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Abstract
Solar and stellar dynamos shed small-scale and large-scale magnetic helicity of opposite signs. However,
solar wind observations and simulations have shown that some distance above the dynamo, both the small-
scale and large-scale magnetic helicities have reversed signs. With realistic simulations of the solar corona
above an active region now being available, we have access to the magnetic field and current density along
coronal loops. We show that a sign reversal in the horizontal averages of the magnetic helicity occurs when
the local maximum of the plasma beta drops below unity and the field becomes nearly fully force free.
Hence, this reversal is expected to occur well within the solar corona and would not directly be accessible to
in situ measurements with Parker Solar Probe or SolarOrbiter. We also show that the reversal is associated
with subtle changes in the relative dominance of structures with positive and negative magnetic helicity.

Keywords: Sun: corona — magnetic fields — solar wind — dynamo — Magnetohydrodynamics (MHD)
— Methods: numerical

1. Introduction
Magnetic helicity is an important invariant in ideal and

nearly ideal magnetohydrodynamics (MHD); see Biskamp
(2003) and the original work of Woltjer (1958). It plays
a crucial role in characterizing the topological complexity
of coronal magnetic fields (Berger & Field 1984) and it is
also responsible for the possibility of premature quenching
of the underlying dynamo (Gruzinov & Diamond 1994).
An obvious remedy to the dynamo problem is to let excess
magnetic helicity escape through the boundaries (Black-
man & Field 2000; Kleeorin et al. 2000), especially through
coronal mass ejections (Blackman & Brandenburg 2003)
and the solar differential rotation, which also acts on open
field lines rooted in magnetically quiet regions of the pho-
tosphere (DeVore 2000); see Berger & Ruzmaikin (2000)
for estimates of the relative importance of different contri-
butions to the total magnetic helicity flux. Much of the
magnetic helicity transported by differential rotation out
through the surface has entered through the equator; see
Brandenburg & Sandin (2004). Its contribution to the net
magnetic helicity loss may therefore be subdominant. Nev-
ertheless, estimates for the Sun invariably result in a total
loss of ∓1046 Mx2 per 11-year cycle (Berger & Ruzmaikin
2000; DeVore 2000; Brandenburg & Sandin 2004; Branden-
burg 2009) in the northern and southern hemispheres, re-
spectively. One would therefore expect to see that the mag-
netic helicity shed at the solar surface agrees with what is
passing through the solar wind at larger distances. How-
ever, this does not seem to be the case, because in the
solar wind, the magnetic helicity was found to have mostly
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a positive sign in the northern heliosphere (Brandenburg
et al. 2011), whereas at the solar surface it is mostly neg-
ative in the north (Seehafer 1990). A similar result was
also obtained in numerical simulations of dynamos with a
coronal exterior (Warnecke et al. 2011, 2012). This unex-
pected behavior is what is referred to as magnetic helicity
reversal. Such reversals have also been found in analytic so-
lutions of simple dynamo models with a force-free exterior
(Bonanno 2016) and in mean-field models with magnetic
helicity fluxes included (Brandenburg et al. 2009).

Numerical simulations are currently the best way of test-
ing and studying in detail the idea of the magnetic helic-
ity reversal. Here we consider the magnetic helicity that
was found to emerge from the MHD simulations of Bour-
din, Bingert, & Peter (2013, hereafter BBP), who used a
solar magnetogram of an active region (AR) as boundary
condition. Reconnection and the associated coronal heat-
ing was driven by random footpoint motions, as envisaged
in the early work of Parker (1972). The simulations of
BBP used the Pencil Code1 and covered a larger domain
(2352× 156 Mm3) compared to earlier ones with the Stag-
ger Code (Gudiksen & Nordlund 2002, 2005a,b).

The AR model of BBP is observationally driven by
line-of-sight magnetograms taken from Hinode/SOT-NFI
(Kosugi et al. 2007; Tsuneta et al. 2008). The model pro-
vides a sufficient amount of energy to the corona (Bourdin
et al. 2015). It also compares well with various coronal ob-
servations (BBP) and shows similarities to coronal scaling
laws, e.g., for the temperature along loops that were de-
rived from earlier observational and theoretical works (cf.

