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ABSTRACT

We study the effects of ambipolar diffusion (AD) on hydromagnetic turbulence. We
consider the regime of large magnetic Prandtl number, relevant to the interstellar
medium. In most of the cases, we use the single fluid approximation where the drift
velocity between charged and neutral particles is proportional to the Lorentz force.
In two cases we also compare with the corresponding two-fluid model, where ioniza-
tion and recombination are included in the continuity and momentum equations for
the neutral and charged species. The magnetic field properties are found to be well
represented by the single fluid approximation. We quantify the effects of AD on total
and spectral kinetic and magnetic energies, the Ohmic and AD dissipation rates, the
statistics of the magnetic field, the current density, and the linear polarization as mea-
sured by the rotationally invariant E and B mode polarizations. We show that the
kurtosis of the magnetic field decreases with increasing AD. The E mode polarization
changes its skewness from positive values for small AD to negative ones for large AD.
Even when AD is weak, changes in AD have a marked effect on the skewness and
kurtosis of E, and only a weak effect on those of B. These results open the possibil-
ity of employing E and B mode polarizations as diagnostic tools for characterizing
turbulent properties of the interstellar medium.
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1 INTRODUCTION

In the cool parts of the interstellar medium (ISM), the ion-
ization fraction is low, so ions and neutrals move at different
speeds, whose difference is given by the ambipolar diffusion
(AD) speed. Particularly insightful is the single fluid model
in the strong coupling approximation for cases with neg-
ligible electron pressure. It is then easy to see that there
is not only enhanced diffusion, but there is also a contri-
bution to the electromotive force proportional to the mag-
netic field, akin to the α effect in mean-field electrodynamics.
Both terms increase with increasing magnetic field strength,
making the problem highly nonlinear. In particular, AD can
lead to the formation of sharp structures (Brandenburg &
Zweibel 1994), an effect that has also been seen in the full
two-fluid description (Brandenburg & Zweibel 1995). It was
already known for some time that, unlike Ohmic diffusion,
AD does not contribute to terminating the turbulent mag-
netic cascade, even though both imply a removal of magnetic
energy. This became obvious when Brandenburg & Subra-
manian (2000) simulated the hydromagnetic forward and
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inverse cascades in the presence of AD (see their Figure 2)
to understand its effect in the context of helical turbulent
dynamos when using it as a nonlinear closure, as was done
by Subramanian (1999). The presence of magnetic helicity in
this case made the interpretation of the results more compli-
cated, because the α effect-like term of AD might then have
been responsible for the apparent lack of diffusive behavior.
For this reason, it is important to repeat similar calculations
without helicity, i.e., when there is only small-scale dynamo
action.

The purpose of the present paper is to study AD in
the context of a small-scale dynamo, i.e., one that operates
in non-helical homogeneous turbulence. Here, as discussed
above, the α effect-like term proportional to the magnetic
field is expected to be negligible, because it involves the
current helicity density, and there is no reason for it to be of
significant magnitude when the turbulence is nonhelical. It
is therefore not obvious in which way AD affects the forward
turbulent cascade of kinetic and magnetic energies.

The problem of a nonhelical dynamo in the presence of
AD has been addressed by Xu & Lazarian (2016) and Xu
et al. (2019). They used a two-fluid description, which can
have the advantage that no severe (diffusive) time-step con-
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2 Axel Brandenburg

straint occurs when the magnetic field reaches saturation. In
their numerical work, Xu et al. (2019) focused on verifying
the linear growth during the damping stage of the dynamo
near saturation, which Xu & Lazarian (2016) found in their
earlier work. However, ionization and recombination reac-
tions are here neglected. Those turn out to be important
for allowing the formation of sharp structures around mag-
netic nulls. Recombination provides a sink for the charged
species near magnetic nulls. These species (ions and elec-
trons) continue to concentrate the field further, recombine
at the null, and drift outward as neutrals (Brandenburg &
Zweibel 1995). This effect is important for alleviating an
otherwise excessive electron pressure near magnetic nulls,
which would counteract the formation of sharp structures.
We demonstrate the equivalence between the single fluid and
the two-fluid approaches in two particular cases that are of
relevance to the present paper.

For the purpose of the present work, we are partic-
ularly interested in turbulent dynamos at large magnetic
Prandtl numbers, which is relevant for modelling the inter-
stellar medium (ISM). In this regime, the viscosity is large
compared with the magnetic diffusivity. This leads to a trun-
cation of the kinetic energy spectrum at a wavenumber that
is well below that of the magnetic energy; see the simula-
tions of Haugen et al. (2004) and Schekochihin et al. (2004).
In the ISM, the value of PrM is of the order of 1011 (Bran-
denburg and Subramanian 2005), but here we will only be
able to simulate values of PrM of about a few hundred. Nev-
ertheless, we may then already expect to see a clear effect
on the magnetic dissipative effects and, in particular, on the
kinetic to magnetic energy dissipation ratio, which is known
to scale like Pr0.3M when there is small-scale dynamo action,
and like Pr0.7M when there is large-scale dynamo actions; see
Brandenburg (2014). It is a priori unclear how AD affects
this dissipation ratio. Again, within the strong coupling ap-
proximation, we would expect that larger magnetic diffu-
sion enhances the magnetic energy dissipation. Naively, this
would correspond to the case of a reduced effective value
of PrM, so the effective value of the ratio ǫK/ǫM should de-
crease. Such a result might still be compatible with the usual
PrM scaling if PrM is interpreted as an effective magnetic
Prandtl number that would then also be reduced by AD. It
will then be interesting to see how the individual values of
ǫK and ǫM change. In this context, it must be emphasized
that in the statistically steady state, ǫM must be equal to the
work done against the Lorentz force, which corresponds to
the rate of kinetic to magnetic energy conversion. Therefore,
a change in the dissipative properties both through ohmic
resistivity and through AD must also affect the kinetic to
magnetic energy conversion. These questions will therefore
also be clarified in the present work.

