

2 The model

We adopt rigid rotation with angular velocity Ω0 in
the inner cylinder of radius R, with the material at
rest outside, i.e.,

Ω(r) = Ω0 f(r) (1)

where Ω0 is a constant and f(r) is a radial profile
modelling the change from finite to vanishing angu-
lar velocity in a continuous fashion, given by

f(r) = 1−Θ(r, d). (2)

We use the same profile function to also allow for a
radial truncation of the anisotropy using

ηij = η0 δij + η1(r) qiqj (3)

where η1 = η10f(r). We solve the uncurled induc-
tion equation,

∂Ai

∂t
= (u×B)i − ηijJj (4)
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We define a magnetic Reynolds number as

RΩ = Ω0R
2/η0, (5)

and the degree of anisotropy as

s = η10/η0. (6)

Plunian & Alboussière (2020) found dynamo action
for |RΩ| > 14.61 for s → ∞ using the optimal an-
gle α = 0.16π ≈ 29◦ and wavenumber kR = 1.1,
corresponding to a minimal height of Lz/R = 5.7.

Figure 1: psav_64x32r1 Anisotropic conductor
both in the interior and the exterior. Here, η0 =
0.0440, Lr = 3, and Lz = 3.9

3 Results

In Figure 1 we show the result for the case where
η1 = const. The critical maximal magnetic diffusiv-
ity is η0 = 0.0440, corresponding to RΩ = 22.7, and
the vertical wavenumber is kR = 1.6. In Figure 2 we
show the case where η1 → 0 for r > R. The critical
maximal magnetic diffusivity is η0 = 0.0218, corre-
sponding to RΩ = 45.9, and the vertical wavenum-
ber is kR = 1.7.

References

Alboussière, T., Drif, K., & Plunian, F., Dynamo
action in sliding plates of anisotropic electrcal
conductivity. Phys. Rev. E 2020, 101, 033107.

Figure 2: psav_I64x32k4 Isotropic conductor in
the exterior, outside the cylinder. Here, η0 =
0.0218, Lr = 3, and Lz = 3.6

Figure 3: p Growth rate and k.

Plunian, F., & Alboussière, T., Axisymmetric dy-
namo action is possible with anisotropic conduc-
tivity. Phys. Rev. Research 2020, 2, 013321.
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Table 1: Models with η1/η0 = 5, α = 28.8◦, and
kR = 1.1.

η0 η1 λ k
0.0445 0.0035
0.04607 -0.0004
0.0467 -0.0014

Table 2: Models with η1/η0 = 5, α = 30◦, and
kR = 1.1.

η0 Lz λ
1× 10−2 1 0.3221
1× 10−3 0.2 1.816
2× 10−4 0.06 2.9404
5× 10−5 0.03 3.6706
1× 10−5 0.03 3.6706
1e-5 0.010 3.3899
1e-5 0.012 3.9734
1e-5 0.014 4.155
1e-5 0.016 4.1450
1e-5 0.018 4.0539
5e-6 0.010 4.130
5e-6 0.008 3.883
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Table 3: Models with η1 = 0 for r ≫ 1 and η10/η0 =
5.

η0 Lr Lz λ
0.010 2 2.0 0.0886
0.014 2 2.0 0.0441
0.016 2 2.0 0.0208
0.018 2 2.0 −0.0030
0.018 2 2.1 +0.0024
0.018 2 2.2 +0.0066
0.018 2 2.4 +0.0123
0.018 2 2.6 +0.0155
0.018 2 2.8 +0.0171
0.018 2 3.0 +0.0177
0.018 2 3.2 +0.0176
0.020 2 3.2 +0.0071
0.022 2 3.2 −0.0035
0.022 2 3.0 −0.0059
0.022 2 3.3 −0.0027
0.022 2 3.4 −0.0021
0.022 2 3.5 −0.0016
0.022 2 3.6 −0.0012
0.022 2 3.7 −0.0009
0.022 2 3.8 −0.0007
0.022 2 3.9 −0.0006
0.022 2 4.0 −0.0006
0.022 3 4.0 −0.0002
0.022 4 4.0 −0.0011
0.022 3 4.2 −0.0007
0.022 3 3.8 −0.0002
0.0216 3 3.8 +0.0014
0.0216 3 3.7 +0.0014
0.0216 3 3.6 +0.0013
0.0218 3 3.6 +0.0001

Table 4: Models with η1 = 0 for r ≫ 1 and η10/η0 =
5.

dΩ dη η0 Lr Lz λ
0.02 0.02 0.0218 3 3.6 +0.0001
0.05 0.02 0.0218 3 3.6 −0.0013
0.05 0.05 0.0218 3 3.6 +0.0034
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Table 5: Models with anisotropy throughout, i.e.,
η1 = η10 = 5 η.

η0 Lr Lz λ
0.0218 3 1.8 +0.1010
0.0300 3 1.8 −0.0082
0.0300 3 2.0 +0.0051
0.0300 3 2.2 +0.0292
0.0294 3 1.8 −0.0080
0.0294 3 2.2 +0.0360
0.0306 3 2.2 +0.0220
0.0312 3 2.2 +0.0146
0.0324 3 2.2 +0.0018
0.0324 3 2.4 +0.0197
0.0340 3 2.6 +0.0197
0.0360 3 2.8 +0.0148
0.0380 3 3.0 +0.0095
0.0400 3 3.2 +0.0042
0.0410 3 3.2 −0.0018
0.0410 3 3.3 +0.0017
0.0410 3 3.4 +0.0046
0.0420 3 3.5 +0.0018
0.0425 3 3.6 +0.0016
0.0430 3 3.7 +0.0013
0.0435 3 3.8 +0.0008
0.0440 3 3.9 +0.0002
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