1 https://github.com/pencil-code
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Bourdin et al. 2016).
The coronal EUV emission is synthesized from the MHD

model using the Chianti atomic database (Dere et al. 1997;
Young et al. 2003) using the method of Peter et al. (2004,
2006). The 3D structure of the AR loop system matches the
reconstruction from Stereo observations. Also the plasma
flow dynamics along those loops matches the Doppler shift
pattern observed by Hinode/EIS (Culhane et al. 2007) in
the coronal Fe XII emission line.

The magnetograms for driving these simulations from the
bottom boundary give just the line-of-sight magnetic field,
or Bz near disk center. During the first hour of solar time,
we do not yet apply any large-scale driving motions de-
rived from the observed movements of magnetic patches in
the photosphere. We only apply the horizontal small-scale
velocities that mimic granulation. Therefore, these photo-
spheric horizontal motions are purely stochastic and sta-
tistically mirror symmetric, and there is no obvious mecha-
nism to break the statistical mirror symmetry of the model.
In particular, there is no Coriolis force or differential rota-
tion. Nonetheless, it turns out that helicity emerges readily
within the initial phase of our model.

Although there is no direct injection of helicity, the model
can still produce magnetic helicity through a complex ar-
rangement of multipolar spots (Bourdin & Brandenburg
2018). We use a magnetogram of a small and stable AR
observed during 2007 November 14 in the southern hemi-
sphere. Indeed, we find helicity, as is readily demonstrated
by looking at the vertical profile of the mean current helic-
ity density, 〈J ·B〉xy, where J = ∇×B/µ0 is the current
density, B is the magnetic field, µ0 is the vacuum perme-
ability, and 〈...〉xy denotes horizontal averages. We find
that the profiles generally show a sign reversal within the
first 5–15 Mm above the surface. This is equally remarkable
because the upper regions are topologically connected with
the lower ones through the same large-scale structures. Any
small-scale magnetic fields seem to be interspersed within
other structures and are still associated with the large-scale
magnetic loops extending from one footpoint to the other.

The purpose of this work is to quantify the magnetic
helicity reversal in detail and to associate it with coronal
heating along EUV-emissive loops. We further characterize
the magnetic helicity reversal in spectral space and demon-
strate that it occurs in different wavenumber intervals at
the same height.

2. Our approach
In the present work we use a snapshot from the simula-

tions of BBP to analyze the production and vertical vari-
ation of magnetic and current helicity densities as well as
their spectra. Before discussing those aspects in detail, we
begin with the basic equations solved in BBP and present
a brief summary of the physical aspects properties of those
simulations.

2.1. Basic equations
BBP solved the continuity equation, the equation of mo-

tion, the induction equation, and an energy equation, which
includes the necessary energy sinks to get realistic and self-

consistent coronal heating and cooling terms:

D ln ρ
Dt

=−∇ · u, (1)

ρ
Du

Dt
=−∇P + ρg + J ×B + ∇ · (2νρS), (2)

ρ T
Ds
Dt

=−∇ · F − ρ2Λ(T ) + µ0ηJ
2 + 2ρνS2, (3)

∂A

∂t
=u×B − µ0ηJ , (4)

where P = (R/µ) ρT is the gas pressure, R is the universal
gas constant, µ = 0.67 is the mean atomic mass, T is the
temperature, Fi = −ρcPχij∇jT is the conductive heat flux,
s = cV lnP − cP ln ρ+s0 is the specific entropy, s0 is a con-
stant, cP and cV are the specific heats at constant pressure
and constant volume, respectively, χij = χ0δij +χSpitzB̂iB̂j

is the thermal diffusivity, B̂ is the unit vector of the mag-
netic field, ν is the kinematic viscosity, η is the magnetic dif-
fusivity, χSpitz is the Spitzer field-aligned heat conductivity,
χ0 is an isotropic contribution, g as the gravitational ac-
celeration, and S as the traceless rate-of-strain tensor with
the components Sij = 1

2 (ui,j + uj,i) − 1
3δijuk,k. Here we

solve for A, because then B is automatically divergence
free. Instead of solving for s, we use the logarithmic tem-
perature lnT , which is directly related to s and ln ρ. Using
the logarithmic density ln ρ, we are able to capture many
orders of magnitude in the density stratification that our
model atmosphere covers.