2 THE MODEL

2.1 The two-fluid description

Before stating the governing equations in the single fluid
approximation, which will be adopted for most of the calcu-
lations presented below, we first discuss the underlying two-
fluid equations for the neutral and ionized species (Draine
1986). We emphasize that the ionized fluid component con-
sists of ions and electrons, both of which are assumed to be

tightly coupled to each other. We give the governing equa-
tions here in the form as used by Brandenburg & Zweibel
(1995),

∂A

∂t
= ui ×B − ηµ0J , (1)

ρi
Dui

Dit
= J×B−∇pi+∇ · (2νρiSi)−ρ(ρiγ+ζ)(ui−u), (2)

ρ
Du

Dt
= ρf −∇p+∇ · (2νρS) + ρi(ργ + αρi)(ui − u), (3)

D ln ρi
Dit

= −∇ · ui + ζρ/ρi − αρi, (4)

D ln ρ

Dt
= −∇ · u− ζ + αρ2i /ρ, (5)

where D/Dit = ∂/∂t+ ui ·∇ and D/Dt = ∂/∂t+ u ·∇ are
the advection operators for the ionized and neutral species,
respectively, ui and u are their velocities, ρi and ρ are their
densities, pi and p are their pressures, ζ is the rate of ion-
ization, α is the rate of recombination, γ is the drag co-
efficient between ionized and neutral fluids, A is the mag-
netic vector potential, B = ∇ × A is the magnetic field,
J = ∇×B/µ0 is the current density, µ0 is the vacuum per-
meability, Sij = 1

2
(ui,j+uj,i)− 1

3
δij∇·u are the components

of the traceless rate of strain tensor S, with a roman sub-
script i in Equation (2) denoting the analogous expression
for the ionized fluid, and f is a nonhelical monochromatic
forcing function with wavevectors k(t) that change randomly
at each time step and are taken from a band of wavenumbers
around a given forcing wavenumber kf . The forcing function
is proportional to k × e, where e is a random unit vector
that is not parallel to k; see Haugen et al. (2004) for details.
We adopt an isothermal equation of state with equal and
constant sound speeds cs for the ionized and neutral compo-
nents, such that their pressures are given by pi = ρic

2
s and

p = ρc2s , respectively.

2.2 Single fluid approximation

In most of this work, we adopt the single fluid approxima-
tion, i.e., we assume that the electron pressure (which is
equal to pi) can be omitted and that the term ρρiγ(ui − u)
in Equation (2) is being balanced by J × B. We can then
replace ui in Equation (1) by u + uAD, where uAD =
(τAD/ρ0)J ×B is the ambipolar drift velocity with τAD =
(γρi0)

−1 being the mean neutral–ion collision time, and ρi0
and ρ0 are the initial density of ions and neutrals. We thus
solve the equations for A, u, and ρ in the form

∂A

∂t
= (u+ uAD)×B − ηµ0J , (6)

ρ
Du

Dt
= ρf −∇p+∇ · (2νρS) + J ×B, (7)

D ln ρ

Dt
= −∇ · u. (8)

As we demonstrate below, the solutions to these equations
agree with those to Equations (1), (3), and (5) when ζ and
α are large enough (so that the electron pressure becomes
negligible) and γ is large enough to ensure strong coupling
between the ionized and neutral fluids.
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Ambipolar diffusion in large Prandtl number turbulence 3

2.3 Setup of the models and control parameters

We consider a cubic domain of size L3, so the smallest
wavenumber is k1 = 2π/L. We normally use the nominal
average value kf = 1.5 k1, but, following the reasoning of
Brandenburg et al. (2018), we also use the effective value
of kf that determines the relevant value of the magnetic
Reynolds number,

ReM = urms/ηk
eff
f , (9)

where keff
f ≈ 2 k1 when kf = 1.5 k1. This adjustment at the

smallest wavenumber is motivated by the fact that at such
small wavenumbers, only 20 different vectors fall into the
wavenumber band with |k|/k1 between 1 and 2, making this
a special case compared with those where kf is larger.

We normally evaluate ReM in saturated cases where the
magnetic field leads to a certain suppression of urms. In some
cases, for example when specifying the critical growth rate of
the dynamo, it is advantageous to use instead the kinematic
rms velocity, urms0, and thus define ReM0 = urms0/ηk

eff
f .

The relative importance of viscous to magnetic diffusion
is quantified by the magnetic Prandtl number,

PrM = ν/η. (10)

For the single fluid models, we consider two types of runs,
one with PrM = 20 (series I) and another with PrM = 200
(series II). In both cases, η is unchanged and only ν is in-
creased by a factor of 10. This implies that kinetic energy
dissipation should occur at small wavenumbers. Our two-
fluid models are similar to the single fluid models of series II.

We often express time scales in units of the sound travel
time, τs = (csk1)

−1. The correspondingly normalized quan-
tities are denoted by a prime, so we define

τ ′

AD ≡ τADcsk1, ζ′ ≡ ζ/csk1, and γ′ ≡ ρ0γ/csk1. (11)

Alternatively, we express τAD in terms of the turbulent
turnover time τ0 = (urms0kf)

−1. In particular, we define a
generalized Strouhal number as

StAD = τADurms0kf ≡ τAD/τ0. (12)

We also define the quantity kAD = kf/StAD as a characteris-
tic AD wavenumber where the turbulent and AD timescales
are comparable. Note that we have used urms0 in the defini-
tion of kAD instead of the actual rms velocity, which can be
smaller by up to a quarter when the magnetic field becomes
strong and τAD is not too large. Thus, the actual value of
kAD becomes reduced as the magnetic field saturates.

