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good idea!) Optionally, you can also click on the physics button, because some-
times relevant papers are only listed there. Another important address is the
Web of Science, http://scientific.thomson.com/products/wos/ but the ac-
cess requires a license. I should also recommend looking every morning at the as-
tronomy picture of the day http://antwrp.gsfc.nasa.gov/apod/astropix.

html.

Table 1: Summary of some important physical constants

Newton’s constant G 6.67× 10−11 m3 kg−1 s−1

speed of light c 3.00× 108 m s−1

radiation constant a 7.56× 10−16 J m−3 K−4

Stefan-Boltzmann constant σSB = ac/4 5.67× 10−8 W m−2 K−4

Table 2: Solar parameters

distance RE� 1.5× 1011 m
radius M� 7× 108 m
mass R� 2× 1030 kg
luminosity L� 4× 1026 W

Table 3: Derived solar parameters

average density ρ = M�/(
4π
3 R

3
�) 1.4× 103 kg m−3

surface gravity g = GM/R2
� 2.7× 102 m s−2

solar constant S = L�/(4πR
2
E�) 1.4× 103 W m−2

effective temperature Teff = [L�/(4πR
2
�σSB)]1/4 5.8× 103 K

http://scientific.thomson.com/products/wos/
http://antwrp.gsfc.nasa.gov/apod/astropix.html
http://antwrp.gsfc.nasa.gov/apod/astropix.html


Chapter 1

Introduction

The sun is our primary energy source. But it is not constant. Understand-
ing its variability and especially its magnetic activity is important for many
reasons. First, there is now mounting evidence for a clear connection be-
tween solar activity and variation of the earth climate; see, e.g., Fig. 1.1. The
causal connection between sun and earth is hardly due to temperature changes
of the sun (luminosity or irradiance1 changes), but due to magnetic changes.
According to a theory originally due to H. Svensmark this is caused by the
solar magnetic field shielding the cosmic ray particles from the galaxy. Thus, an
increase in the solar field strength increases the shielding, decreases the cosmic
ray flux on earth, decreases the cloud cover and hence increases the temperature,
as is illustrated symbolically as

B ↑ CR ↓ clouds ↓ Tearth ↑ . (1.1)

This picture is rather simplified, and there can be drastic differences regarding
clouds that are low or high, but the general idea is now gaining more and more
acceptance, it seems.

Second, on a much shorter time scale (days and shorter) we should be con-
cerned about extreme space weather2 conditions which affect not only astro-
nauts in space, but also the functionality and reliability of man-made satellites
in orbit. This in turn affects the Global Positioning System (GPS) and hence
also air traffic navigations, which now really becomes everybody’s concern.

• Geomagnetic storms: strength G1–G5 (with G5 around 4 per cycle): volt-
age problems, blackouts, transformer damage.

• Radiation storms: S1–S5 (S5 fewer than 1/cycle): satellites rendered use-
less, memory impact, permanent damage to solar panels.

1Irradiance is what comes out of the sun sideways in the direction of the earth. This may
not be quite the same as the flux integrated over 4π. Both are however bolometric fluxes, i.e.
integrated over all frequencies.

2 http://www.sec.noaa.gov/NOAAscales/
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Observed temperature changes on earth and those predicted from
the variations of solar activity.

• Radio blackouts: R1–R5 (R5 less than 1/cycle): HF blackout for hours.

These space weather conditions are being caused by various kinds of erup-
tions on the solar surface such as prominences and Coronal Mass Ejections
(CMEs); see Fig. 1.2. Modeling all the physics between the actual eruption and
the final effects on the ionospheric current system is one of the few Grand Challenge problems

for which a lot of money has been set aside3. But in order to understand the
origin of the eruptions, we have to understand where the magnetic field comes
from. As will be explained later in this course, it has its origins in convective
motions in the outer 30% of the sun. The drive a magnetic field that manifests
itself in terms of an 11 year cycle of the sunspot number (Fig. 1.4) and of the
magnetic field. This will be discussed in more detail at the end of this course
where this field is explained as a result of a self-excited dynamo process.

Important conclusions about the nature of the energy source of the sun
can be gained by looking at the energy budget. The luminosity of the Sun is
L� = 4× 1026 W. The total interception with the Earth is

πR2
E

4πR2
E�

= 4.4× 10−10, (1.2)

where RE is the radius of the Earth (6400 km) and RE� is the distance between
the Earth and the Sun (= 1 AU = 1.5 × 1011 m). So the total power reaching
the Earth is 4.4× 10−10 × 4× 1026 W = 1.7× 1017 W.

For comparison we list here the fractions of energies that are extracted from
the sun or that are consumed4:

3http://ct.gsfc.nasa.gov/grand.st3.html
4 http://en.wikipedia.org/wiki/World_energy_resources_and_consumption

http://ct.gsfc.nasa.gov/grand.st3.html
http://en.wikipedia.org/wiki/World_energy_resources_and_consumption
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Figure 1.2: The famous “Grand daddy” prominence of 4 June 1946 (left) and
a big coronal mass eruption of 2 June 1998 from the LASCO coronograph on
board the SOHO satellite (right). Note the complexity of the ejected structures,
being suggestive of helical nature. Courtesy of the SOHO consortium. SOHO
is a project of international cooperation between ESA and NASA.

Figure 1.3: Distribution of magnetic flux in the visible solar surface layers
(adapted from Solanki et al. 2006).

• 25% of it drives evaporation & cloud formation

• 1% drives winds

• 1% drives get turns into biological energy (photosynthesis)

• 0.01% of the world power consumption (1.6× 1013 W = 16 TW)

The gravitational energy of the Sun is approximately

Eth =
GM

2

R�
≈
GM2

�
2R�

≈ 2× 1041 J (1.3)

The time it would take to use up all this energy to sustain the observed lumi-
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Figure 1.4: Sunspot number (yearly averages); http://csep10.phys.utk.edu/
astr162/lect/sun/sscycle.html

Figure 1.5: The record of yearly averaged group sunspot numbers dating back
to 1600 (adapted from Solanki et al. 2006).

nosity is the Kelvin-Helmholtz time (note that 1 yr ≈ 3× 107 s)

τKH = Eth/L� =
2× 1041

4× 1026
s ≈ 107 yr (1.4)

which is long compared to time scales we could observe directly, but short
compared with the life time of the Sun and the solar system (more like 5×109 yr).
This led to the discovery of the nuclear energy source of stars. The potential
energy is also approximately the thermal energy (Virial theorem).

In fact, this similarity can be used to estimate the central temperature of a
star by equating GM/R = RTc/µ. Here, R = 8315 m2 s−2 K−1 (this is a script
or curly R!) is the universal gas constant and µ is the mean molecular weight
(in astrophysics this is defined dimensionless while in physics it is often defined

http://csep10.phys.utk.edu/astr162/lect/sun/sscycle.html
http://csep10.phys.utk.edu/astr162/lect/sun/sscycle.html
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Figure 1.6: Reconstruction of the 10 year averaged sunspot number from the
measured concentrations of cosmogenic isotopes (adapted from Solanki et al.
2006).

with units gram/mole), which is the atomic or molecular mass expressed in
units of 1 amu (to a good approximation, µH ≈ 1). The quantity RT/µ has the
dimensions of a velocity squared. For the Sun this yields the following estimate
for the central temperature:

Tc =
µ

R
GM�
R�

=
0.6

8300

7× 10−11 2× 1030

7× 108
K =

3

4
10−4 10−11 2×1022 K = 1.5×107 K

(1.5)
This estimate is actually spot on (but this is merely luck). It also tell us that the
central temperature of the Sun is only determined by its mass and radius, and
not, as one might have expected, by the effectiveness of the nuclear reactions
taking place there.

The central pressure is given (to an order of magnitude) by

pc =
GM2

�
R4
�

=
7× 10−11 (2× 1030)2

(7× 108)4
kg m−1 s−2 ≈ 1015 kg m−1 s−2, (1.6)

which turns out to be about an order of magnitude too small.

1.1 The main points of this chapter

The sun is not static, but shows an 11 year cycle dating back several thou-
sand years (as indicated by measurements of radioactive decaying cosmogenic
isotopes). This has tremendous effects on terrestrial climate changes (little ice
age, etc).
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Chapter 2

Radial structure

The sun is, to an excellent approximation, spherically symmetric. The equations
governing the radial structure of the sun (or any other star) are plausible and
easily derived. They can be written as a set of four ordinary differential equation,
namely the

• equation for the sun’s gravity (comes from the Poisson equation),

• hydrostatic equilibrium (comes from the momentum equation),

• thermal equilibrium (comes from the energy equation),

• radiative equilibrium (radiation transport equation, convection).

In the optically thick case, the radiative flux is in the direction of and propor-
tional to the gradient of the radiative energy density, aT 4. (The connection
between fluxes and concentration gradients is generally referred to as Fickian
diffusion). Like in kinetic gas theory, the diffusion coefficient is 1/3 times the
typical particle velocity (=speed of light c) and the mean free path `, so

F = − 1
3c`

d

dr
(aT 4) = − 4

3ac`T
3 dT

dr
= −K dT

dr
(2.1)

which defines the coefficient K.

2.1 Equations of stellar structure

We begin with the equation describing how much mass we have in each spherical
shell. The volume of a shell of thickness dr is 4πr2dr, so the mass in such a
shell is dMr = 4πr2ρdr. Knowing the mass Mr enclosed within radius r, we
can calculate the change in pressure as dp = ρgdr, where g = GMr/r

2 is the
modulus of the radial part of gravity. The change in luminosity, dLr, in each
shell depends on the strength of the energy sources, ε, at that radius. The
local luminosity gives the local radiative flux F , because Lr = 4πr2F , and the

13
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flux is given by the negative radial temperature gradient times the radiative
conductivity, K, i.e. F = −K∇T , so

dMr

dr
= 4πr2ρ (2.2)

dp

dr
= −GMr

r2
ρ (2.3)

dLr
dr

= 4πr2ε (2.4)

dT

dr
= −Lr/(4πr2K) (2.5)

At the simplest level of approximation, these equations can be integrated out-
wards subject to the boundary conditions Mr = Lr = 0 at r = 0, with reason-
able estimated starting values for p and T .

In the following we highlight the connection between these equations and
the more general equations of compressible, self-gravitating fluid dynamics.

2.2 Connection with full set of equations

The relevant equations are the Poisson equation for the gravity potential, φ, so
gravity is g = −∇φ, the momentum equation, the entropy equation in terms of
entropy, and the equation of radiation equilibrium, i.e.

∇2φ = 4πGρ, (2.6)

ρ
DU

Dt
= −∇p+ ρg, (2.7)

ρT
Ds

Dt
= −∇ · F + ε, (2.8)

n̂ ·∇I = −κρ (I − S). (2.9)

The latter equation is the radiation transfer equation for the intensity, I =
I(x, t, n̂, ν) along all possible ray directions n̂ for all possible frequencies ν,
and S is the source function which we assume here to be the Planck function
S = aT 4, but we note that things can be more complicated if there is scattering,
for example. The quantity κ is the opacity (cross-section per unit mass) and
1/(κρ) ≡ ` is the mean free path that we encountered in equation (2.1).

In § 2.3 we show that this equation couples to equation (2.8) via

−∇ · F =

∫ ∞
0

∫
4π

κρ (I − S) dΩ dν. (2.10)

We won’t bother with the ν dependence and pretend that we work with ν
integrated quantities (this is the so-called gray approximation).
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Let us begin with the Poisson equation, noting that from g = −∇φ we have
∇ · g = −∇2φ. Since in spherical symmetry g = −GMr/r

2 we have

−∇ · g = − 1

r2

d

dr

(
r2gr

)
=

1

r2

d

dr
(GMr) = 4πGρ, (2.11)

Cancelling G on both sides and moving r2 to the right hand side, we have

dMr

dr
= 4πr2ρ, (2.12)

which is just the same as equation (2.2).
In the next two equations, (2.7)–(2.8), the left hand side vanishes in the

hydrostatic state, so we recover equations (2.3) and (2.4) more ore less directly
when noting that g = −GMr/r

2 and that

∇ · F =
1

r2

d

dr

[
r2

(
Lr

4πr2

)]
=

1

4πr2

dLr
dr

. (2.13)

The last of the four main equations, equation (2.9), is a bit more complicated
and deserves to be discussed in a separate section.