2.2. Physical details about the simulations
For the radiative cooling function ρΛ(T ), we use a real-

istic tabulation of Λ provided by Cook et al. (1989). In
that work, the important emission peak from highly ion-
ized iron lines is included, which efficiently cools the model
corona. The characteristic half-time of this cooling is below
30 minutes.

During the first 35 minutes of physical time, however,
this loss term is turned off together with the heat conduc-
tion along the field. This is to prevent excessive cooling
of the corona during the initial phase in which the gran-
ular motions cause magnetic disturbances that still need
to propagate from the photosphere into the corona. The
simulation is then continued for another about 35 minutes
after all physical terms in the equations are turned on. Fur-
ther details about the switching on can be found in Bourdin
et al. (2014) and Bourdin (2014). We use here data from a
fully developed state at 63 minutes physical time.

Unlike ideal models of MHD, where η = ν = 0 and
dissipation is modeled by highly nonlinear diffusion opera-
tors that cannot easily be stated in concise form and effec-
tive Reynolds or Lundquist numbers are difficult to spec-
ify, we use in our models constant values of ν, η, and also
χ0. The value of the magnetic diffusivity η = 1010 m2 s−1

(= 1014 cm2 s−1) is about 8 orders of magnitude bigger than
estimated for the solar corona. This choice is required for
numerical stability and for having a grid Reynolds number
near unity. On the other hand, we use a realistic value for
the viscosity, ν = 1010 m2 s−1, which results in a Prandtl
number of unity because η = ν. However, as pointed out
by Rempel (2017), the relative importance of Ohmic and
viscous heating changes toward the latter when realistically
large values of the magnetic Prandtl numbers are taken into
account; see Brandenburg (2014) for the relation between
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Figure 1. Horizontal averages of the gauge-dependent magnetic he-
licity, the gauge-independent relative helicity, and the current helicity
normalized to B2 versus height.

the dissipation ratio and the magnetic Prandtl number.
The isotropic heat conduction is set to χ0 = 5× 108 m2 s−1

(= 5 × 1012 cm2 s−1). We use a realistic coronal value of
κSpitz = 1.8 · 10−10 T 5/2/ ln ΛC with ln ΛC = 20 being the
Coulomb logarithm. We obtain the field-aligned Spitzer
conductivity as

χSpitz =
1
cP
κSpitzT

5/2/ρ. (5)

2.3. Boundary conditions
The model is periodic in the horizontal directions and

employs a potential-field extrapolation on the top bound-
ary. To formulate the potential-field boundary condition,
we define the Fourier-transformed magnetic vector poten-
tial as

Ã(kx, ky, z, t) =
∫

A(x, y, z, t) eik·rd2r, (6)

where k = (kx, ky) and r = (x, y). On the lower and upper
z boundaries, we thus have

∂Ã

∂z
= −|k|Ã(kx, ky, z∗, t), (7)

where z∗ denotes the locations of the boundaries. Apart
from this, the top boundary is closed for any plasma flows
and thermally insulating.

At the bottom boundary, realistic atmospheric tempera-
ture and density are imposed. We adopt Equation (7) also
at the bottom boundary, but keep the minus sign on the
right-hand side. This corresponds to an inverted potential-
field extrapolation, whereby contrasts in the magnetic field
are increased, instead of smearing them out like for the top
boundary. This mimics the effect of flux tubes becoming

narrower when entering below the photosphere. Because
this increase of contrast would quickly lead to artefacts,
like wiggles in the Bz component, this increase of contrast
is limited to about one third of the pressure scale height
some 100 km below the photosphere, so that artefacts in
Bz are avoided. With this method, we obtain the ghost
zones for all three components of A just beneath the lower
photospheric boundary.