For comparison with the cold interstellar medium, let
us estimate τAD = nn/niνin ≈ 7×1014 s, where we have used
nn = 1 cm−3 and ni ≈ 1.1×10−5(nn/cm

−3)1/2 (McKee et al.
1993) for the neutral and ion number densities, and νin ≈
1.3 × 10−10(nn/cm

−3) s−1 (Draine et al. 1983). This gives
τ ′

AD ≈ 7 for cs = 0.3 km s−1 and k1 = 1pc−1. Furthermore,
using ζ = 3 × 10−17 to 10−15 s−1 (McCall et al. 2003), we
have ζ′ = 3 × 10−3 to 0.1. The values of τ ′

AD and ζ′ are
comparable to those explored below.

For our numerical simulations we use the Pencil

Code
1, which is a high-order public domain code for solving

partial differential equations, including the hydromagnetic

1 https://github.com/pencil-code,
DOI:10.5281/zenodo.2315093

equations given above. It uses sixth order finite differences
in space and the third order 2N-RK3 low storage Runge–
Kutta time stepping scheme of Williamson (1980). We use
5763 meshpoints for all runs in three dimensions and 576
meshpoints for our one-dimensional runs.

2.4 Energy dissipation

For each of the two series, we vary the value of τAD and ex-
press it in terms of StAD; see Equation (12). We also moni-
tor the mean kinetic and magnetic energy dissipation rates,
ǫK = 〈2νρS2〉 and ǫM = 〈ηµ0J

2〉, respectively, where an-
gle brackets denote volume averaging. For Kolmogorov-type
turbulence, the kinetic and magnetic dissipation wavenum-
bers are given by kν = (ǫK/ν

3)1/4 and kη = (ǫM/η3)1/4,
respectively.

It is important to note that AD significantly adds to
the rate of magnetic energy dissipation (Padoan et al. 2000;
Khomenko & Collados 2017). This becomes evident when
looking at the magnetic energy equation,

dEM

dt
= −WLor − ǫAD − ǫM, (13)

where EM = 〈B2/2µ0〉 is the mean magnetic energy den-
sity and WLor = 〈u · (J × B)〉 is the work done by the
Lorentz force. The quantities ǫAD = (τAD/ρ0)〈(J×B)2〉 and
ǫM = 〈ηµ0J

2〉 are the loss terms corresponding to AD and
resistive heating, respectively. In all cases presented here, we
express the magnetic field strength in units of the equipar-
tition value Beq =

√
µ0ρ0 urms, which is being evaluated

during the saturation phase. Given that AD contributes to
magnetic energy dissipation, it will also be important to
define the resulting enhancement of the effective magnetic
diffusivity due to AD. For this purpose, we rewrite part of
the right-hand side of Equation (6) as

uAD ×B − ηµ0J = αADB − (η + ηAD)µ0J , (14)

where αAD = τAD J · B/ρ0 as the AD α effect, and
ηAD = τADv

2
A is the corresponding diffusive effect, where

vA = |B|/√µ0ρ0 is the local Alfvén speed, although the
variation of density is here deliberately ignored in compari-
son with the actual Alfvén speed.

In addition to the usual kinetic to magnetic energy dis-
sipation ratio,

rM = ǫK/ǫM, (15)

it is interesting to compute also the ratio of kinetic energy
dissipation to the sum of magnetic and AD dissipations,

rAD = ǫK/(ǫM + ǫAD). (16)

Likewise, in addition to the usual Prandtl number, PrM, we
also quote the ambipolar Prandtl number, i.e.,

PrAD = ν/(η + 〈ηAD〉). (17)

It is unclear whether this quantity plays any role in char-
acterizing the kinetic to magnetic energy dissipation ratio.
We will therefore compare plots of this ratio as functions of
both PrM and PrAD.
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4 Axel Brandenburg

2.5 E and B mode polarization

As an additional analysis tool, we compute the parity-even
and parity-odd linear polarization modes of the magnetic
field, E and B, respectively. They depend on the detailed
physics causing polarized emission, but for our purpose it
will suffice to compute the intrinsic linear complex polariza-
tion as

Q+ iU = −ǫ (Bx + iBy)
2 (18)

for any arbitrarily chosen xy plane. Here,Q(x, y) and U(x, y)
are the Stokes parameters characterizing linear polarization,
and ǫ is the polarized emissivity, which will be assumed con-
stant. The difference between models with constant and B-
dependent values of ǫ turns out to be small (Brandenburg
et al. 2019).

We then compute the Fourier transforms of Q and U ,
indicated by a tilde, e.g., Q̃(kx, ky) =

∫
Q(x, y) eik·xd2x,

where x = (x, y) and k = (kx, ky) are the posi-
tion and wavevectors in the xy plane. We then compute
(Kamionkowski et al. 1997; Seljak & Zaldarriaga 1997)

Ẽ + iB̃ = (k̂x − ik̂y)
2(Q̃+ iŨ), (19)

where k̂x and k̂y are the x and y components of the planar
unit vector k̂ = k/k, and k = (k2

x + k2
y)

1/2. We then trans-

form Ẽ and B̃ back into real space to obtain E(x, y) and
B(x, y) at a given position z.

Earlier work revealed a surprising difference in the
statistics of E and B in that the probability density func-
tion (PDF) of E is negatively skewed, while that of B is not.
However, not much is known about E and B mode polariza-
tions for different types of turbulence simulations. Therefore,
we also compute and compare the PDFs of E and B for all
the models presented in this paper.

3 RESULTS

3.1 Comparison between one and two fluid models

Before presenting in detail the results obtained in the one-
fluid approximation, it is important to verify that those re-
sults can also be obtained in the more complete two-fluid
model. Here we examine both one-dimensional and three-
dimensional two-fluid models.