2.3 Solving radiative transfer using moments

Equation (2.9) can be solved by taking moments. We define 0th, 1st, and 2nd
moments as follows,

J =
1

4π

∫
4π

I dΩ, (2.14)

F = c

∫
4π

In̂ dΩ, (2.15)

P =
1

4π

∫
4π

In̂n̂ dΩ. (2.16)

Here, P is the radiation pressure tensor, F is the indeed the same flux as the
one defined in equation (2.8), and c is the speed of light1. Next we take the 0th
and 1st moments of transfer equation, so

∇ · F = −4πcκρ (J − S), (2.17)

∇ · P = − κρ

4πc
F . (2.18)

In principle this ‘game’ could go on forever by defining higher and higher mo-
ments, but in order to make progress, we have to make a “closure” assumption.
A common choice is to assume isotropy of the radiation pressure tensor2, i.e.

Pij = 1
3δijJ. (2.19)

1In stars with strong radiation, this F also enters on the rhs of the momentum equation,
so DU/Dt = ...+ (κ/c)F . For the sun this is not important, but for O and B stars it is, and
certainly for discs around black holes.

2You should think of ‘tensor’ as just being a 3× 3 matrix.
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With this, equation (2.18) becomes

1
3∇J = − κρ

4πc
F . (2.20)

Next, in order to calculate ∇ · F , we divide first by κρ and then take the
divergence, so

∇ ·
(

1

3κρ
∇J

)
= − 1

4πc
∇ · F . (2.21)

Using equation (2.17) we obtain a closed equation for J .

∇ ·
(

1

3κρ
∇J

)
= κρ (J − S). (2.22)

This equation is in its mathematical nature similar to the Poisson equation, so
we talk about a ‘Poisson-like’ equation for the mean intensity J . This equation
is also known under the name Eddington approximation.

Limb darkening

If you want to learn more about this topic, it is instructive to read about Edding-
ton’s solution to a stellar atmosphere which explains, at least qualitatively, the
solar limb darkening3. However, comparison with observations indicates that
quantitatively the solar limb darkening problem is still not well understood.

Optically thick limit

Let us define the optical depth along the vertical coordinate z as

τ =

∫ ∞
l

κρdz′. (2.23)

Below a certain height in the atmosphere the medium becomes optically thick
(non-transparent). This is said to be the case where τ � 1. Looking at equa-
tion (2.22) is it clear that when κρ is large, J − S must be small, so

J ≈ S = aT 4 (optically thick) (2.24)

so the term under the divergence on the left hand side of equation (2.22) (and
multiplied by −c, so it F ) can be written as

F = − c

3κρ
∇
(
aT 4

)
= − ac

3κρ
∇T 4 = −4acT 3

3κρ
∇T. (2.25)

We have therefore arrived at an equation like equation (2.1), i.e. F = −K∇T ,

where K = 4acT 3

3κρ is the radiative diffusivity. Since ac/4 = σSB, we can write K
also as

K =
16σSBT

3

3κρ
(2.26)

3 http://star-www.st-and.ac.uk/~kw25/teaching/stars/GRAY.pdf

http://star-www.st-and.ac.uk/~kw25/teaching/stars/GRAY.pdf
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Absorption processes in astrophysical plasmas.

• Electron scattering: if an electromagnetic wave passes an electron the
electric field makes the electron oscillate.

• Free-free transitions: if during its thermal motion a free electron passes
an ion, the two charged particles form a system which can absorb and
emit radiation.

• Bound-free transitions: a neutral hydrogen atom in its ground state is
ionized by a photon.

• Bound-bound transitions: after absorption of a photon the electron
jumps to a higher bound state, rather than leaving the atom altogether.

• Negative Hydrogen ion: a neutral hydrogen atom is polarized by a nearby
charge and can then attract and bind another electron.

[Adapted from Kippenhahn and Weigert (1990).]

2.4 Polytrope solution

In the main parts of the Sun, energy is transported by photon diffusion: the
optical mean-free path is short compared with other relevant length scales (e.g.
pressure scale height), so we are in the optically thick limit and can make the
diffusion assumption, i.e. F = −K∇T . In equation (2.26) the value of κ,
and therefore of K, depends on the atomic physics involved in absorbing and
scattering photons. It changes slowly, so to a first approximation, K = const.
Since there are furthermore no local energy sources, the energy flux is constant
(F = const), so we also have ∇T = const. In a plane-parallel atmosphere
dT/dz = const, i.e. T increases linearly with depth, which leads to the polytropic
atmosphere considered in § 2.5.5.

A good approximation for the opacity κ is given by Kramer’s formula

κ = κ0%T
−7/2, (2.27)

where κ0 = 6.6 × 1018 m5 K7/2 kg−2. This value may well be up to 30 times
larger if the gas is “metal rich”, i.e. a good electron supplier, so that bound-
free processes become important as well. In practice, a good value is κ0 ≈
1020 m5 K7/2 kg−2. With this coefficient and Kramer’s formula, the conductivity
is

K =
16σSBT

13/2

3κ0%2
. (2.28)

If the density is given by a power law of the temperature, % ∼ Tm, which is
called a polytrope solution with polytropic index m, then

K ∼ T 13/2−2m, (2.29)
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Figure 2.1: Simple polytropic stratification. The temperature gradient is
assumed to be inversely proportional to the conductivity, K(z), such that
K∇T = Ftot = L/(4πr2). In the outer 30% the polytropic index is changed
such that the entropy is constant. This is to model the convection zone.

which is constant for m = 13/4 = 3.25. This is gives a reasonable representation
of the stratification of stars in convectively stable regions. At the bottom of the
solar convection zone the density is about 200 kg m−3 and the temperature is
about 2× 106 K. This gives K = (3...100)× 109 kg m s−3 K−1. In order to carry
the solar flux the average temperature gradient then has to be around 0.01 K/m.

However, in reality K does change slowly with height. Therefore the poly-
tropic index effectively changes with height. In the outer layers the temperature
decreases and there is ionization and recombination. In that layer there are
many electrons allowing for the formation of negative hydrogen ions, H−, from
polarized neutral hydrogen atoms. This leads to low values of K. To transport
the required energy flux, the temperature gradient has to go up. But this means
the polytropic index goes down, see equation (2.66), and so the stratification
will become unstable. This leads to convection in the outer parts of the Sun.

To a first approximation we can assume that convection leads to perfect
mixing and therefore to a nearly uniform entropy distribution, corresponding
to a state of marginal convective stability; see § 2.5.3. The star’s stratification
can then locally be described by a polytrope with m = 3/2 (for γ = 5/3). A
plot of the resulting stratification is shown in Fig. 2.1. However, towards the
surface layers cooling by radiation begins to play a role which causes the entropy
to decrease gradually. A better approximation for the vertical stratification of
density and temperature can be obtained by the mixing length theory, which will
be discussed next. However, for more accurate and more detailed models one
has to use numerical simulations, which are now beginning to become feasible.

2.5 Buoyancy and entropy

Gas motions in the Earth’s and solar atmospheres are often driven by buoyancy.
As an example we now calculate the buoyancy force from a hot air balloon. The
buoyancy force results from a lower density inside the balloon (or any other
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container) and the density outside it. So the buoyancy force is given by

Fbuoy = −∆% V g, (2.30)

where g is the gravitational acceleration (≈ 10 m s−2), and ∆% = %i − %e is the
density difference between the interior and the exterior of the balloon. If the
density within the balloon is smaller than outside, ∆% < 0 and Fbuoy is positive.
The density deficit depends on the temperature excess and, assuming that there
is no pressure difference (which is justified for a hot air balloon), the two are
proportional to each other, so

∆%

%
= −∆T

T
. (2.31)

Let us assume that the temperature inside the balloon is 80�C and the exterior
temperature is 20◦C. The temperature difference is then 60�C = 60 K, and
the absolute temperature is then is T = 20 K + 273 K ≈ 300 K (Kelvin), so

∆%

%
= − 60

300
≈ 0.2. (2.32)

So, one cubic meter of hot air is about 20% lighter than cold air. Since the
density of air is approximately % = 1 kg m−3 we have ∆ = 0.2 kg m−3. The larger
the balloon, the more hot air there is and the lighter is the balloon. Assuming a
spherical shape with radius R the volume of the balloon is Vballoon = (4π/3)R3,
so the upward force of the entire balloon is

(−∆%)V g =
4π

3
R3(−∆%)g. (2.33)

This has to be balanced against the weight of the balloon, which is mg, if m is
the mass of the payload. Thus, we have

4π

3
R3∆% = m. (2.34)

If we want to know the size of the balloon necessary to carry, say, m = 500 kg,
we have

R =

(
3

4π

m

∆%

)1/3

≈
(

1

4

500 kg

0.2 kg m−3

)1/3

=
3
√

625 m ≈ 9 m, (2.35)

which seems quite plausible.

2.5.1 The perfect gas. Equation of state

We need an equation of state that relates the pressure p of a gas to its density
% and its temperature T . For a perfect gas this relation is

p =
R
µ
T%. (2.36)
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The quantity RT/µ has the dimensions of a velocity squared. As we will see
later, this quantity equals the square of the sound speed in a situation where
changes in the pressure and density are isothermal.4

The quantity

c(isoth)
s =

(
RT
µ

)1/2

(2.37)

is therefore also referred to as the isothermal sound speed. For air the value of
µ is 28.8, so

c(isoth)
s ≈

(
8315× 300

28.8

)1/2

m/ s ≈ 300 m/ s (2.38)

For ionized hydrogen µ = 0.5 (the atomic mass is 1 and the number of particles
2, because there are protons and electrons). However, in the Sun, as well as
elsewhere in the cosmos, there is also helium and the value of µ is then around
0.6. On the other hand, the presence of neutral and molecular hydrogen in-
creases the average value. Approximate values (to an order of magnitude) of

c
(isoth)
s and T are given in Table 2.1.

Table 2.1: Typical sound speeds in the Sun.

T c
(isoth)
s

102 K 1 km/ s
104 K 10 km/ s
106 K 100 km/ s

4When the changes are adiabatic, e.g. when thermal conduction is weak, the sound speed

is slightly larger: cs =
√
γc

(isoth)
s .



2.5. BUOYANCY AND ENTROPY 21

Specific heats: The energy content of a gas is measured by its specific heat,
which is the energy needed to increase the temperature by one degree. This
quantity can be measured by holding either the volume of the gas constant
(specific heat at constant volume, cv) or by keeping the pressure constant
(specific heat at constant pressure, cp). In general, the specific heat at constant
volume is smaller than the specific heat at constant pressure, because when the
pressure is constant the energy is not only used to increase the temperature,
but also to increase the volume. The work associated with this is p∆V =
R/µ∆T , and therefore

cp − cv =
p∆V

∆T
= R/µ (2.39)

According to the kinetic theory of gases (i.e. the theory that describes the gas
as noninteracting particles) the specific heat at constant volume is equal to
R/(2µ) times the number of degrees of freedom f of a single particle (atom
or molecule), i.e. cv = fR/(2µ). Because of equation (2.39) we have cp =
(f + 2)R/(2µ). Therefore the ratio of the two specific heats, γ ≡ cp/cv, is
equal to

γ =
f + 2

f
. (2.40)

For a mono-atomic gas f = 3, corresponding to the three directions of trans-

lation, so γ = 5/3 = 1.67. Further, for a bi-atomic (dumbbell-like) molecule

there are two additional degrees of freedom corresponding to the rotation of

the molecule about the axis connecting the two atoms and perpendicular to it,

so f = 3 + 2 and γ = 7/5 = 1.4. The third rotation axis is only distinguished

in molecules with more than two atoms. So, for example in CO2 f = 6 and

therefore γ = 8/6 = 4/3 ≈ 1.33. Yet, values of γ closer to unity are possible

when the molecules exhibit various kinds of oscillations that further increase

the number of degrees of freedom.