2.4. Gauge dependence of magnetic helicity
In general, the local magnetic helicity density

HM = A ·B (8)

depends on the gauge of the vector potential A. On the
lower and upper boundaries of the simulation domain, our
magnetic field is driven toward a potential state. The re-
sulting A at these boundaries is in the Weyl gauge. How-
ever, the gauge could in principle still drift because we have
no boundary restrictions other than periodicity along x and
y. Therefore, we must check if such a gauge drift occurs and
if it significantly changes our simulation results.

We use the relative helicity from Equation (5) of Finn &
Antonsen, Jr. (1985), similar to the formulation of Berger
& Field (1984), to obtain a gauge-independent helicity as:

HM,rel(z) =
∫∫∫ ∞

z

1
2

(A+Apot)·(B−Bpot) dz dy dx (9)

Apot and Bpot are the non-helical potential fields extrap-
olated from the known state of Bz(z) at the height z. On
the upper boundary z = Lz, our magnetic field is already
almost potential and very close to the non-helical extrapo-
lation Bpot(Lz). The magnetic helicity therefore vanishes
toward the top of the domain and we may omit the vol-
ume from Lz to ∞ in the integrals of Hrel. Our factor
of one half compensates for the addition of the two simi-
lar quantities A and Apot in Equation (9) which allows the
relative magnetic helicity to be quantitatively similar the
magnetic helicity HM . Because the components of B and
Bpot that are normal to all non-periodic boundaries (here
the top and bottom of the simulation domain) are either
identical by construction or their differences are negligible,
Equation (9) gives us a gauge-independent relative helicity
(Berger & Field 1984; Finn & Antonsen, Jr. 1985).

To compare a vertical profile of HM and HM,rel, we com-
pute the horizontal averages of both quantities. To get
〈HM (z)〉xy of the magnetic helicity density HM (z), we sim-
ply average over horizontal slices from the height z and
with a thickness of ∆z equal to our vertical grid spacing.
For the profile of HM,rel(z), we simply subtract the volume
integrals above the heights z and z + ∆z. Each integral
uses different potential fields, A,Bpot,z and A,Bpot,z+∆z,
which we extrapolate from the known states Bz(z) and
Bz(z + ∆z), respectively. The average relative magnetic
helicity density contained in this xy-layer is then just the
difference

〈HM,rel〉xy(z) =
HM,rel(z)−HM,rel(z + ∆z)

Vxy∆z
, (10)

which we normalize to the volume of the layer Vxy∆z to be
comparable to 〈HM (z)〉xy(z); see Figure 1.

We find that the horizontal averages of our magnetic he-
licity density HM and the relative helicity density HM,rel

are very similar. Both magnetic helicities do show sign re-
versals that are located roughly at the same height, like the
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Figure 2. (a) magnetic helicity for the full FOV, the AR core, and only the QS area as a profile of horizontal averages versus height. (b)
magnetic helicity normalized to B2. (c) plasma beta value ranges for AR and QS.

maxima and minima; see dotted and red lines in Figure 1.
The vertical profile of the current helicity, HC = µ0j ·B,
shows a qualitatively similar trend also with a sign reversal
in the corona, albeit higher up; see the blue dashed line.
We show that our magnetic helicity density is therefore not
significantly influenced by the gauge drift along the periodic
directions. Therefore, we may continue to use the gauge-
dependent magnetic helicity HM as a good proxy of the
gauge-independent relative helicity HM,rel.