3.1.1 Formation of sharp structures in one dimension

We examine here a two-fluid model similar to that of
Brandenburg & Zweibel (1995) to demonstrates the sim-
ilarity with the corresponding single fluid model. As ini-
tial conditions, we choose for the magnetic field B =
(0, B0 sin k1x, 0). The x component of the Lorentz force,
∂B2

y/2∂x in this one-dimensional model, drives the charged
fluid toward the magnetic nulls at x = 0 and ±π. If the re-
sulting electron pressure gradient remains small enough, this
can lead to the formation of sharp structures. In Fig. 1, we
compare the results for three values of ζ′ and two values of
ρi0/ρ0 (10−3 and 10−4) using γ′ = 103. The two values of ρi0
correspond to τ ′

AD = 1 and 10, respectively. In all cases, we
use α = ζρ/ρ2i to achieve initial ionization equilibrium. We
choose PrM = 20, but used for ηk1/cs different values: 10−4

for τ ′

AD = 1 and 2 × 10−4 for τ ′

AD = 10, while in all single

fluid models we use ηk1/cs = 5× 10−5. We have increased ν
and η to avoid excessive sharpening of the structures in our
one-dimensional models. We compare with the results from
the one-fluid model in the last two panels of Fig. 1. We also
compare models with τ ′

AD = 1 and 10.
We see that for ζ′ = 10−3, good agreement between is

the one-fluid and two-fluid models is obtained. The corre-
sponding values of α for ionization equilibrium are 103 and
105 for τ ′

AD = 1 and 10, respectively. This encourages us to
examines this model now in three dimensions.

3.1.2 Spectral properties in three dimensions

Next, we consider a setup similar to that studied below in
more detail in the one-fluid model. Again, we consider the
cases with τ ′

AD = 1 and 10, using ζ′ = 10−3, which was
found to give good agreement with the one-fluid model (cf.
Fig. 1). We consider here the case of relatively small mag-
netic diffusivity (ηk1/cs = 5×10−5), which will also be used
in the one-fluid models discussed below.

For both values of τAD, there is dynamo action with
initial exponential growth and subsequent saturation. The
mean instantaneous growth rate of the magnetic field, eval-
uated by averaging λ = dBrms/dt over the duration of the
early exponential growth phase, is λ/(csk1) = 0.019. In units
of the turnover time, we have λ/(urms0k

eff
f ) = 0.080. For

larger values of τAD, the dynamo saturates at a lower mag-
netic field strength; see Fig. 2. Running the simulation be-
yond the early saturation shown here is numerically expen-
sive and would require higher resolution. This is because of
sharp gradients in the magnetic field. This problem can be
mitigated by increasing the viscosity of the ionized fluid and
certainly also by using a larger magnetic diffusivity, which
was also used in the one-dimensional runs shown in Fig. 1.
The dynamo would then become weaker, however, and this
would no longer be the model we would like to study in the
one-fluid approximation below.

In Fig. 3, we compare magnetic and kinetic energy spec-
tra for the two values of τAD. They are normalized such that∫

EK(k) dk = ρ0〈u2〉/2,
∫

EM(k) dk = 〈B2〉/2µ0. (20)

Here, the kinetic energy is based on the neutral component,
but we also consider the kinetic energy of the ionized com-
ponents, which we normalize by the same density factor,∫

Ei(k) dk = ρ0〈u2
i 〉/2. (21)

This normalization has the advantage that we can more
clearly see that both velocity components are about equally
big at large scales (small k), when all spectra are also nor-
malized by the same value, namely the total kinetic energy
of the neutrals, E0 = ρ0u

2
rms/2.

We see that there is a marked separation between the
ionized and neutral fluid components for larger wavenum-
bers. The wavenumber above which the two spectra diverge
from each other is independent of the value of τAD, and it
is therefore also independent of kAD, whose values are indi-
cated by an arrow on the lower abscissa of Fig. 3. There
is, however, a strikingly accurate agreement between the
viscous dissipation wavenumber, kν , and the wavenumber
where EK(k) and Ei(k) begin to diverge from each other. It
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Ambipolar diffusion in large Prandtl number turbulence 5

Figure 1. Magnetic field profiles for τ ′
AD

= 1 (left) and τ ′
AD

= 10 (right) with ζ′ = 10−9 (top), ζ′ = 10−5 (second row), ζ′ = 10−3

(third row), compared with magnetic field profile in the single fluid model (bottom). The red arrows indicate the temporal evolution.

therefore appears that the value of kAD does not play any
role in the dynamics of turbulence with AD. This confirms
the earlier result of Brandenburg & Subramanian (2000)
that the relevant dissipation wavenumber is independent of
AD and is just given by the usual resistive wavenumber kη,
which was defined in Sect. 2.4 and agrees with the wavenum-
ber defined by Xu & Lazarian (2016) after replacing ǫM by
kfv

3
A.

We also see that the ionized fluid is not efficiently being
dissipated at the highest wavenumbers in this model: the
kinetic energy spectrum of the ionized fluid does not fall off
as much as for the neutral fluid. This is partially explained
by the very low ion density in our model, so the actual ki-

netic energy in the ionized fluid is still not very large. Thus,
the energy dissipation may appear insufficient because the
amount of energy to be dissipated is very small.

To understand why the magnetic field is apparently not
visibly affected by the breakdown of the strong coupling of
the ionized and neutral species below the viscous scale, we
have to realize that for PrM = 20 ≫ 1, the velocity at k ≫ kν
is being driven entirely by the magnetic field. Owing to the
fact that ρi/ρ is very small (10−3 and 10−4 for τ ′

AD = 1
and 10, respectively), the velocity is too small to affect the
magnetic field. Instead, the magnetic field at large k receives
energy only from the magnetic field at larger scales through
a forward cascade. This is also evidenced by the fact that,

c© 0000 RAS, MNRAS 000, 000–000



6 Axel Brandenburg

Figure 2. (a) Evolution of the rms velocity (normalized by the
sound speed) for the runs with τ ′

AD
= 1 (red) and 10 (blue). (b)

Evolution of the rms magnetic field for the same runs.