2.5.2 The isothermal atmosphere

Things are changing as we rise. The exterior density decreases, decreasing
therefore the buoyancy force. On the other hand, the pressure decreases, so the
balloon (or gas parcel) expands and so the interior density also decreases. Which
one decreases faster, depends on the temperature profile in the atmosphere. The
simplest type of atmosphere is the isothermal atmosphere, i.e. one where the
temperature is constant.

In any atmosphere in hydrostatic (or mechanical) equilibrium the weight
(per unit area) of a thin layer of gas, %gdz, increases the pressure by the amount
ptop − pbot = −∆p = %gdz, so the condition of hydrostatic equilibrium is

dp

dz
= −%g, (2.41)

where g is the gravitational acceleration (≈ 10 m/ s2 for the Earth and ≈
300 m/ s2 at the solar surface).
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If the atmosphere is isothermal, then p = c2s%, where c2s = const. In that
case we obtain

d

dz
(c2s%) = c2s

d%

dz
= −%g (2.42)

or (after dividing by % and c2s )

1

%

d%

dz
=
d ln %

dz
= −g/c2s = const, (2.43)

so
ln % = −gz/c2s + ln %0, (2.44)

where ln %0 is an integration constant.

So, % decreases exponentially with height, i.e.

% = %0e
−z/H , (2.45)

where
H = c2s/g (2.46)

is also called the scale height of the atmosphere.

Furthermore, since p = c2s% we have

p = p0e
−z/H , (2.47)

where p0 = c2s%0.

2.5.3 Adiabatic changes. Entropy

If a fluid parcel preserves its heat content, i.e. if radiative losses or other heating
mechanisms are unimportant on time scales of interest, pressure and density
changes are said to be adiabatic. This is described by a quantity called the
entropy which is then unchanged. For a perfect gas, we define the specific
entropy (i.e. entropy per unit mass) as

s = cv ln p− cp ln %. (2.48)

(In principle there could be an additive constant s0, but we can put it to zero,
because only changes in s matter.) The entropy per unit mass is relevant,
because we consider a bubble of a given mass, while its volume may change.
The specific entropy, in units of cp, is

s/cp =
1

γ
ln p− ln % ≡ 1

γ
ln (p/%γ) , (2.49)

so if changes in p and % are adiabatic, i.e. if s = const, then

p = eγs/cp %γ (2.50)
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Figure 2.2: Entropy profile for an unstable atmosphere. The entropy difference
between the bubble and the exterior increases constantly as the bubble ascends.

or
p

p0
=

(
%

%0

)γ
(2.51)

In order to understand the evolution of a parcel in an atmosphere it is con-
venient to compute the vertical dependence of s. For an isothermal atmosphere
the vertical gradient is

1

cp

ds

dz
= − 1

γH
+

1

H
=
γ − 1

γ

1

H
> 0, (2.52)

so s increases with height. This means that a rising fluid parcel, whose entropy
is conserved, will end up in a location where the surrounding entropy is higher.
At the same time, however, the pressure inside and outside the bubble will be
the same, so pi − pe ≡ ∆p = 0, where subscripts i and e refer to interior and
exterior values. Thus, from equation (2.49) we have

∆s/cp = −∆ ln %. (2.53)

So, since the rising fluid parcel ends up in a location of higher exterior entropy,
we have ∆s < 0 and therefore ∆ ln % > 0, so the fluid parcel becomes heavier and
will be pulled back by the gravity. This provides a restoring force proportional
to the vertical displacement, which leads to

2.5.4 Brunt-Väisälä oscillations

When the bubble rises over a distance z (from its original position, where ∆s =
0), the relative change of density ∆%/% = ∆ ln % between interior and exterior
is equal to

∆ ln % = −∆s/cp = +
1

cp

ds

dz
z, (2.54)
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so it is proportional to the displacement z. Now the buoyancy force acting on
the fluid parcel per unit volume, is −∆% g, so

%z̈ = −∆% g (2.55)

(dots indicate differentiation with respect to time), or 5

z̈ = −∆%

%
g = −g∆ ln % = g

∆s

cp
= − g

cp

ds

dz
z. (2.56)

A solution of this differential equation is

z = z0 cos(ωBVt), (2.57)

where z0 is the initial displacement from the equilibrium state and ωBV is the
Brunt-Väisälä (or buoyancy) frequency (sometimes also called NBV) with

ω2
BV =

g

cp

ds

dz
. (2.58)

This expression only makes sense if the atmosphere is stably stratified, i.e. if
g ·∇s < 0, and so we can express (2.58) in vector notation,

ω2
BV = −g ·∇s/cp. (2.59)

2.5.5 Polytropic atmospheres

Real atmospheres are not isothermal. A better approximation is to assume that
T increases linearly with depth. Warning: depth increases downwards, whereas
height increase upwards. To distinguish between the two we denote depth by z̃,
with z̃ = zmax − z. Thus, dz = −dz̃, and therefore equation (2.41) becomes

1

%

dp

dz̃
= g. (2.60)

Now for a polytropic atmosphere we have

T/T0 = z̃/HT , (2.61)

where HT is the temperature scale height, the value of which will be determined
below. The density is then assumed to be a power law of T , so

%/%0 = (T/T0)m, (2.62)

where m is the polytropic index. Because of equation (2.36) the pressure is then

p/p0 = (T/T0)m+1. (2.63)

5 The change in sign in the last equation may be counter-intuitive, but one should keep in
mind that

∆s = si − se = s(z=0)− s(z) =
ds

dz
· (0− z) = −

ds

dz
z .



2.6. THE MAIN POINTS OF THIS CHAPTER 25

Plugging this into (2.60) we have

%−1
0 (z/HT )−m

d

dz̃

[
p0(z/HT )m+1

]
= g (2.64)

or
RT0

µHT
(m+ 1) = g. (2.65)

The (constant) temperature gradient is then6

β ≡ dT/dz̃ = T0/HT =
g

(m+ 1)R/µ
. (2.66)

In order to see what happens to our fluid blob we determine again the entropy
gradient, using equation (2.49),

1

cp

ds

dz
= − 1

cp

ds

dz̃
= −m+ 1

γz̃
+
m

z̃
=

1

z̃

(γ − 1)m− 1

γ
. (2.67)

Here we have used the fact that d ln p/dz = d ln(p/p0)/dz̃, because the second
term in ln(p/p0) = ln p− ln p0 is constant, and so

d ln p

dz̃
=
d ln(p/p0)

dz̃
= (m+ 1)

d ln(T/T0)

dz̃
= (m+ 1)

d ln z̃

dz̃
=
m+ 1

z̃
. (2.68)

Evidently, for

m <
1

γ − 1
(2.69)

the entropy gradient ds/dz turns negative, so a rising blob would find itself in
an environment whose entropy is getting smaller and smaller as it rises further.
This means its density relative to the exterior density is getting smaller and
smaller, so the bubble becomes even more unstable. Since such bubbles may
break lose all over the place the whole medium will start to bubble. This process
is called convection. In this case the Brunt-Väisälä frequency becomes formally
imaginary, corresponding to an exponentially growing solution with growth rate
σBV = Im(ωBV). This is because cosωBVt = Re

(
e−iωBVt

)
= eσBVt. For γ = 5/3

the criterion (2.67) for instability is m < 3/2 (or m > 5/2 for γ = 7/5 and
m > 3 for γ = 4/3).

We shall return to convective instability in connection with the solar con-
vection zone; see § 4.2.

2.6 The main points of this chapter

The equations of stellar structure are just a subset of the equations of fluid me-
chanics (with some extensions). The equation of radiation transport determines

6In the adiabatic case, i.e. when ds/dz = 0, we have m = 3/2 (for γ = 5/3) and then the
temperature gradient is simply dT/dz̃ = g/cp. Remember that then cp = (5/2)R/µ.
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the temperature gradient. Except for the surface layers, radiation can be solved
in the diffusion approximation. This means that gas and radiation have the
same temperature (J = S). The smaller the radiative diffusivity, the steeper
the temperature gradient. When it becomes too steep, such that the specific
entropy gradient decreases in the outward direction, convection sets in that acts
such as the minimize the entropy gradient, so the temperature gradient is then
close to the adiabatic value, dT/dz = −g/cp.



Chapter 3

Some fluid dynamics

3.1 Derivation of the energy equation

The first law of thermodynamics states that

TdS = dE + pdV, (3.1)

where T is the temperature, S the entropy, E the internal energy, p the pressure
and V the volume. For later reference we mention here that TdS can also be
expressed as

TdS = dH − V dp, (3.2)

where H is enthalpy. This expression can be important when rewriting the
pressure gradient term in the momentum equation. In fluid dynamic we measure
those quantities with respect to some unit mass. Thus, we have

Tds = de+ pdv, (3.3)

where s is the specific entropy per unit mass, e is the specific internal energy
per unit mass, and v is the specific volume per unit mass (not to be confused
with the velocity). For a perfect gas the temperature is related to e via e = cvT ,
where cv is the specific heat for constant volume. The specific volume per unit
mass is just the ordinary fluid density, so v = 1/ρ. Since dv = d(ρ−1) =
−ρ−2dρ = −ρ−1d ln ρ we have

Tds = de− p

ρ
d ln ρ. (3.4)

In the following we shall always work with the density and never with the specific
volume. Hence, from now on, v shall always refer to velocity. In fluid dynamics
we are interested in the total time derivative, so we have

T
Ds

Dt
=

De

Dt
− p

ρ

D ln ρ

Dt
. (3.5)

27
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Now, from the continuity equation we have

0 =
∂ρ

∂t
+ ∇ · (ρu) =

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u =

Dρ

Dt
+ ρ∇ · u, (3.6)

or, dividing by ρ,
D ln ρ

Dt
= −∇ · u. (3.7)

Using this in (3.5) yields

T
Ds

Dt
=

De

Dt
+
p

ρ
∇ · u. (3.8)

In an adiabatic fluid the specific entropy is constant, i.e. Ds/Dt = 0. Hence,
the evolution of e is given by

De

Dt
= −p

ρ
∇ · u. (3.9)

This equation shows that if there is a compression, then ∇ · u < 0 and so e
increases. This effect is known as compressional heat. Conversely, if there is an
expansion then ∇ ·u > 0 and e decreases. This effect is utilized in every fridge.

3.2 Sound waves

Shocks may occur in situations where the velocity is supersonic. This is typically
when the Mach number, Ma = |u|/cs, exceeds unity. Shocks can form when the
amplitude of sound waves becomes comparable to the sound speed, so that the
Mach number becomes of order unity. Since the sound speed is proportional to
the temperature, this may occur when the gas cools, or when the wave reaches
a region where the temperature is low.

In the previous chapter on winds we have seen, however, that the formation
of a shock is not compulsory and that smooth transonic transitions are quite
possible. Conversely, a shock may also occur under subsonic conditions if one
just waits long enough for a shock wave to pile up.

In the linear regime, i.e. Ma� 1, the nonlinear terms u ·∇ can be neglected
and the governing equations are then, in 1 dimension,

∂ ln ρ

∂t
= −∂vx

∂x
(3.10)

∂vx
∂t

= −c2s
∂ ln ρ

∂x
(3.11)

Differentiating the second equation in time and substituting the first one for
ln ρ yields the wave equation,

∂2vx
∂t2

= c2s
∂2vx
∂x2

, (3.12)
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which permits solutions of the form

ln ρ = Ma cos k(x∓ cst), (3.13)

vx = ±csMa cos k(x∓ cst), (3.14)

where the upper and lower signs correspond to forward and backward propa-
gating waves, respectively. (Here we have ignored the possibility of an arbitrary
phase shift; for traveling waves this would just renormalize the zero point of
time.)

3.3 Fluid equations in conservative form

In one dimension the ideal fluid equations can be written in conservative as form

∂ρ

∂t
+

∂

∂x
(ρvx) = 0, (3.15)

∂

∂t
(ρvx) +

∂

∂x
(ρv2

x + p) = 0, (3.16)

∂

∂t
( 1

2ρv
2
x + ρe) +

∂

∂x
[vx( 1

2ρv
2
x + ρe+ p)] = 0. (3.17)

where e is the internal energy density per unit mass, and the other variables
have their usual meaning.