2.5. Magnetic and current helicity spectra
Through most of this work, we show both current

and magnetic helicity. In particular, we consider two-
dimensional current and magnetic helicity spectra defined
as

HC(k) = 1
2

∑
k−<|k|≤k+

(
J̃ · B̃∗ + J̃∗ · B̃

)
, (11)

HM(k) = 1
2

∑
k−<|k|≤k+

(
Ã · B̃∗ + Ã∗ · B̃

)
, (12)

where k± = k± δk/2 and δk = 2π/L with L = 235 Mm be-
ing the size of the magnetograms and tildes denote, again,
Fourier transformation. Under horizontally isotropic con-
ditions, we have

µ0HC(k) = k2HM(k), (13)

i.e., the current helicity spectrum is directly related to the
magnetic helicity spectrum, but weighted with a k2 factor,
so high wavenumber contributions in HM(k) get enhanced.

It is sometimes convenient to define the magnetic and
current helicity densities as

HM = A ·B, HC = J ·B. (14)

Note, in particular, that at each value of z, we have∫
HM dk = 〈HM〉xy,

∫
HC dk = 〈HC〉xy. (15)

In the following, however, we often retain the more explicit
notation in terms of A ·B and J ·B.

3. Results
3.1. Magnetic helicity reversal
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Figure 3. Force-freeness parameters κJ·B and κJ×B for the AR core
area and the complementary QS area. At z = 10 Mm, the magnetic
field is nearly fully force free, so κJ×B → 0 and κJ·B → 1.

To set the stage, we show in Figure 2 vertical pro-
files of 〈HM〉xy, 〈HM〉xy/〈B2〉xy, and the plasma beta,
2µ0〈P 〉xy/〈B2〉xy (cf. Bourdin 2017). For comparison, we
also plot the corresponding profiles for averages over the
AR core and the complementary quiet sun (QS) area. For
the plasma beta, we also show minimum and maximum val-
ues (dotted). In the lower part, for z . 5 Mm, 〈A · B〉xy

is positive, while for z & 5 Mm it is negative. In fact, for
the full field of view (FOV), and in a small z interval very
close to the lower boundary, the sign of 〈A ·B〉xy changes
once again. We return to this aspect again later.

The main focus of this paper is instead the sign reversal
of 〈A ·B〉xy at z ≈ 5 Mm. This happens at a height where
the magnetic field begins to become almost force free; see
Figure 2(a). To assess this quantitatively, we plot in Fig-
ure 3 vertical profiles of the characteristic nondimensional
wavenumbers κJ·B and κJ×B defined through (Warnecke
& Brandenburg 2010)

κ2
J·B ≡

〈(J ·B)2〉xy

〈J2B2〉xy
, κ2

J×B ≡
〈(J ×B)2〉xy

〈J2B2〉xy
. (16)

Note that κ2
J·B +κ2

J×B = 1, so the two are complementary
in the sense that when κJ×B → 0, we have κJ·B → 1, and
vice versa. Looking at Figure 3, we see that in 5 Mm .
z . 50 Mm, the magnetic field is indeed nearly force free
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Figure 4. Visualization of coronal loops (field lines) with EUV emission (orange–green volume rendering) above an AR magnetogram (grayscale
at the bottom). The semi-transparent layer at 5.5 Mm shows the magnetic helicity density with positive to negative values color-coded from red
to blue, saturated at ±0.2 · 10−3 T2Mm. The black circles mark where the field lines cross this horizontal layer. Three vertical opaque planes cut
through the cross-section of the loops in the core of the AR and indicate also the magnetic helicity density but saturated at ±0.1 · 10−3 T2Mm.
See Section 3.2.

and κJ·B reaches values close to unity, the largest possible
value. Consequently, κJ×B is very small in this range for
AR and QS.

3.2. Magnetic helicity reversal within a flux rope
In Figure 4, we show a visualization of A ·B. We see that

the magnetic helicity density changes in a horizontal plane
at approximately 5 Mm. We also show J ·B in several yz
planes through two particularly prominent magnetic field
lines labeled as CL1 and CL2, where CL1 is a EUV-emissive
loop in the core of the AR. While one of the two field lines
passes through regions where A ·B is positive (red color)
throughout, the other field line traverses yz planes in which
A · B is positive near the apex of the line (denoted by
CL2) and negative in the xy plane through 5 Mm (denoted
by CL1). This shows that at least one magnetic helicity
reversal is possible right in the middle of a field line or
loop.