Figure 3. Kinetic energy spectra for the neutral (dashed lines)
and ionized fluids (dotted lines) as well as magnetic energy spectra
(solid lines) for τ ′

AD
= 1 (red) and 10 (blue). The k−5/3 slope is

shown for orientation.

except for a vertical shift, the magnetic spectrum looks sim-
ilar for τ ′

AD = 1 and 10. This shows that the breakdown
of the tight coupling below the resistive scale will not af-
fect our conclusions based on the single fluid approximation
considered in the main part of this paper.

3.1.3 Conclusions from the two-fluid model

We have seen that in the two-fluid model, the ionized and
neutral components are tightly coupled at large length scales
(k ≪ kν). At small scales, however, we see major departures
between the two fluids. There are clear differences in the re-
sults for the two values of τAD studied above. For the larger
value of τAD, the magnetic energy saturates at a smaller
value. The magnetic field can therefore no longer drive tur-
bulent motions beyond the viscous cutoff scale, where EK(k)
would normally fall off sharply when there is no magnetic
field. For the ionized component, on the other hand, the dif-
ference between the two spectra is much smaller and a com-
paratively high fraction of kinetic energy still exists in the
ionized component. This is probably indicative of a signifi-
cant fraction of small-scale magnetic field structures where
the ionized and neutral components are counter-streaming
in a way similar to what is seen in Fig. 1. After these prelim-
inary studies, we now proceed with the examination of the
one-fluid model, which is simpler, but shows similar charac-
teristics and dependencies on τ ′

AD, as we will see.

3.2 The dynamo in one-fluid models

3.2.1 Kinematic evolution

Turning now to the study of dynamo action in the one-fluid
model, we first look at the evolution of the rms velocity
and magnetic field versus time; see Fig. 4. The magnetic
Reynolds numbers of the runs are 1200 for series I and 790
for series II. This lower value for series II is caused by the ten
times larger viscosity in this case (ν/csk1 = 10−2 instead of
10−3). We clearly see exponential growth in both cases. The
mean instantaneous growth rates are given by λ/(csk1) =
0.019 and 0.010 for series I and II, respectively. In units of
the turnover time, we have λ/(urms0k

eff
f ) = 0.080 and 0.062

for series I and II, respectively. These values are compatible
with the relation λ0Re

1/2
M0 with λ0 ≈ 0.0023; see also Fig. 3

of Haugen et al. (2004) as well as Fig. 3 of Brandenburg
(2009), were similar values of ReM0 ≈ 1000 were found and

the Re
1/2
M0 scaling was demonstrated.

For all runs, the magnetic field eventually saturates ow-
ing to the nonlinearity of the problem. In addition to the
Lorentz force, J × B, there is the AD nonlinearity. It is a
priori unclear which of the two is more important. The sat-
uration phenomenology of the small-scale dynamo has been
studied by Cho et al. (2009). Xu & Lazarian (2016) found
that this dynamo saturation is independent of plasma ef-
fects including AD. Interestingly, Fig. 4 now shows that for
StAD ≥ 1, the AD nonlinearity does affect the solution, and
this happens already when Brms/Beq ≥ 0.02. We also see
that the kinetic energy decreases only very little during sat-
uration when AD is strong (cf. cases I.C and II.C). This is
because the velocity is only affected by the magnetic field,
whose saturation levels diminish with increasing values of
StAD.

3.2.2 Spectral properties

Next, we consider kinetic and magnetic energy spectra for se-
ries I and II, EK(k, t) and EM(k, t), respectively. For both se-
ries, the kinetic energy spectra are found to be unaffected for
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Ambipolar diffusion in large Prandtl number turbulence 7

Figure 4. (a) Evolution of the rms velocity (normalized by the
sound speed) for each of the three runs of series I and II. The val-

ues of late time averages are indicated by horizontal lines in the

corresponding color and connected by dashed arrows to the cor-

responding horizontal line for the kinematic stage. (b) Evolution

of the rms magnetic field for series I (solid lines) and II (dashed

lines) for small (black lines for runs I.A and II.A), intermediate

(red lines for I.B and II.B), and large values (blue lines for I.C

and II.C) of StAD.

k < kν , while the magnetic energy is clearly suppressed by
AD at all wavenumbers. The magnetic energy spectrum does
not really show power law scaling, but it has a slope com-
patible with k−5/3, although the spectrum tends to become
slightly shallower at high wavenumbers when AD is strong
(compare the red and blue lines in Fig. 5 with the black
ones). This could be a signature of sharp structures that are
expected to develop in the presence of AD (Brandenburg &
Zweibel 1994; Zweibel & Brandenburg 1997). Sharp struc-
tures could be responsible for producing enhanced power at
high wavenumbers. This is an effect that was also seen in
the turbulence simulations of Brandenburg & Subramanian
(2000).

In both series I and II, the kinetic energy spectrum de-
velops a clear power law in the dissipation range, especially
for series II, where power law scaling extends over about 1.5
decades, while for series I, the same power law is seen for
only about half a decade. The power law scaling of EK(k)
is solely a consequence of magnetic driving at k > kν when
PrM is large.

Also the magnetic energy spectrum shows a range with
power law scaling for series II, where EM ∝ k−5/3. For se-

Figure 5. Spectra of magnetic (i = M, solid lines) and kinetic
(i = K, dashed lines) for each of the three runs in series I (top)
and II (bottom).