3.4 Shocks

In a frame of reference comoving with the shock the shock is stationary. There-
fore ∂/∂t = 0 and so the terms under the x-derivatives in the equations (3.15)-
(3.17) are constant, i.e.

ρvx = const = J, (3.18)

ρv2
x + p = const = I, (3.19)

(ρvx) ( 1
2v

2
x + e+ p/ρ) = const = J E, (3.20)

We assume a perfect gas with

p = (γ − 1)ρe (3.21)

and substitute

e =
1

γ − 1

p

ρ
, and e+

p

ρ
=

γ

γ − 1

p

ρ
. (3.22)

This allows us rewrite the quantities that are constant across the shock in the
form
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ρvx = J, (3.23)

ρv2
x + p = I, (3.24)

1
2v

2
x +

γ

γ − 1

p

ρ
= E. (3.25)

We now eliminate ρ and p to derive a quadratic equation for the velocity.
Dividing (3.24) by ρ gives

v2
x +

p

ρ
=
I

ρ
. (3.26)

We now eliminate p/ρ using (3.25), so we have

v2
x +

γ − 1

γ

(
E − 1

2v
2
x

)
=
I

ρ
. (3.27)

Finally, we get rid of ρ using (3.23), which gives ρ−1 = vx/J , so we have

v2
x +

γ − 1

γ

(
E − 1

2v
2
x

)
− I

J
vx = 0, (3.28)

which is a quadratic equation for vx, which we write as

v2
x

(
1− γ − 1

2γ

)
− I

J
vx +

γ − 1

γ
E = 0. (3.29)

Since

1− γ − 1

2γ
=
γ + 1

2γ
(3.30)

we have, after multiplying by 2γ/(γ + 1),

v2
x −

2γ

γ + 1

I

J
vx + 2

γ − 1

γ + 1
E = 0. (3.31)

Remembering that the quadratic equation can be written in the form (v−v1)(v−
v2) = v2− (v1 + v2) + v1v2 = 0, were v1 and v2 are the two solutions, we get an
expression for v1 + v2,

v1 + v2 =
2γ

γ + 1

I

J
(3.32)

Note also that
I

Jvx
= 1 +

1

γMa2 , (3.33)

where Ma = v/c is the Mach number and c2 = γp/ρ is the square of the adiabatic
sound speed. We now assume that Ma→∞ on the upstream side of the shock.
This means that

I

Jv1
= 1, (3.34)
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or v1 = I/J . Substituting this for I/J in (3.32) we have

v1 + v2 =
2γ

γ + 1
v1, (3.35)

or

v2 =

(
2γ

γ + 1
− 1

)
v1 =

2γ − (γ + 1)

γ + 1
v1 = −γ − 1

γ + 1
v1. (3.36)

The mass ratio on the two sides of the shock is then by (3.23) given by

ρ2

ρ1
=
v1

v2
=
γ + 1

γ − 1
. (3.37)

For γ = 5/3 we have
ρ2

ρ1
=

5 + 3

5− 3
=

8

2
= 4. (3.38)

For smaller values of γ, for example γ = 7/5, we have

ρ2

ρ1
=

7 + 5

7− 5
=

12

2
= 6. (3.39)

Generalization to arbitrary shock strength

The assumption of arbitrarily strong shocks was not necessary. All we need to
know is all the quantities on one side of the shock. We use equation (3.33) as it
is (without assuming Ma→∞) in equation (3.32) and obtain

v1 + v2 =
2γ

γ + 1

(
1 +

1

γMa2

)
v1, (3.40)

so
v2

v1
=

2γ

γ + 1

(
1 +

p1

ρ1v2
1

)
− 1 (3.41)

Example: suppose v1 = 5, ρ1 = p1 = 1 and γ = 5/3, then

v2

v1
=

2× 5

5 + 3

(
1 +

1

25

)
− 1 =

5

4

26

25
− 1 =

1

2

13

5
− 1 =

13

10
− 1 = 0.3, (3.42)

so v2 = 5× 0.3 = 1.5 = 3/2. From continuity we have ρ2 = ρ1v1/v2 = 5/1.5 =
10/3 ≈ 3.33. Finally, for the pressure we

ρ1v
2
1 + p1 = ρ2v

2
2 + p2, (3.43)

so

p2 = p1 + ρ1v
2
1 − ρ2v

2
2 = 1 + 25− 10

3

(
3

2

)2

= 26− 15

2
=

52− 15

2
=

37

2
= 18.5

(3.44)
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With this we can now also work out the entropies on the 2 sides of the shock.
In the upstream (unshocked) part we have for the entropy in units of cp,

s1/cp =
1

γ
ln p1 − ln ρ1 = 0, (3.45)

because p1 = ρ1 = 1 and ln 1 = 0. On the downstream side the shocked material
has s2 = 0.55.

The results are plotted in Fig. 3.1 for different values of the Mach number.

Figure 3.1: Relative velocity, density, pressure and entropy behind the shock.
The dotted line refers to the polytropic case where the entropy cannot increase
behind the shock.

For polytropic equations of state, with p = KρΓ, the energy equation is no
longer used, so there are only the following two conserved quantities,

J = ρv, I = ρv2 +Kργ . (3.46)

The dependence of velocity, density, pressure, and entropy jumps on the up-
stream Mach number is plotted in Fig. 3.1 for the case γ = 5/3 and compared
with the polytropic case using Γ = γ. Note that in this case the density jump can
be arbitrarily strong and is no longer limited by the ratio 4 found for γ = 5/3.
This is however really just an artifact.

3.5 The main points of this chapter

Sound waves are solutions to the fluid dynamics equations. When their am-
plitude becomes large, i.e. |u| ∼ cs, shocks can develop and kinetic energy is
converted into heat.



Chapter 4

Helioseismology

The five-minute oscillations were discovered by Bob Leighton (1962) at Caltech
from spectral line shifts (Na, Ca, Fe, etc). They were first thought to be the
oscillatory response of the the atmosphere to granules pushing upwards. This
idea turned later out to be quite wrong, and the oscillations are actually global
oscillations permeating deep layers of the sun. In fact, they are just sound waves
that are trapped in a cavity formed by reflection at the top1 and refraction in
deeper layers (see Fig. 4.1). The bending of sound waves may be illustrated
by a troop of soldiers (walking of course in parallel lines) or a toy car moving
at an oblique angle into troublesome terrain (Fig. 4.2). This effect is suppos-
edly noticed by fishermen in the early mornings when there is a temperature
inversion.

The decisive observation came in 1975 when Deubner2 showed that these
modes have large scale spatial coherence with wavenumbers corresponding to
20–60 Mm (1 Mm=1000 km); see Fig. 4.4. By now the field has growth to
perfectionism; see Fig. 4.5.

4.1 Qualitative story

Since the beginning of the eighties, standing acoustic waves in the Sun have
been used to gain information about the interior of the Sun. It was possible to
measure directly (i.e. without the use of any solar model)

(i) the radial dependence of the sound speed, cs(r) — and hence temperature.
We recall that c2s = γp/ρ = γRT/µ.

(ii) the radial and latitudinal dependence of the internal angular velocity of
the Sun.

1Sound waves can’t penetrate if their wave length exceeds the scale on which density
changes.

2Deubner, F.-L.: 1975, “Observations of low wavenumber nonradial eigenmodes of sun,”
Astron. Astrophys. 44, 371–379

33
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Figure 4.1: Refraction of sound waves in the sun. Courtesy J. Christensen-
Dalsgaard.

Figure 4.2: Refraction of a troop of soldiers (left) and toy cars (right).

Figure 4.3: Refraction of sound waves for fisher men; see http://

hyperphysics.phy-astr.gsu.edu/hbase/sound/refrac.html

http://hyperphysics.phy-astr.gsu.edu/hbase/sound/refrac.html
http://hyperphysics.phy-astr.gsu.edu/hbase/sound/refrac.html
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Figure 4.4: These are the original (and hence rather poor) result from Deubner’s
paper. However, this was the paper that first demonstrated and convinced the
community that the five-minute oscillations are really global modes.

This technique is called helioseismology, because it is mathematically similar
to the techniques used in seismology of the Earth. Qualitatively, the radial
dependence of the sound speed can be measured, because standing sound waves
of different horizontal wave number penetrate to different depths. Therefore,
the frequencies of those different waves depend on how exactly the sound speed
changes with depth. Since the Sun rotates, the waves that travel in the direction
of rotation will be blue-shifted, and those that travel against the direction of
rotation will be red-shifted. Therefore, the frequencies are split, depending
on the amount of rotation in different layers. There are many reviews on the
subject.3

Figure 4.6 shows the spatial pattern of a standing wave in three dimensions.
It is the frequencies belonging to different latitudinal wave patterns that allow
us to determine the latitudinal dependence of the angular velocity as well.

These acoustic waves are possible, because they are constantly being excited
by the “noise” generated in the convection zone. The random fluctuations in the
convection are turbulent and contain noise at all frequencies, similar to the noise
generated by a glider going through the air. Now the Sun is a harmonic oscillator
for sound waves and the different sound modes can be excited stochastically.
This is similar to a bell in a sand storm starting to ring.

Figure 4.7 gives the result an inversion procedure that computes the radial
dependence of the sound speed on depth, using the different frequency modes
as input.

Helioseismology is now a big “industry”, and more accurate data have now
emerged due to the SOHO satellite and the GONG project (GONG = Global

3 P. Demarque and D. B. Guenther: 1999, “Helioseismology: Probing the interior of a
star,” Proc. Natl. Acad. Sci.96, 5356–5359
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Figure 4.5: Ray paths in the sun (in addition to pressure or p-modes, also
gravity or g-modes (not yet detected!) are sketched near the center. Courtesy
J. Leibacher; seehttp://www.pnas.org/cgi/content/full/96/10/5356

Figure 4.6: Three-dimensional wave pattern of a single wave mode. In reality,
millions of different wave patterns are all superimposed. Courtesy J. Leibacher.

Oscillation Network Group), which has six stations around the globe to eliminate
nightly gaps in the data.

4.1.1 Inverting the frequency spectrum

Like with a violin string, the acoustic frequency of the wave increases as the
wavelength decreases, i.e.

frequency ∝ 1/wavelength. (4.1)

http://www.pnas.org/cgi/content/full/96/10/5356
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Figure 4.7: Radial dependence of the sound speed on radius in the Sun. Note
the change in slope near r = 0.7 solar radii. The oscillations near the center
are not physical. The theoretical model (dotted line) is in fair agreement with
the direct measurements. The sound speed has its maximum not in the center,
because the mean molecular weight µ increases towards the center, which causes
cs to decrease. [Again, we recall that c2s (r) = γRT/µ.]

More precisely, the frequency ω is given by

ω = csk, (4.2)

where cs is the sound speed and k = 2π/λ is the wavenumber (λ is the wave-
length). If sound waves travel an oblique path then we can express the wavenum-
ber in terms of its horizontal and vertical wave numbers, kh and kv, respectively.
We do this because only the horizontal wavenumber can be observed. This cor-
responds to the horizontal pattern in Fig. 4.6. Thus, we have

k2 = k2
h + k2

v . (4.3)

The number of radial nodes of the wave is given by the number of waves that fit
into the Sun, or at least the part of the Sun where the corresponding wave can
travel. This part of the Sun will be referred to as cavity. The larger the cavity
is, the more nodes there will be for a given wavelength. The number of modes
n is then given by

n = 2∆r/λ = 2∆r
kv

2π
= ∆r kv/π , (4.4)

where ∆r is the radial extent of the cavity. If the sound velocity and, hence, kv

depends on radius, this formula must be generalized to

n =
1

π

R�∫
rmin

kv dr, (4.5)

supposing the cavity to be the spherical shell rmin < r < R�.
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Figure 4.8: Duvall law. The vertical axis (ordinate) is the same as F in equa-
tion (4.12) and the horizontal axis (abscissa) is basically the same as u−1. (He
found this law well before it’s significance was understood in terms one of the
functions in Abel’s integral transformation. Courtesy J. Christensen-Dalsgaard.