The loops SL1–3 connect from one of the main polarities
to the periphery of the AR. SL1–3 show strongly asymmet-
ric heating and EUV-emissivity. We find that the coronal
heating is particularly strong on that side, where SL1–3 are
rooted in strong negative magnetic helicity (blue in Fig-
ure 4). The other end of these side loops connects to low
helicity areas and there we also see less heating and EUV-
emissivity. Note that under the assumption of horizontal
isotropy leading to Equation (13), both, the current helic-
ity and magnetic helicity spectra are related. In particular,

since the spectral magnetic helicity reflects the large-scale
properties of current helicity, it corresponds to the integral
over all large-scale patches of the current helicity density.

We also like to mention that the strongest heated core-
loop CL1 is rooted in two strong positive helicity regions
(red in Figure 4) and in the same time, we find a nega-
tive helicity (blue) in near the loop apex. While we do not
want to claim a direct relation of magnetic helicity and the
coronal Ohmic dissipation of currents that heats our model
loops, we need to notice that local injection of helicity is a
way of transporting magnetic energy to the corona and in-
duce currents there. Nonetheless, this could only tell about
the volumetric heating and the EUV-emissivity is of course
strongly modulated by density variations. In particular,
when the density is low, the heating per particle is high.
Therefore, one would not see a clear one-to-one correlation
of helicity and the coronal heating or EUV-emission.

3.3. Spectral magnetic helicity reversal
The study of magnetic helicity spectra has revealed im-

portant insights about the nature of the turbulent dynamo;
see Brandenburg & Subramanian (2005) for a review. Ow-
ing to magnetic helicity conservation, the α effect in mean-
field electrodynamics (Moffatt 1978; Krause & Rädler 1980)
can only produce positive and negative magnetic helicities
to equal amounts, but at different length scales (Seehafer
1996; Ji 1999). This leads to a bihelical magnetic field
(Blackman & Brandenburg 2003; Yousef & Brandenburg
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2003) with one sign at the scale of the energy carrying ed-
dies (referred to as “small scale”) and another sign at the
scale of the domain (referred to as “large scale”). In the
solar wind, the spectrum is also found to be bihelical, but
the signs at both small and large scales are reversed (Bran-
denburg et al. 2011). In the MHD model, the photospheric
structures are “small scale” and smear out when reaching
higher atmospheric layers. Coronal loops then define the
“large scale” structures. The basic question is now whether
this apparent swap in sign at small and large scales hap-
pens abruptly at one particular height and across all scales,
or gradually through an effective shift of the spectrum in
wavenumber, as perhaps suggested by the idea of an inverse
cascade behavior, where the height in the domain plays the
role of time in a decaying MHD simulation; cf. Christensson
et al. (2001) for an example in the cosmological context.

The result is shown in Figure 5 where we compare visu-
alizations of both A ·B and J ·B in six horizontal planes
with the corresponding spectra k2HM(k) and HC(k) ob-
tained in the same six planes. Note first of all that the
two spectra look similar in shape and magnitude at cor-
responding heights, suggesting that the relation between
them, as given in Equation (13) for isotropic turbulence, is
reasonably well obeyed. The spectra vary over more than
ten orders of magnitude, falling steeply with wavenumber,
with its largest values corresponding to the smallest few
wavenumbers which dominate the overall sign of the to-
tal integrated magnetic and current helicities. In the first
three slices up to z ≈ 5 Mm, the dominant signs of k2HM(k)
and HC(k) are negative for k > 3 Mm−1 and positive for
k < 3 Mm−1. Above this layer, the sign of k2HM(k) re-
verses abruptly in the sense that it is now negative (pos-
itive) for k smaller (larger) than 3 Mm−1. However, the
sign of HC(k) varies more gradually with height, showing a
similar reversal only at z ≈ 13 Mm; see also Figure 7. Inter-
estingly enough, at a fixed height, both below and above the
transition layer at z ≈ 5 Mm where the sign reversal of the
magnetic helicity occurs, the spectrum k2HM(k) changes
its sign in k-space at roughly the same value of k, namely
at k ≈ 3 Mm−1. This supports the notion that this phe-
nomenon is related to a change in the relative dominance
of structures of opposite sign of J ·B as discussed above in
Section 3.2, and is not due to a shift in k, which would be
more reminiscent of an inverse cascade-type behavior.