Figure 6. Magnetic Kelvin-Helmholtz time normalized by the
turnover time versus normalized magnetic field strength.

ries I the k−5/3 scaling is not so clear. The kinetic energy
spectrum is much steeper and has a slope comparable with
a k−11/3 spectrum. This is reminiscent of the Golitsyn spec-
trum of magnetic energy, which applies to the opposite case
of small magnetic Reynolds numbers (Golitsyn 1960). In
that case, the electromotive force is balanced by the mag-
netic diffusion term rather than the time derivative of B.
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8 Axel Brandenburg

Figure 7. Ratio of kinetic to magnetic and kinetic to ambipolar dissipation rates versus magnetic and ambipolar Prandtl numbers. The
light and darker gray lines denote the scaling found by Brandenburg (2014) for large- and small-scale dynamos, respectively.

The similarity suggests that in the present case, the veloc-
ity is driven through the balance between the Lorentz force
and the viscous force (which is proportional to ν∇2u) rather
than through a balance with the Du/Dt inertial term.

The magnetic energy spectrum peaks at a wavenumber
k∗ that can roughly be estimated by Subramanian’s formula
k∗ ≈ kfRe

1/2
M,c (Subramanian 1999). Estimating ReM,c ≈ 40

for the critical magnetic Reynolds number for dynamo ac-
tion (Haugen et al. 2004), we have k∗/kν ≈ 0.5 and 2.8 for
series I and II, respectively. This is in fair agreement with
the position of the magnetic peak wavenumber seen in Fig. 5.
Schober et al. (2015) proposed a revised estimate with an
exponent 3/4 for Kolmogorov turbulence and a larger pref-
actor, so the corresponding values are by about a factor of
eight larger. I addition, both estimates would yield bigger
values if 2π factors in their definitions of ReM were taken
into account.

3.2.3 Comment on numerical diffusion

At this point, a comment on the accuracy and properties
of the numerical scheme is in order. The results presented
above relating to the spectral kinetic energy scaling in the
high magnetic Prandtl number regime rely heavily upon the
presence of proper diffusion operators. In fact, those are the
only terms balancing an otherwise catastrophic steepening
of gradients by the u · ∇u, u × B, and J × B nonlinear-
ities. The weakly stabilizing properties of any third order
time stepping scheme and the dispersive errors of the spa-
tial derivative operators such as u ·∇ do not contribute no-
ticeably to numerical diffusion below wavenumbers of half
the Nyquist wavenumber (Brandenburg 2003), which is the
largest wavenumber shown in our spectra. This is different
from codes that solve the ideal hydromagnetic equations.

Those codes prevent excessive steepening of gradients by the
numerical scheme in ways that cannot be quantified by an
actual viscosity or diffusivity. This is sometimes also called
numerical diffusion, but such a procedure it is not invoked
in the numerical simulations presented here.

3.2.4 Magnetic dissipation

If the magnetic field were not constantly regenerated by dy-
namo action, it would decay on a timescale that we call the
magnetic Kelvin-Helmholtz time,

τM
KH = EM/ǫM. (22)

In Fig. 6, we plot its instantaneous value versus the in-
stantaneous magnetic field strength as the dynamo satu-
rates and the field strength thus increases. Almost indepen-
dently of the presence or absence of AD and regardless of
whether we consider series I or II, the ratio τM

KH/τ0 is al-
ways around eight; see the two concentrations of data near
Brms/Beq ≈ 0.08 and 0.16 for series I and II, respectively.

In the absence of AD, it was found that the ratio
rM = ǫM/ǫK of magnetic to kinetic energy dissipation in-

creases with increasing values of PrM like Pr
1/3
M for small-

scale dynamo action and like Pr
2/3
M for large-scale dynamo

action (in the presence of kinetic helicity of the turbulent
flow). In the presence of AD, there is an additional mode
of dissipation proportional to ǫAD. On the other hand, also
the effective magnetic Prandtl number is modified if we in-
clude ηAD in the definition of PrM, as in Equation (17). The
question is therefore whether there is any analogy between
Ohmic dissipation and dissipation through AD. To assess
this, we plot in Fig. 7 all four possibilities: rM versus PrM
and PrAD, as well as rAD versus PrM and PrAD.
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Ambipolar diffusion in large Prandtl number turbulence 9

Figure 8. Visualizations of Bz/Brms, ux/urms, and uxi/urms for the two-fluid model with StAD = 0.15 or τ ′
AD

= 1. The insets show a
blow-up near a magnetic structure.

Both rM and rAD are seen to increase with StAD, so the
data points generally move upward in all four plots. How-
ever, as we increase StAD, we also decrease PrAD, so the
data points move to the left in Fig. 7. In this sense, there is
no analogy with Ohmic dissipation. It should be noted, of
course, that both Ohmic dissipation and AD are no longer
accurate descriptions of the physics on small length scales. It
would therefore be interesting to revisit this question when
such an analysis of the full kinetic equations becomes fea-
sible; see Rincon et al. (2016) and Zhdankin et al. (2017)
for relevant references. It is worth noting in this connection
that the case with PrM ≫ 1 is special because the work
done against the Lorentz force, which quantifies the con-
version of kinetic to magnetic energy, only operates on large
length scales when PrM ≫ 1. At small length scales, the sign
of this term is reversed, so Brandenburg & Rempel (2019)
called this reversed dynamo action. This means that the
magnetic energy is not ohmically dissipated at small length
scales, but viscously. Brandenburg & Rempel (2019) specu-
lated further that this loss of energy would really correspond
to the energization of ions and electrons, although there is
currently no evidence that this similarity is quantitatively
accurate.

3.3 Spatial features related to AD

3.3.1 Visual inspection

In Fig. 8, we show xy slices of Bz/Brms and compare with
slices of the x component of the neutral and ionized flows,
ux/urms and uxi/urms, respectively, in the same (arbitrar-
ily chosen) plane. The magnetic field displays folded struc-
tures in places, as was first emphasized by Schekochihin et
al. (2004), but Brandenburg and Subramanian (2005) found
that there are also many other places in the volume that
are not strongly folded. Some of the folds lead to differences
between the neutral and ionized fluid components; see the
insets of Fig. 8. In most other places, however, the two veloc-
ity species are remarkably similar. The y and z components
of u and ui are also similar to each other and show only
small differences near magnetic structures.