The horizontal pattern of the proper oscillation is described by spherical
harmonics with indices l and m, hence the horizontal wave number is

k2
h =

`(`+ 1)

r2
(4.6)

and we can write

kv =

√
ω2

c2s
− `(`+1)

r2
=
ω

r

√
r2

c2s
− `(`+1)

ω2
(4.7)

Therefore, the number n of radial nodes is given by

π(n+ α)

ω
=

R�∫
rmin

√
r2

c2s
− `(`+1)

ω2

dr

r
. (4.8)

The phase shift α ≈ 1.5 accounts for the fact that the standing waves are
confined by “soft” and extended, rather than fixed, boundaries.

The location of the inner radius is given by the point where the wave vector
has turned horizontal. Using

ω2/c2s = k2 = k2
h + k2

v (4.9)

together with kv = 0 at r = rmin and k2
h = `(` + 1)/r2, we have (rmin/cs)

2 =
`(`+ 1)/ω2. This implies that

rmin =
cs
ω

√
`(`+ 1), (4.10)



4.1. QUALITATIVE STORY 39

so only modes with low-` values can be used to examine the sun’s core. We now
introduce new variables

ξ ≡ r2

c2s
, u ≡ `(`+1)

ω2
, (4.11)

so the inner turning point of the modes corresponds to ξ = u. Furthermore, we
denote the left hand side of equation (4.8) by F (u), so we can write

F (u) =

ξ�∫
u

√
ξ − u d ln r

dξ
dξ. (4.12)

where the location of the inner refraction point corresponds to u = ξ. The
function F (u) was obtained from observations by Tom Duvall4 on the grounds
that this curious combination of data makes the different branches collapse onyo
one (see Fig. 4.8). He discovered this well before its significance was understood
by Douglas Gough5 a few years later.

Since we know, at least in principle, F (u) from observations and are inter-
ested in the connection between r and ξ (i. e. r and cs), we interpret (4.12) as
an integral equation for the unknown function r(ξ). Most integral equations
cannot be solved in closed form, but this one can. It was Douglas Gough who
realized that it can be cast in the form of Abel’s integral equation6. Here is the
pair of complementary equations (primes denote derivatives):

F (u) =

ξ�∫
u

√
ξ − u G′(ξ) dξ, (4.13)

G(ξ) =
2

π

ξ�∫
ξ

1√
ξ − u

F ′(u) du. (4.14)

In the following we give an explicit derivation. Differentiate (4.12) with
respect to u and, in the final result, rename ξ to ξ′:

dF

du
≡ F ′(u) = −1

2

ξ�∫
u

1√
ξ − u

d ln r

dξ
dξ − 1 ·

√
u− u d ln r

dξ

∣∣∣∣
ξ=u

, (4.15)

i. e.

F ′(u) = −1

2

ξ�∫
u

1√
ξ′ − u

d ln r

dξ′
dξ′. (4.16)

4Duvall, T. L., Jr.: 1982, “A dispersion law for solar oscillations,” Nature 300, 242–243
5D. Gough: 1985, “Inverting helioseismic data,” Solar Phys. 100, 65–99
6Niels Abel (1802–1829); see http://www.shu.edu/projects/reals/history/abel.html

http://www.shu.edu/projects/reals/history/abel.html
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This can be solved analytically. Multiply by 1/
√
u− ξ and integrate from u = ξ

to u = ξ�.

ξ�∫
ξ

F ′(u)√
u− ξ

du = −1

2

ξ�∫
ξ

du
1√
u− ξ

ξ�∫
u

dξ′
1√
ξ′ − u

d ln r

dξ′

= −1

2

ξ�∫
ξ

du

ξ�∫
u

dξ′
1√

(u− ξ)(ξ′ − u)

d ln r

dξ′
(4.17)

Due to the unknown function ln r(ξ′), we cannot explicitly carry out the inte-
gration with respect to ξ′, but integrating over u will be possible. In order to
do this, we interchange the order of integration.

Interchanging the order of integra-
tion: This would be easy if integration
were over a rectangular region. In our case,
where the integration bounds for ξ′ depend
on u, the graphical representation on the
right shows us what to do.
We can either let u run from ξ to ξ� (the
outer integral) and for every given u inte-
grate over ξ′ from ξ′ = u to ξ′ = ξ� (the
inner integral).
Or we can choose the outer integration to
be over ξ′ from ξ′ = ξ to ξ′ = ξ� and for
every given value of ξ′ integrate over u from
u = ξ to u = ξ′.
Hence,

ξ�∫
ξ

du

ξ�∫
u

dξ′(. . .) =

ξ�∫
ξ

dξ′

ξ′∫
ξ

du(. . .),

(4.18)
where (. . .) stands for an arbitrary inte-
grand.

With this, (4.17) becomes

ξ�∫
ξ

F ′(u)√
u− ξ

du = −1

2

ξ�∫
ξ

dξ′
d ln r

dξ′

ξ′∫
ξ

du√
(u− ξ)(ξ′ − u)

(4.19)

The integral over u can now be evaluated analytically. One way to do this
involves a trigonometric substitution of variables. Alternatively, we can have a
close look at the integrand, which is sketched in Fig. 4.9.
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Figure 4.9: Sketch of the integrand f(u) ≡ 1√
(u− ξ)(ξ′ − u)

as a function of

u.

The integrand f(u) is symmetric with respect to (ξ′+ξ)/2, which motivates
introduction of a new integration variable v in the following way:

u =
ξ′ + ξ

2
+
ξ′ − ξ

2
v (4.20)

with

du =
ξ′ − ξ

2
dv, u− ξ =

ξ′ − ξ
2

(1 + v), ξ′ − u =
ξ′ − ξ

2
(1− v),

(4.21)
Obviously, u = ξ corresponds to v = −1, while u = ξ′ for v = 1. Thus,

ξ′∫
ξ

du√
(u− ξ)(ξ′ − u)

=

1∫
−1

ξ′−ξ
2√

( ξ
′−ξ
2 )2(1− v2)

dv

=

1∫
−1

dv√
1− v2

= arcsin v
∣∣∣1
−1

=
π

2
− (−π

2
) = π (4.22)

Inserting this into (4.17), we obtain

ξ�∫
ξ

F ′(u)√
u− ξ

du = −π
2

ξ�∫
ξ

d ln r

dξ′
dξ′ = −π

2
ln r
∣∣∣ξ�
ξ′=ξ

=
π

2
ln
r(ξ)

R�
(4.23)
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We can solve this equation for r(ξ):

r(ξ) = R� exp

(
2

π

ξ�∫
ξ

F ′(u)√
u− ξ

du

)
. (4.24)

This is the final result of inverting the integral equation (4.12). It establishes
the link we were looking for between the observable function F (u) and the
function r(ξ), from which the radial profile of the sound velocity cs can directly
be obtained.

It should be noted, however, that this approach cannot be used in practice
when the input data are noisy. One therefore usually adopts a minimization
procedure where the resulting function is by construction smooth. This proce-
dure falls under the general name of inverse theory and is used a lot in various
branches of astrophysics. (Another interesting example is to so-called surface
imaging of stars using only spectral line profile measurements of rotating stars.)

4.2 Current problems and issues

Opacities depend on metallicity abundance. The solar models calculated with
the old tables agreed quite well (Z/X = 0.017). However, the metallicities
were based on fits of observed spectra to synthetic line spectra calculated from
model atmospheres. These models parameterize the three-dimensional convec-
tion rather crudely. New synthetic line spectra calculated from three-dimensional
time-dependent hydrodynamical models of the solar atmosphere give a lower
value of the solar oxygen abundance (Allende Prieto et al 2001, Asplund et al.
2004).7 With the new values (Z/X = 0.013) it became difficult to reconcile the
previously good agreement; see Fig. 4.10.

Another very important problem is to calculate the internal angular velocity
of the sun (Fig. 4.11). This has already been possible for the past 20 years,
but the accuracy has been ever improving. Several important features have
emerged.

• The contours of constant angular velocity are not aligned with the axis of
rotation, as would would have expected, and as many models still show
(Fig. 4.12).

• The angular velocity in the radiative interior in nearly constant, so there
is no rapidly rotating core, as one might have expected, because the sun
started off as a rapid rotator, and it must have subsequently spun down.
The fact that also the core has spun down means that there must be some

7 Asplund, M., Grevesse, N., Sauval, A. J., Allende Prieto, C., & Kiselman, D.: 2004,
“Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O
abundance,” Astron. Astrophys. 417, 751–768
Allende Prieto, C., Lambert, D. L., & Asplund, M.: 2001, “The forbidden abundance of oxygen
in the Sun,” Astrophys. J. Lett. 556, L63–L66
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Figure 4.10: Relative sound-speed differences, δc/c = (c� − cmodel)/cmodel, be-
tween solar models and helioseismological results from MDI data. The vertical
error bars show the 1σ error in the inversion due to statistical errors in the data.
The horizontal error bars are a measure of the resolution of the inversions, de-
fined as the distance between the first and third quartile points of the averaging
kernels (approximately the half-width in radius of the measurement in regions
of good resolution). Courtesy J. Bahcall et al. (2004).

efficient torques accomplishing the angular momentum transport. The
most likely candidate is magnetic field: only a weak field suffices.

• The transition layer at the bottom of the convection zone, where the latitu-
dinal differential rotation goes over into rigid rotation, is called tachocline.
Below 30◦ the radial angular velocity gradient is here negative.

• Near the top layers (outer 5%) the angular velocity gradient is negative
and quite sharp.

Figure 4.11: Internal angular velocity of the sun.
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Figure 4.12: Models by Mark Miesch (High Altitude Observatory, Boulder,
Colorado) and collaborators (right), compared with the helioseismologically in-
ferred internal angular velocity of the sun (left). http://lcd-www.colorado.

edu/SPTP/sptp_global.html

4.3 The main points of this chapter

Helioseismology is an advanced technique that allows the internal structure and
distribution of angular velocity of the sun to be determined by measuring a large
number of discrete acoustic frequencies ωnlm. This technique is independent of
any prior model assumption about the sun8

8This was important in the 1980ies when the neutrino emission from the sun was thought
to be 1/3 too small, suggesting that perhaps the theoretical models were wrong. However, the
models were right; the explanation were the neutrino oscillations that were not yet discovered
back then.

http://lcd-www.colorado.edu/SPTP/sptp_global.html
http://lcd-www.colorado.edu/SPTP/sptp_global.html


Chapter 5

Atmospheric waves

Before we come to the general case, we first consider one-dimensional sound
waves without entropy perturbations. This means that we ignore Brunt-Väisälä
oscillations. The main thing that we shall learn here is that it is important to
bring the equations into a form such that it has constant coefficients.

5.1 p- and g-modes

In addition to sound waves (also called p-modes, indicating that the restoring
force is the pressure gradient) there are also gravity waves (also called g-modes).
Gravity waves are not to be confused with gravitational waves that emerge
from the linearized Einstein equations. Gravitational waves have not yet been
detected, but it believed that they can be excited in connection with the collapse
of a neutron star binary. Gravity waves, on the other hand, have also not yet
been seen in the sun. This is because they can only propagate in the radiative
interior, and their remains would be strongly throughout the convection zone.

Gravity waves are however observed in the earth atmosphere. Some impres-
sive examples1; see are shown in Fig. 5.1.