We reiterate that HM(k) is gauge independent. It is
therefore important to emphasize that the magnetic and
current helicity reversals are also seen in specific wavenum-
ber intervals (e.g., for k larger or smaller than 3 Mm−1).
Moreover, the reversals occur at the same height as those
in A ·B. This supports the notion that the sign change in
A ·B is not compromised by its gauge dependence; see also
Figure 1 and Section 2.4. Furthermore, the upper bound-
ary condition Equation (7) always tends to relax A back to
zero, as any contrasts get smeared out by the potential-field
extrapolation. The Ax and Ay components are set through
the lower boundary condition to match the observed Bz

component. Hence any drift in A will be suppressed.

3.4. Nearly perfectly field-aligned currents
Within the lower corona, in the range 5 Mm . z .

50 Mm, the plasma beta is around 10−2 or less; see Fig-
ure 2(c). The magnetic field is here nearly fully force free;
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Figure 7. Current helicity for AR and QS versus height.

Figure 3. In this range, the angle

^(J ,B) = arccos (J ·B/ (|J | |B| )) (17)

between J and B is on average very small. Closer to the
surface, for z < 5 Mm, larger values can be found, but
even then the angles are hardly much larger than ±2◦; see
Figure 6. Only above the active region, larger angles of up
to ±8◦ can be found.

3.5. An additional current helicity reversal
Very near the surface, we have seen in Figure 2 for the

full FOV an additional reversal in magnetic helicity very
close to the surface. Looking at a similar plot of current
helicity, we see that this secondary reversal is now more
pronounced and includes even the AR. In current helicity,
the secondary reversal is seen at z ≈ 2 Mm. Furthermore,
the primary reversal occurs higher up at about 13 Mm. The
reason for this secondary reversal becomes more plausible
when looking at the horizontal distribution of J ·B in Fig-
ure 7, which shows that there are always nearly equally
many and nearly equally large patches of both helicities.
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Figure 8. Correlation (blue) and anti-correlation (red) in the mag-
netic and current helicity. The sampling height z and the percentage
of correlated points r is given for each panel.

Thus, the dominance of one sign over the other depends on
small changes in the relative strengths of structures with
positive and negative contributions to J · B. The second
reversal in current helicity is obviously a real phenomenon
in the present simulations, but it is unclear whether it is
also a generic phenomenon of stratified and magnetized at-
mospheres in general. Furthermore, in magnetic helicity, it
was only seen in the full FOV and not above the AR. Com-
paring the maps of magnetic and current helicities shown
in Figure 5, we see that HC is more noisy and therefore the
additional reversal does not appear to be a systematic fea-
ture. More important is to note that the magnetic helicity
associated with the AR is positive near the surface, exactly
as would be expected for the southern hemisphere based on
an α effect-driven turbulent dynamo.

Looking once more at Figure 5, it becomes clear that the
negative sign of magnetic helicity in the uppermost layers
can be associated with a single structure that persists in
all the horizontal maps of A ·B between 3 Mm and 22 Mm.
This persistent helicity patch is located in the AR core near
the legs of the loop CL1 that are indicated by black circles in
Figure 5. Structures of opposite sign tend to be associated
with the periphery of the core of the AR.

3.6. Isotropy assumption for magnetic helicity spectra

As discussed above, under the assumption of isotropy,
the magnetic and current helicity spectra are related to
each other through Equation (13). It was already clear from
Figure 5 that this assumption holds reasonably well. The
purpose of this section is to analyze this in more detail.
Therefore, we show in Figure 8 scatter plots of µ0HC(k) ver-
sus k2HM(k) for the same six height as in Figure 5. It turns
out that most of the data points lie on the diagonal, which
covers about eight orders of magnitude. Some of the data
points, however, have mutually opposite signs, which cor-
responds to an anticorrelation. Thus, Equation (13) holds
primarily for the moduli of HC(k) and HM(k).