Next, we compare the magnetic field for different one-
fluid models; see Fig. 9, where we compare the three mod-
els of series I and II. The overall magnetic field strength is
weaker for model C compared with models B and A. To re-
move this aspect from the comparison, we plot in Fig. 9 the
Bz components of the magnetic field normalized by the rms
values for each model.

It is hard to see systematic differences between the dif-
ferent cases. There could be more locations with strong hor-
izontal gradients in Bz(x, y), where StAD is large (compare
Runs C of series I and II with Runs A and B of the cor-
responding series), but the resulting changes are not very
obvious. There are also no clear differences between series I
and II themselves. For these reasons, it is important to look
at statistical measures to study the differences. This will be
done next.

3.3.2 Statistical analysis

In this section, we investigate in more quantitative detail
the effects of AD on the structure of the magnetic field.
We know that AD tends to clip the peaks of the magnetic
field at locations where its strength is large (Brandenburg
& Zweibel 1995). This should lead to a reduced kurtosis,

kurtBi = 〈B4
i 〉/〈B2

i 〉2 − 3. (23)

It is unclear, however, whether this is a statistically signifi-
cant effect. To examine this, we compute the resulting val-
ues of kurt(Bi). Since our simulations are isotropic, we can
improve the statistics of the kurtosis by taking the average
over all three directions, i.e., we define kurtB (bold without
subscript on B) as

kurtB = (kurtBx + kurtBy + kurtBz)/3, (24)

and compute it for each of the two series and for different
values of StAD. In this context, we recall that the kurtosis
vanishes for gaussian-distributed data, and it is 3 for an ex-
ponential distribution. Here we find a systematic crossover
from values somewhat smaller than 3 to negative values
when StAD >∼ 0.02; see Fig. 10 for series I and II with
PrM = 20 and 200, respectively. Here we have included
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10 Axel Brandenburg

Figure 9. Visualizations of Bz(x, y)/Brms for the single fluid models, Runs I.A–C and II.A–C.

Table 1. Summary of the runs discussed in the paper.

Run ReM PrM PrAD rM rAD StAD 〈E2〉/〈B2〉 skewE skewB kurtE kurtB kurtB

I.a 800 20 18.3 0.84 0.79 0.00012 1.66 2.05 0.19 14.9 3.38 2.33
I.b 840 20 15.7 0.86 0.73 0.00039 1.80 2.00 −0.36 11.7 3.60 1.92

I.c 850 20 10.5 0.97 0.71 0.00130 1.60 1.32 0.04 4.58 1.20 1.35
I.d 830 20 5.15 1.15 0.72 0.0038 1.41 0.97 −0.05 4.99 2.57 0.66
I.A 860 20 1.9 1.15 0.65 0.013 1.46 0.85 0.01 6.30 3.73 0.08

I.e 800 20 0.71 1.25 0.65 0.037 1.33 0.41 0.17 5.34 3.21 −0.06
I.B 1000 20 0.32 1.58 0.70 0.15 1.21 −0.18 0.02 1.77 1.08 −0.43
I.C 1170 20 0.18 12.3 4.12 1.79 1.12 −0.27 0.05 2.08 1.18 −0.57

II.A 630 200 27.4 4.79 2.35 0.010 1.27 0.72 −0.13 2.17 1.32 3.19

II.B 670 200 5.13 7.42 3.20 0.10 1.43 0.06 −0.08 0.91 1.75 2.50
II.C 770 200 2.31 40.0 14.6 1.19 1.29 −0.48 −0.04 3.71 1.71 2.48

the additional runs I.a–e with lower values StAD have been
added. This dependence can roughly be described by a fit of
the form

ln kurtB = eκ∞ + St−α
AD, (25)

where κ∞ ≈ 2.36 is the value of kurtB + 3 for large val-
ues of StAD and α ≈ 0.61 is the slope for smaller values.
Additional terms and parameters could be included in this
fit to account for finite values of the kurtosis for StAD → 0,

but this does not appear to be necessary for describing the
present data; see Table 1. In conclusion, it appears that the
measurement of the kurtosis of the magnetic field in the
interstellar medium could be a useful diagnostic tool that
should be explored further in future.

In Fig. 11 we show histograms of Jz for series I and
II. We see that, as StAD is increased, the wings of the dis-
tributions are being clipped slightly. On the other hand,
the amount of clipping is actually relatively small compared
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Figure 10. Dependence of kurtB on StAD. The red (blue) sym-
bols denote the results for series I (II).

Figure 11. Histograms of Jz for (a) series I and (b) series II.
Black, red, and blue lines denote the cases A, B, and C, respec-
tively.

with the increase in magnetic field strength as StAD is in-
creased. This is to be expected, because AD tends to create
force-free regions where (J ×B)2 is minimized and (J ·B)2

is maximized. In between those regions, on the other hand,
there are sharp current sheets that were already found in
the earlier work of Brandenburg & Zweibel (1994).

It is important to note that one usually never measures
the magnetic field directly, but instead the linear polariza-
tion through either synchrotron radiation or through dust
emission. In both cases, it therefore appears useful to discuss
the two rotationally invariant modes of linear polarization,
namely the E and B mode polarizations. This will be done
in the next section.