5.2 Sound waves in a stratified atmosphere

In the presence of gravity there is density stratification which affects sounds
waves if their wave length becomes comparable to the density scale height.
The one-dimensional continuity and momentum equations for an isothermal
atmosphere with constant speed of sound, cs, no entropy perturbations, and
uniform gravity, g, can be written in the form

ρ
∂vz
∂t

+ ρvz
∂vz
∂z

+ c2s
∂ρ

∂z
+ ρg = 0, (5.1)

1An excellent web site with pretty picture of g-modes is given in http://taylor.math.

ualberta.ca/~bruce/imagelinks/earth.html
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http://taylor.math.ualberta.ca/~bruce/imagelinks/earth.html
http://taylor.math.ualberta.ca/~bruce/imagelinks/earth.html
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Figure 5.1: Gravity waves, as manifested in the could patter. These waves are
often excited in the wave of wind flow over a mountain ridge. Adapted from
http://taylor.math.ualberta.ca/~bruce/imagelinks/earth.html

∂ρ

∂t
+ vz

∂ρ

∂z
+ ρ

∂vz
∂z

= 0, (5.2)

where ρ is density and vz vertical velocity. With the exception of the ρg term in
equation (5.1), these equations are same as those used in § 3.2 for ordinary sound
waves. The hydrostatic equilibrium solution of these equations is vz = vz = 0
and ρ = ρ(z) = ρ0 e

−z/H , where ρ0 is a constant and H = c2s/g is the vertical
scale height. By writing ρ = ρ + ρ′ and vz = v′z one can linearize equations
(5.1) and (5.2) with respect to vz = v′z and ρ′ about the solution vz = 0 and
ρ = ρ(z). This yields

ρ
∂v′z
∂t

+ c2s
∂ρ′

∂z
+ ρ′g = 0, (5.3)

∂ρ′

∂t
+ v′z

dρ

dz
+ ρ

∂v′z
∂z

= 0, (5.4)

We may assume that vz = v′z and ρ′ take the form

v′z(z, t) = v̂ze
ikz−iωt+z/2H . (5.5)

ρ′(z, t) = ρ̂eikz−iωt−z/2H , (5.6)

The linearized equations can then be written as(
−iω [ik + (2H)−1]c2s

[ik − (2H)−1] −iω

)(
ρ0v̂z
ρ̂

)
=

(
0
0

)
(5.7)

The dispersion relation is then given by

ω2 = ω2
0 + k2c2s, (5.8)

where we have introduced the acoustic cutoff frequency ω0 = cs/2H. Figure 5.2
shows a plot of the dispersion relation.

As an example, we calculate the value of the period T = 2π/ω0 for the
solar atmosphere, assuming cs = 6 km/s and g = 270 ms2. First we have H =

http://taylor.math.ualberta.ca/~bruce/imagelinks/earth.html
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Figure 5.2: Dispersion relation for sound waves in a stratified atmosphere. On
the left is shown ω2(k2) and on the right just ω(k).

c2s/g = (6× 103)/270 m = 1.3× 105 m = 130 km. Thus, ω0 = cs/2H = g/2cs =
0.023 s−1, so T = 2π/0.023 s = 280 s ≈ 5 min. This value is in fact close to the
period of the 5 minutes oscillations of the sun.

5.3 What could have gone wrong

The linearized equations could have also been written in the form

∂

∂t

(
ρ′

ρ

)
+ v′z

d ln ρ

dz
+
∂v′z
∂z

= 0, (5.9)

∂v′z
∂t

+ c2s
∂

∂z

(
ρ′

ρ

)
= 0, (5.10)

Here we have made use of the fact that

∂

∂z

(
ρ′

ρ

)
= − ρ

′

ρ2

dρ

dz
+

1

ρ

∂ρ′

∂z
= +

1

H

ρ′

ρ
+

1

ρ

∂ρ′

∂z
, (5.11)

Equations (5.9) and (5.10) have constant coefficients, so we can make the ansatz

ρ

ρ
= ϑ̂eikz−iωt, (5.12)

v′z(z, t) = v̂ze
ikz−iωt. (5.13)

which leads to the matrix equation(
−iω ikc2s

ik −H−1 −iω

)(
v̂z
ϑ̂

)
=

(
0
0

)
. (5.14)
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For nontrivial solutions the determinant of the matrix has to vanish, which leads
to the dispersion relation

ω2 = c2sk
2 + ikc2s/H. (5.15)

This result does not seem compatible with the previous one. In particular, in-
stead of having stable waves, there now seems to be an instability: the frequency
has an imaginary part with the growth rate +kc2s/H.

The reason for this apparent puzzle is that the eigenfunction is a wave whose
amplitude increases with height. At any given point, however, the amplitude
does not change. This is a classical case of what is called in Landau-Lifshitz
convective instability2 (this does have nothing to do with convection, however!).

In this case we can make ω real by allowing k to be complex. To see this we
substitute

k = k′ + ik′′, (5.16)

where k′ and k′′ refer to real and imaginary parts, respectively. Note that
k2 = k′2 + 2ik′k′′ − k′′2, so the dispersion relation becomes

ω2 = c2s (k′2 − k′′2 − k′′/H) + ik′c2s (2k′′ + 1/H). (5.17)

We now require that the imaginary part vanishes, i.e. k′′ = −1/(2H), and obtain

ω2 = c2s

(
k′2 +

1

4H2

)
, (5.18)

which is identical to equation (5.8).

5.4 The main points of this chapter

In the sun, because the density is not uniform, sound waves become non-
propagating when the wavelength becomes comparable with the pressure scale
height of the atmosphere. Effectively, this makes the sound waves reflect near
the top.

2Physical Kinetics, Section VI



Chapter 6

The solar wind

Astrophysical flows are usually highly compressible. There are some specific
effects resulting from that, one of which concerns the formation of winds and
other types of outflows. The general principle of how a flow can attain super-
sonic speeds in a smooth manner (without going through a shock) can best be
explained with the example of the Laval nozzle that is used in all rocket motors
where the exhaust velocity can be 2000...3000 m/ s, which is up to ten times the
speed of sound. The wind problem is actually analogous to the problem Bondi
accretion, which is spherical accretion onto a central object. The wind solution
was first proposed by Gene Parker1 in the context of the sun.

We begin this section by first discussing the general issue of how a flow can be
made supersonic. We then apply this to winds and outflows from stars and discs
and mention other circumstances where this formalism can be used. A rather
important application is jets, i.e. outflows from accretion discs that become
highly collimated. The collimation is probably due to the magnetic field, but
this is very much an open research topic at the moment. The highly relativistic
version of the wind problem is relevant for understanding outflows from active
galactic nuclei (AGNs) and the gamma-ray burst (GRB) phenomenon.

6.1 The analogy with the Laval nozzle

We are used to think that the flow through a pipe is becoming faster when the
cross-section becomes smaller (garden hose experiment!). However, this is only
true when the fluid is incompressible. That’s often not a good approximation
in astrophysics. The following problem illustrates this.

In a steady state the mass flux through a pipe is conserved, i.e.

ρvxS = const. (6.1)

1 Parker, E. N.: 1966, “The dynamical state of the interstellar gas and field,” Astrophys.
J. 145, 811–833
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Here, S = S(x) is the cross-section, vx(x) the streamwise velocity and ρ(x) the
density. This equation follows from integrating the equation ∇ · (ρu) = 0 over
the surface of a pipe that becomes narrower, and by applying Gauss’ divergence
theorem; see Fig. 6.1.

Indeed, if ρ is constant, (6.1) shows that a larger cross-sectional area S
implies a smaller speed vx. But what if ρ actually decreases? In the following
we will see an example where supersonic speeds can be achieved by decreasing
density and increasing the cross-sectional area in a suitable manner.

The velocity is obtained by solving the steady, one-dimensional, isothermal
momentum equation without any extra forces,

vx
dvx
dx

= −c2s
d ln ρ

dx
. (6.2)

We now use equation (6.1), differentiate logarithmically, i.e.

0 =
1

ρvxS

dvx
dx

(ρvxS) =
d

dx
ln(ρvxS) =

d ln ρ

dx
+

d ln |vx|
dx

+
d lnS

dx
, (6.3)

so we have
d ln ρ

dx
= −d ln |vx|

dx
− d lnS

dx
. (6.4)

Using that in equation (6.2) yields

vx
dvx
dx

= −c2s
(
−d ln |vx|

dx
− d lnS

dx

)
. (6.5)

We move the first term on the rhs to the left and on the left we write

vx
dvx
dx

= v2
x

d ln |vx|
dx

. (6.6)

This yields the equation

(v2
x − c2s)

d ln |vx|
dx

= c2s
d lnS

dx
, (6.7)

where S(x) is the cross-sectional area of the nozzle, which is a known function
of x. To obtain vx(x) we can integrate

d ln |vx|
dx

= c2s
d lnS/dx

v2
x − c2s

, (6.8)

but in order for the solution to be regular when |vx| = cs we have to require
that the numerator vanishes at the same point. Thus, the critical point is where
S(x) has a minimum, because then d lnS/dx = 0, which must be where vx = cs.
Define ρvxS = Ṁ and integrate to obtain an implicit equation for v(x):

1
2v

2
x − c2s ln |vx| − c2s lnS = E − c2s ln Ṁ ≡ E ′. (6.9)

This is just the usual Bernoulli equation that we have encountered elsewhere.
We can now determine E ′crit by applying the known values of r and vr at the
critical. For cs = Ṁ = 1 we find E ′crit = 1

2c
2
s − c2s lnSmin.
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6.2 The isothermal wind problem

We now consider the steady, isothermal wind problem. We adopt spherical polar
coordinates, (r, θ, φ), but assume spherical symmetry in this case, so ∂/∂θ =
∂/∂φ = 0. The continuity and Euler equations are then

1

r2

d

dr
(r2ρvr) = 0, (6.10)

vr
dvr
dr

= c2s
d ln ρ

dr
− GM

r2
. (6.11)

These equations can be brought into the form

(v2
r − c2s)

d ln |vr|
dr

=
2c2s
r
− GM

r2
. (6.12)

There is a critical point r∗ where the flow becomes transonic. At that point the
left hand side and the right hand side of the equation must vanish simultane-
ously, i.e.

2c2s
r

=
GM

r2
. (6.13)

This yields for the value of the critical point

r∗ =
GM

2c2s
(6.14)

Assuming cs = 100 km/ s, and usingG ≈ 7×10−11 m3 s−2 kg−1, M = 2×1030 kg,
1 AU = 1.5× 1011 m, we have r∗ ≈ 0.05 AU.

Figure 6.1: In the steady case we have ∇ · ρu = 0. Using Gauss’ divergence
theorem it follows that

∮
ρu ·dS = 0. The two surfaces, S1 and S2, are the only

places where the u · dS 6= 0.

The steady wind problem is characterized by two integrals of motions:

1
2v

2
r + c2s ln ρ− GM

r
= E , (6.15)

Ṁ = 4πr2ρvr, (6.16)
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Figure 6.2: Cross-sectional area of a laval nozzle. If the flow is able to reach
the sound speed at the point of minimal cross-section, it must go supersonic
behind that point.

see Eq. (9) in Shore’s book. From this we get

1
2v

2
r − c2s ln vr − 2c2s ln r − GM

r
= E ′ (6.17)

where E ′ = E − c2s ln(Ṁ/4π). (Note that the C in Shore’s book changes its
meaning all the time).

To find the energy for the critical solution we assume a critical radius r∗,
so cs =

√
GM/2r∗. At r = r∗ we have v = cs. This yields E for the critical

solution that goes through the critical point:

E ′crit = 1
2c

2
s − c2s ln cs − 2c2s ln r∗ −

GM

r∗
(6.18)

We may find the solution through iteration:

vnew =
√

2 (Er + c2s ln v) (6.19)

where Er ≡ E ′ + 2c2s ln r∗ +GM/r∗ is introduced for convenience. As usual, we
can get another solution from the inverse iteration formula

vnew = exp
(

1
2v

2 − Er
)

(6.20)

For E ′ < E ′crit the upper solutions are obtained from equation (6.19) whilst the
lower solutions are obtained by iterating equation (6.20). The critical solution,
as well as two more solutions are shown in Fig. 6.3.

Another possibility of obtaining a graphical representation of the possible
wind solutions is to do a contour plot of E as a function of r and vr; see Fig. 6.4.

Note that the iteration process always yields that solution that has a mini-
mum or a maximum at r = r∗. To get the physically sensible solution one needs
to reconnect the right branches by hand, This is done in Fig. 6.5, where we have
plotted the critical solution together with the density profile.
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Figure 6.3: The critical wind solution, together with two other solutions for
different values of E ′. Here we use r∗ = 1, GM = 1, and so c2s = 0.5.