The fact that some of the data points have the opposite
sign was already evident when examining the colors in Fig-
ure 5. Below z = 5 Mm, about 80% of the points have the
expected sign, but at higher levels, the number of excep-
tions increases. For large values of |HM(k)|, and especially
for z > 5 Mm, there is a noticeable number of data points
below the diagonal, i.e., |HC(k)| is somewhat smaller than
expected.

It is clear from Figure 5 that HM(k) shows fewer sign re-
versals with k than HC(k) and shows a more systematic
behavior in that sense. One would therefore be tempted to
trust the magnetic helicity spectra more than the current
helicity spectra. However, two other considerations come
to mind. First, both spectra are intrinsically noisy and one
can expect meaningful results only after some degree of av-
eraging. This could be accomplished by averaging the spec-
tra over broader wavenumber bins. Second, Equation (13)
is only valid under the assumption of isotropy. Again, this
statement only applies in the statistical sense, i.e., after suf-
ficient averaging. This is particularly evident in the present
case where there is only one active region with its result-
ing coronal structure. In view of these caveats, one must
say that the agreement found in Figure 8 is actually rather
remarkable.

4. Conclusions
The present work has elucidated the phenomenon of a

magnetic helicity reversal above a magnetized layer in gen-
eral and along a coronal loop in particular. We have seen
that this reversal is the result of a change in the relative
dominance of structures of opposite magnetic helicity. As a
consequence, in a particular simulation, this change in sign
happens abruptly. It also happens at all wavenumbers at
the same height. Of course, given that this change of sign
depends on the subtle dominance of structures of one sign
over the other, we should expect that in other simulations
or at other times in the same simulation, such a reversal
can occur at different heights. However, we also have found
that the magnetic helicity reversal happens near the loca-
tion where the plasma beta changes from values above unity
to values below unity, i.e., when the field becomes almost
force free; see the horizontal gray dashed line in Figure 2,
as well as the crossing red and black lines in Figure 3. This
gives us for the first time a fairly strong handle on this re-
markable phenomenon of a magnetic helicity reversal above
a dynamo-active region.

It is important to note that the helicity in the lower at-
mosphere of our simulations has the sign expected for the
southern hemisphere, even though there is neither a direct
injection of helicity nor a mechanism to break the north-
south symmetry in the model, except for the imposed pho-
tospheric magnetogram. A possible explanation is that the
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dynamo and the differential rotation inside the Sun leave
imprints in the photospheric magnetic fields. These should
then be sufficient to infer the signs of the average helici-
ties in the lower and upper corona. As shown in Bourdin
& Brandenburg (2018), any arrangement of more than two
spots of unequal strength implies a non-mirrorsymmetric
pattern, which can give rise to a certain sign of magnetic
helicity in the force-free magnetic field above the surface.

Thinking now about the Sun and the solar wind, we ex-
pect the magnetic helicity reversal to occur well within the
solar corona and not between the corona and the location
of the Earth. Thus, we expect that the magnetometers
on Parker Solar Probe and SolarOrbiter will measure the
same sign of magnetic helicity as what is observed in the
Earth’s neighborhood, which is opposite to what is found
at the solar surface. The sign of course should flip, if one
of the measurement points is magnetically connected to the
other magnetic hemisphere of the Sun, which typically hap-
pens if one crosses the heliospheric current sheet (HCS).
This becomes more likely during high solar activity, be-
cause then the HCS may strongly deviate from the ecliptic
plane. The perhaps only feasible way to verify a magnetic
helicity reversal so close to the surface is by determining the
wavelength at which Faraday depolarization from intrinsic
coronal emission is minimized (Brandenburg et al. 2017).
This would require observations at infrared and millimeter
wavelengths just above the limb.
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