3.4 E and B mode polarizations

The analysis of E and B mode polarization has been particu-
larly important in the context of cosmology (Kamionkowski
et al. 1997; Seljak & Zaldarriaga 1997) and, more recently,
in the context of dust foreground polarization (Planck Col-
laboration Int. XXX 2016). It was found that there is a
systematic excess of E mode power over B mode power by
about a factor of two, which was unexpected at the time
(Caldwell et al. 2017). Different proposals exist for the in-
terpretation of this. It is possible that the excess of E mode
polarization is primarily an effect of the dominance of the
magnetic field, i.e., a result of magnetically over kinetically
dominated turbulence (Kandel et al. 2017). Using simula-
tions of supersonic hydromagnetic turbulent star formation,
Kritsuk et al. (2018) found that the observed E over B ratio
can be reproduced. However, not enough work has been done
to assess the full range of possibilities for different types of
flows. For solar linear polarization, for example, it has been
found that there is no excess of E over B mode polarization,
although the possibility of instrumental effects has not yet
been conclusively addressed (Brandenburg et al. 2019).

Looking at Fig. 12, we see that, as StAD is increased,
there is a systematic change of the skewness of E (but not
of B) as StAD is increased. For small values of StAD, the
skewness is positive and for large values it is negative. Here
we define the skewness as

skewE = 〈E3〉/σ3
E , skewB = 〈B3〉/σ3

B , (26)

where σ2
E = 〈E2〉 − 〈E〉2 and σ2

B = 〈B2〉 − 〈B〉2 are their
variances. Note that here the B is not to be confused with
the components Bi of the magnetic field, which are related
to each other only through Equation (18).

The increase of the skewness of E with StAD is seen
both for series I (where skewE = −0.27 for StAD ≈ 1.8 in
I.C) and series II (where skewE = −0.48 for StAD ≈ 1.2
in II.C). For small values of StAD, however, there is a much
more dramatic effect in that skewE reaches values of around
2, which is much more extreme than what was found earlier
for decaying hydromagnetic turbulence. Even a change of
StAD from 10−2 (I.A) to 10−4 (II.a), has a strong effect in
that skew changes from 0.85 to 2. The kurtosis of E reaches
more extreme values much larger than 10; see Fig. 1 for a
summary of the statistics of E and B. Although we have not
determined error bars, we can get a sense of the reliability
of the data by noting that the trend with StAD is reasonably
systematic; see Fig. 13.

In view of the negative skewness found previously for
decaying hydromagnetic turbulence (Brandenburg et al.
2019), it now appears that negative skewness of E is not
a general property of hydromagnetic turbulence, although
it may well appear in the interstellar medium where both
AD can be present and magnetic fields can be significant.
AD can also play a role in the solar chromosphere, where
it contributes to heating cold pockets of gas (Khomenko &
Collados 2017). It needs to be checked whether this can lead
to observable effects. The analysis of E and B mode polar-
ization is therefore, an interesting diagnostic tool, although
more work needs to be done to learn about all the possible
ways of interpreting those two modes of polarization.
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12 Axel Brandenburg

Figure 12. E and B mode polarizations for series I (upper row) and II (lower row). Blue (red) lines denote the normalized probability
density functions of E (B) mode polarization.

Figure 13. (a) Dependence of skewE (blue) and skewB (red) on StAD and (b) dependence of kurtE + 3 (blue) and kurtB + 3 (red)
on StAD. Filled (open) symbols refer to series I (II). The straight lines represent approximate fits given by skewE = −0.5− 0.3 ln StAD

(blue) and skewB = 0 (red) in (a), and kurtE + 3 = 3.3 St0.17AD (blue) and kurtB = 2 (red) in (b).

4 CONCLUSIONS

In the cold interstellar medium, ionization and recombina-
tion are important. The electron pressure can then be ne-
glected and the single fluid approach of AD becomes an ex-
cellent approximation. Our work has now demonstrated that
AD does not have diffusive properties in the sense of enhanc-
ing the effects of microphysical magnetic diffusion. This is
most likely due to the fact that AD is a nonlinear effect
that operates only in places where the field is strong in the
sense that τADv

2
A ≫ τ0u

2
rms. In fact, in one dimension it is

easy to see that the Lorentz force acting on the ionized fluid
works in such a way as to move more ionized fluid towards

the magnetic null (Brandenburg & Zweibel 1995). This de-
pletes the field maxima and leads to a pile-up of magnetic
field just before the magnetic null. This effect is particularly
pronounced when τAD ≫ τ0, and thus StAD ≫ 1.

Although the spectral shape at large k is only weakly
affected by AD, it does have a clear effect on the kinetic
energy spectrum at k > kν and suppresses the spectral ki-
netic energy of the neutrals markedly. The kinetic energy of
the charged species is even slightly enhanced. This is sur-
prising, because the overall rms velocity of the neutrals is
hardly affected at all. One must keep in mind, however, that
not much kinetic energy is contained deep in the kinetic en-
ergy tail at large k. In fact, the only reason why there is
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some level of kinetic energy at all is that, owing to the large
magnetic Prandtl number, there is still significant magnetic
energy at those high wavenumbers that drives the kinetic
motions.

From an observational point of view, we can identify two
potentially useful ways of diagnosing the importance of AD
in the interstellar medium. First, there is the direct effect on
the statistics of the magnetic field. The importance of AD
can then potentially be quantified by measuring the kurto-
sis of the components of the magnetic field. Alternatively,
there appears to be a systematic effect on the statistics of
the E and B mode polarizations. While the B mode polar-
ization is generally unaffected by turbulence, the E mode
polarization can exhibit non-vanishing skewness, which is
positive for a weak AD and negative for strong AD. This
is an unexpected signature in view of recent results for de-
caying hydromagnetic turbulence, where the skewness was
found to be negative even without AD.

In this work, we have studied only two values of the
magnetic Prandtl number. However, the effect of changing
the value of PrM on observational properties such as E and
B is rather weak; see Fig. 13. This is interesting because
in cold molecular clouds, the magnetic Prandtl number can
potentially drop below unity. It would therefore in future be
useful to study whether the present results carry over into
the regime of lower values of PrM (possibly below unity),
and whether the effects on the skewness of E and B mode
polarizations remain unchanged.
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