6.3 The time-dependent wind problem

It is illuminating to consider the time-dependent problem. For example, one may
wonder what happens when one were to increase the density or the velocity at
the bottom. The governing equations are

∂ ln ρ

∂t
= −vr

∂ ln ρ

∂r
− 2

vr
r
− ∂vr

∂r
(6.21)

∂vr
∂t

= −vr
∂vr
∂r
− c2s

∂ ln ρ

∂r
− GM

r2
. (6.22)

Since the flow comes from the inner boundary at r = r0 we have to specify
boundary conditions at r = r0. Video animations of numerical experiments
show that specifying the value of vr at the lower boundary is inconsistent. The
solution has a strong desire to come back to the steady solution discussed above
(Fig. 6.6). On the other hand, the density on the lower boundary may well be
specified arbitrarily. The solution has then just another value of Ṁ .

The solution can actually be reversed and then we have the problem of spher-
ically symmetric accretion (Bondi accretion). This is the reason why one should
always write ln |vr|.
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Figure 6.4: Contour plot of E ′. The contour levels are equidistant in steps
of 0.2, symmetrically about the critical value E ′ = −0.576713. Again, r∗ = 1,
GM = 1, and so c2s = 0.5.

Figure 6.5: Critical solution for v and ρ (assuming Ṁ = 4π).

Summary to solving the wind problem. The trick is to write the equations
in the form (v2

r − c2s)d ln |vr|/dx = something. This something then tells
us where the critical point is. Once we know that, we plug that back
into the integrated momentum equations to obtain an implicit equation
for vr that goes through the critical point.
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Figure 6.6: Evolution of ρ and ur for the isothermal wind problem. The solid
line shows the last time (t = 30) and the dashed line the first time (t = 4). The
dotted lines show intermediate times (t = 7, 13, 18, 21, 24, and 27).

6.4 What drives the wind? The need for a non-
static corona

The following consideration illustrates that there cannot be a static solar corona.
In the solar corona heat is transported via conduction (as opposed to radiation
or convection). In the corona (Spitzer-type) heat conduction is important, so
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the conductivity K satisfies

K = K0

(
T

T0

)5/2

. (6.23)

The heat flux is then given by

F = −K∇T. (6.24)

In order to have a steady state (vanishing divergence of the heat flux, i.e. ∇·F =
0) we have to require that the temperature satisfies

T = T0

(
r

r0

)−2/7

, (6.25)

where T0 is the temperature at the base of the corona at r = r0. This is sig-
nificantly shallower than the temperature for a polytropic stratification, which
would imply a r−1 behavior with

Tpoly =

(
1− 1

γ

)
µ

R
GM

r
. (6.26)

Assuming a perfect gas, i.e. p = RTρ one can show that

p = p0 exp

{
7r0

5H0

[(
r

r0

)−5/7

− 1

]}
. (6.27)

Here p0 is the pressure at the base of the corona and H0 is the scale height of
the pressure, i.e. the distance over which the pressure changes by a factor of
e. The problem with this expression is that at infinity, r → ∞, the pressure
remains finite,

p(∞) = p0 exp

[
− 7r0

5H0

]
. (6.28)

In fact, for the sun H0 is comparable with the solar radius, r0, and so p(∞)
is just somewhat smaller than p0, which is definitely quite unrealistic. For
a correct solution the pressure must become comparable with the interstellar
pressure, which is orders of magnitude smaller than the pressure near the sun.
This inconsistency leads then to the idea of a nonstatic corona with an outflow.

6.5 The main points of this chapter

Under certain conditions, an infinitely extended atmosphere around a gravitat-
ing body can become unstable and develop a wind, i.e. an outward increasing
velocity field that becomes supersonic at some critical radius. In the steady
state, this transition to supersonic flows can be completely smooth, i.e. without
a shock.



Chapter 7

Coronal mass ejections

7.1 Phenomenology

Coronal mass ejections (CMEs) are spontaneous erruptions on the solar surface.
The power associated with such events in on the order of 1012 W. CME events
often lead to strong auroal activity and can be responsible for power outages
and can cause damage to satellites.

Most CMEs originate from active regions. These are groupings of sunspots
associated with frequent flares. These regions have closed magnetic field lines,
where the magnetic field strength is large enough to allow the containment of the
plasma. The CME must open these field lines at least partially to escape from
the Sun. However, CMEs can also be initiated in quiet sun regions (although in
many cases the quiet region was recently active). During solar minimum, CMEs
form primarily in the coronal streamer belt near the solar magnetic equator.
During solar maximum, CMEs originate from active regions whose latitudinal
distribution is more homogeneous.

Table 7.1: Physical properties of CMEs
power 1012 W
energy 1025 J

velocity 20...2700 km/s
mass 1012...1013 kg

frequency 0.5...6 d−1

7.2 CME models

At first, it was thought that CMEs might be driven by the heat of an explosive
flare. However, it soon became apparent that many CMEs were not associated
with flares, and that even those that were often began before the flare did.
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Because CMEs are initiated in the solar corona (which is dominated by magnetic
energy), their energy source must be magnetic. Only flares could provide enough
heat energy to drive the CME, and flares get their energy from the magnetic
field anyway.

Because the energy of CMEs is so high, it is unlikely that their energy could
be directly driven by emerging magnetic fields in the photosphere (although
this is still a possibility). Therefore, most models of CMEs assume that the
energy is stored up in the coronal magnetic field over a long period of time and
then suddenly released by some instability or a loss of equilibrium in the field.
There is still no consensus on which of these release mechanisms is correct, and
observations are not currently able to constrain these models very well.

Figure 7.1: A coronal mass ejection and prominence eruption observed in white
light from the SMM (Solar Maximum Mission) spacecraft. The time of each
panel increases from left to right. The dashed inner circle in each panel is the
solar radius, the occulting radius is at 1.6 solar radii. Image courtesy of the
High Altitude Observatory.

An important observational constraint on theoretical models is that the
stressing of the coronal magnetic field is slow compared to characteristic timescales
in the corona. Photospheric driving velocities are typically of order 1 km/s,
whereas characteristic coronal speeds are of order several hundred km/s for
sound waves and several thousand km/s for Alfvenic motions. Therefore, to a
good approximation the energy for a CME is pumped into the corona quasi-
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statically.
apparent contradiction between the Aly-Sturrock energy limit and CME

observations. Hence, the magnetic system consists of a single coronal arcade
(see, e.g., Roumeliotis et al. 1994 ; Mikic & Linker 1994).

The important point is that, for a single arcade system, the observational
requirement that the innermost flux near the neutral line open up requires that
all the flux in the system open. However, this is forbidden by the Aly-Sturrock
limit, at least for a purely magnetically driven eruption, because no sheared
field state can have enough energy to open up all the flux.
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Chapter 8

Convection, mixing length
theory

8.1 Mixing length theory and convection simu-
lations

• Buoyancy is balanced against advection, so Fbuoy = F
(turb)
D and therefore

∆% V g = CD%v
2S, where V is the volume of the bubble and S is cross-

sectional area. Denoting by ` ≡ V/(CDS) the mixing length, we have

v2 =
∆T

T
g`. (8.1)

• The only natural length scale in the problem is the scale height, so we
assume that the mixing length is some fraction α of the local vertical
pressure scale height, i.e.

` = αHp. (8.2)

• The definition of the scale height is

Hp =
RT
µg

=
c2s
g
. (8.3)

• The definition of the convective flux is

Fconv = %vcp∆T. (8.4)

This expression shows that there is a positive convective flux if both the
velocity is positive (upwards) and the temperature fluctuation is positive,
i.e. if the upward moving fluid parcel is indeed warmer than its surround-
ings.
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• There is actually a second expression for the convective flux, which is how-
ever more an approximation than a definition. We know convection can
only occur when there is a downward entropy gradient, i.e. if the entropy
decreases upwards. The entropy transport is stronger if the downward
entropy gradient is stronger. To a first approximation the two are propor-
tional to each other, i.e.

Fconv = −χt%T∇s if g ·∇s > 0, (8.5)

where χt is a (turbulent) diffusion coefficient, and the % and T factors
have to be there on dimensional grounds.

• Like with all other types of diffusion coefficients, they are proportional to
the speed of the fluid parcels accomplishing the diffusion, as well as the
length over which such parcels stay coherent. Thus, we have

χt = cχv`, (8.6)

where cχ is another free parameter of order unity. (The other free param-
eter was α.)

This is the set of equations that we need to calculate the stratification in
a convection zone. Some of the expressions above, especially (8.1), are severe
approximations, and so one usually allows for extra non-dimensional factors
in some of those expressions. This is why in other text books some of the
expressions may involve somewhat different coefficients in places.

8.1.1 The entropy gradient

To calculate the stratification, the simplest approach was to assume that there
was no entropy gradient at all within the convection zone (perfect mixing).
With the equations derived above we can do better than that. The main thing
we see from those equations is that v is proportional to (∆T/T )1/2, see equa-
tion (8.1), and that therefore Fconv is proportional to (∆T/T )3/2, see equa-
tion (8.4). Therefore,

∆T/T ∼ F 2/3
conv and v/cs ∼ F 1/3

conv. (8.7)

Using equation (8.5) and the fact that χt ∼ v ∼ F 1/3
conv we have

Fconv ∼ F 1/3
conv|ds/dz|, (8.8)

or
|ds/dz| ∼ F 2/3

conv. (8.9)

A proper calculation using the equations above shows that

g ·∇s/cp = k

(
g

cs

)2(
Fconv

%c3s

)2/3

(8.10)
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where

k =

(
γ − 1

γ

)2/3

c−1
χ α−4/3, (8.11)

which is around unity for cχ = 1/3 and α = 1.5.

8.1.2 Calculating the stratification

If we assume that all the flux is carried by convection, i.e. if Ftot = Fconv, then
we just have the following system of equations governing the stratification:

ds/cp
dz

= − g

c2s
k

(
Ftot

%c3s

)2/3

, (8.12)

dp

dz
= − g

c2s
, (8.13)

together with ln % = 1
γ ln p−s/cp, and c2s = p/%. A solution of those equations is

given in Fig. 8.1. Note the almost perfectly flat s-gradient within the convection
zone.

Figure 8.1: Mixing length stratification. The solid line is for solar luminosity,
whilst the dashed and dotted lines are respectively for 106 and 109 times the
solar value.

8.1.3 Including the radiative flux consistently

If the radiative flux is to be included consistently we have

Frad + Fconv = Ftot. (8.14)

The radiative flux is

Frad = −KdT

dz
= −KT d lnT

dz
= −KT d ln p

dz

d lnT

d ln p
. (8.15)
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Here, d ln p/dz = −g/c2s , and T = c2s/(R/µ), so c2s cancels out and so

Frad =
Kg

R/µ
d lnT

d ln p
(8.16)

This can be expressed in terms of the entropy gradient using the differentiated
form of equation (2.49),

ds/cp =
1

γ
d ln p− d ln % (8.17)

which leads to

Frad =
Kg

R/µ

[(
1− 1

γ

)
+
ds/cp
d ln p

]
. (8.18)

Thus, the radiative flux has two contributions, one from the adiabatic temper-
ature gradient, and one from the super-adiabatic temperature gradient, so

Frad = F
(ad)
rad +Kr

ds/cp
d ln p

, (8.19)

where

Kr =
Kg

R/µ
and F

(ad)
rad = Kr

(
γ − 1

γ

)
. (8.20)

Inserting this into equation (8.14) we have

F
(ad)
rad +Kr

ds/cp
d ln p

+Kc

(
ds/cp
d ln p

)3/2

= Ftot, (8.21)

where Kc = %c3s/k
3/2. We now introduce the additional abbreviations

G ≡ ds/cp
d ln p

, F ≡
Ftot − F (ad)

rad

Kc
, q = Kr/Kc, (8.22)

so we can write

G3/2 = qG + F , (8.23)

which leads to a cubic equation for the entropy gradient, G,

G3 − q2G2 − 2qFG − F2 = 0. (8.24)

A table of some values is given below, where we compare with the gradient,
G0 = (Ftot/Kc)

2/3, which is obtained when the radiative flux is neglected. An
excellent approximation is to neglect q, in which case G = F2/3, which is also
given in the table.

A solution of the full system of equations, which include more realistic
physics than what has been described here, has been given by Spruit (1974);
see Table 8.2.
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Table 8.1: Solutions of the cubic equation for a solar model
r [Mm] T [106 K] G/10−6 G0/10−6 F/10−9 F2/3/10−6 q/10−9

530 1.72 0.20 0.36 0.09 0.20 0.31
550 1.45 0.36 0.47 0.22 0.36 0.26
570 1.21 0.58 0.65 0.44 0.58 0.22
590 0.98 0.90 0.95 0.85 0.90 0.19
610 0.76 1.45 1.49 1.75 1.45 0.15
630 0.56 2.60 2.62 4.19 2.60 0.12
650 0.38 5.65 5.66 13.44 5.65 0.10
670 0.20 19.43 19.44 85.67 19.42 0.07
690 0.03 720.24 720.21 19329.29 719.98 0.02

8.2 Convective overshoot

Both numerical calculations of solar mixing length models as well as helioseis-
mology (described below) indicate that the depth of the convection zone is about
200 Mm. However, near and beyond the boundaries of the convection zones the
approximation (8.1) becomes very bad, because it ignores the fact that con-
vective elements have inertia and can therefore overshoot a significant distance
into the stably stratified regions. In those layers where the entropy gradient has
reversed, a downward moving fluid parcel becomes hotter than its surroundings.
Thus, in those layers the convection carries convective flux downwards, so its
sign is reversed. This is shown in Fig. 8.4 where profiles of entropy and convec-
tive flux, (8.4), are shown from a three-dimensional convection simulation.

Because of strong stratification, convection will be highly inhomogeneous,
with narrow downdrafts and broad upwellings. This leads to a characteristic
(but irregular) pattern of convection; see Fig. 8.2. A sketch showing how strat-
ification causes upwellings to broaden and downdrafts to converge is given in
Fig. 8.3.

Table 8.2: The solar mixing length model of Spruit (1974).

z [Mm] T [K] ρ [g cm−3] Hp [Mm] urms [m/s] τ [d] νt [cm2/s] Ω0τ
24 1.8× 105 0.004 8 70 1.3 1.5× 1012 0.6
39 3.0× 105 0.010 13 56 2.8 2.0× 1012 1.3
155 1.6× 106 0.12 48 25 22 3.2× 1012 10
198 2.2× 106 0.20 56 4 157 0.6× 1012 70
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Figure 8.2: Images of temperature in surface and deeper layers of a convection
simulation. Dark means lower temperatures and light higher temperatures.

Figure 8.3: Downdrafts contract as they dive into deeper layers where the
density is higher. On the other hand, upwellings expand as they ascend into the
upper layers where the density is low.

8.3 The main points of this chapter

By using simple scaling arguments between convection velocities and buoyancy
force, it is possible to a simple theory between the convective flux and the
entropy gradient (which is only approximately zero by comparison with the
radiative interior). This yields a reasonable theory for the radial stratification
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Figure 8.4: Profiles of entropy and convective flux. Region I is the radiative
interior, II the overshoot layer, III the radiative heating layer, IV the bulk of
the convection zone, and V the surface layer.

of solar/stellar convections zones. As a good approximation, one has Fconv ≈
ρu3

rms.
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Chapter 9

Dimensional Analysis

Dimensional analysis can sometimes be a useful means for understanding the
underlying physics. The main difficulties with this approach are twofold. Firstly,
it is not always easy to identify the few quantities that govern some physical
process. Secondly, there could be some nondimensional parameter that may not
be close to unity. In that case one gets the right scaling, but quantitatively the
result may be off by a few orders of magnitude. In the following we consider a
few examples where dimensional analysis works alright: blast waves and various
types of turbulence.

9.1 Three-dimensional turbulence

In three-dimensional turbulence the flux of energy, ε, is constant and indepen-
dent of wavenumber k. Using dimensional arguments one can find the energy
spectrum E(k) by noting that the energy spectrum is normalized such that∫∞

0
E(k) dk = 1

2 〈u
2〉 and that E(k) depends only ε and k. Thus, we write

E(k) = C εakb, (9.1)

where C is a dimensionless constant, and a and b are exponents that are deter-
mined by matching the dimensions on both sides of the equation. The dimen-
sions (indicated by square brackets) of E(k), ε, and k are

[E(k)] = m3 s−2 (9.2)

[ε] = m2 s−3 (9.3)

[k] = m−1 (9.4)

Thus, the dimensions on both sides of equation (9.1) are

m3 s−2 = m2a s−3a m−b. (9.5)
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Figure 9.1: Magnetic support of a flare.

To match the dimensions on both sides of the equation we have

for the dimension of m: 3 = 2a− b, (9.6)

for the dimension of s: − 2 = −3a. (9.7)

Thus, a = 2/3 and b = 2a− 3 = 4/3− 3 = −5/3, so the spectrum is given by

E(k) = C ε2/3k−5/3, (9.8)

Such a spectra is often seen in turbulent flows. It is also seen in the solar
granulation and even in active regions; see Fig. 9.1.

9.2 Two-dimensional turbulence

In two-dimensional turbulence the rate of enstrophy injection, β = d
dt 〈ω

2〉,
is constant and independent of wavenumber k. Using dimensional arguments
one can find the energy spectrum E(k) by noting that the energy spectrum is
normalized such that

∫∞
0
E(k) dk = 1

2 〈u
2〉 and that E(k) depends only β and

k. Thus, we write

E(k) = C βakb, (9.9)

where C is a dimensionless constant, and a and b are exponents that are deter-
mined by matching the dimensions on both sides of the equation. The dimen-
sions (indicated by square brackets) of E(k), β, and k are

[E(k)] = m3 s−2 (9.10)
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[β] = s−3 (9.11)

[k] = m−1 (9.12)

Thus, the dimensions on both sides of equation (9.9) are

m3 s−2 = s−3a m−b. (9.13)

To match the dimensions on both sides of the equation we have

for the dimension of m: 3 = −b, (9.14)

for the dimension of s: − 2 = −3a. (9.15)

Thus, b = −3 and a = 2/3, so the spectrum is given by

E(k) = C β2/3k−3, (9.16)

9.3 Hydromagnetic turbulence (Iroshnikov–Kraichnan
theory)

Using dimensional arguments one can find the energy spectrum E(k) for hydro-
magnetic turbulence, by assuming that the energy transfer is governed by the
geometric mean of the Alfvén speed and the energy transfer rate ε. Thus, we
assume the spectrum to be of the form

E(k) = C (vAε)
akb, (9.17)

where C is a dimensionless constant, vA is the Alfvén speed, ε (with dimension
m2 s−3) the energy injection rate, and k the wavenumber. The dimensions
(indicated by square brackets) of E(k), vA, ε, and k are

[E(k)] = m3 s−2 (9.18)

[vA] = m s−1 (9.19)

[ε] = m2 s−3 (9.20)

[k] = m−1 (9.21)

Thus, the dimensions on both sides of equation (9.17) are

m3 s−2 = ma s−a m2a s−3a m−b. (9.22)

To match the dimensions on both sides of the equation we have

for the dimension of m: 3 = 3a− b, (9.23)

for the dimension of s: − 2 = −4a. (9.24)

Thus, a = 1/2 and so b = 3a− 3 = 3/2− 3 = −3/2, so the spectrum is given by

E(k) = C (vAε)
1/2k−3/2, (9.25)

A final comment is here in order. Although the k−3/2 scaling has been verified
in two-dimensional numerical simulations, there is now mounting evidence in
favor of the more conventional k−5/3 scaling even in the magnetic case.1

1See recent paper by Biskamp & Müller 1999, Phys. Plasmas 7, 4889
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Chapter 10

Magnetic fields

This chapter contains more material than will be presented in the course. The
extra material is included mainly for interest.

10.1 The Lorentz force

Astrophysical bodies are almost always electrically conducting and can thus
interact with magnetic fields. The first example concerns the support of promi-
nences against gravity by a magnetic field. There, we considered only one
particle and the force exerted on a single particle was given by qu×B. Now, if
there are many particles with given number density n ( = number of particles
per unit volume), then the force on the gas per unit volume will be nqu ×B.
The expression nqu is the current density, so

J ≡ nqu. (10.1)

Thus the Lorentz force per unit volume is J × B and, if there are no other
terms, this will accelerate the gas. The acceleration per unit volume is %du/dt,
so the equation of motion takes the form

%
du

dt
= J ×B + possibly further terms. (10.2)

In order to calculate this force, we have to express J in terms of other known
quantities. At this point we may express J using one of Maxwell’s equations

µ0J = ∇×B, (10.3)

which is also called Ampère’s law, and where the Faraday displacement current
c−2∂E/∂t is neglected. Thus the Lorentz force takes the form FL ≡ J ×B =
1
µ0

(∇×B)×B, which can also be written in the form

FL = −∇(B2/2µ0) + (B ·∇)B/µ0, (10.4)

73
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Figure 10.1: Magnetic support of a flare.

which shows that the Lorentz force has a gradient term (magnetic pressure
gradient) and a derivative of the field strength along the direction of the field.
The latter tends to contract field lines (magnetic tension).

10.2 Magnetic support of prominences

The magnetic field is able to support fluid against gravity. An example is the
quasi-steady support of prominences in the solar corona. Figure 10.1 shows a
simple cartoon picture of a V -shaped magnetic field line where the Lorentz force
points upwards, trying to move fluid with the field lines such as to shorten the
field lines.

We take a simple parabola-shaped field line. In order to automatically satisfy
the condition ∇ ·B = 0 we write B = ∇× (Aŷ), where ŷ is the unit vector in
the direction out of the paper. The lines A = const are parallel to field lines (at
least in two dimensions). This can be verified by showing that the gradient of
A is perpendicular to B:

B · (∇A) =

−∂zA0
∂xA

 ·
 ∂xA

0
∂zA

 = 0. (10.5)

Now, we write our parabola-shaped field lines as

A = z − x2, (10.6)

see Fig. 10.2. Let us now calculate the resulting field, current and Lorentz force:

B =

 ∂x
0
∂z

×
 0
z − x2

0

 =

 −1
0
−2x

 (10.7)
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Figure 10.2: Contours of A = z − x2, as a model for magnetic field lines
supporting prominences against gravity.

Thus, the current is then

J =
1

µ0

 ∂x
0
∂z

×
 −1

0
−2x

 =
1

µ0

 0
2
0

 (10.8)

and so the Lorentz force is

J ×B =
1

µ0

 0
2
0

×
 −1

0
−2x

 =
1

µ0

−4x
0
2

 (10.9)

i.e. the Lorentz force has a vertical component upwards and points towards the
z-axis.

10.3 Magnetic field evolution

The evolution of the magnetic field is governed by the Faraday equation

∂B

∂t
= −∇×E, (10.10)

Ampère’s equation

J = ∇×B/µ0, (10.11)

and Ohm’s law,

J = σ(E + u×B). (10.12)
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Eliminating E using (10.10) and (10.12) we obtain the induction equation,

∂B

∂t
= ∇× (u×B − J/σ). (10.13)

The quantity σ is here the conductivity (not to be confused with the Stefan-
Boltzmann constant!!). The magnetic diffusivity is η = (µ0σ)−1 and has dimen-
sions m2/ s. If η is constant, then the induction equation can also be written
in the form

∂B

∂t
= ∇× (u×B) + η∇2B. (10.14)

In SI units Maxwell’s equations can be written in the form

∂B

∂t
= −∇×E, Faraday’s law (10.15)

µ0J +
1

c2
∂E

∂t
= ∇×B, Ampère’s law (10.16)

together with
∇ ·B = 0, and ∇ ·E = %e (10.17)

where %e is the charge density. The ∂E/∂t term is also called the Faraday dis-

placement current. It is usually small compared with the other two terms in

that equation. There are two exceptions where it can become important: (i) if

there is a vacuum, i.e. if the ordinary current J vanishes, see equation (10.12),

or if there are rapid variations over large length scales so that the Faraday

displacement current becomes comparable to ∇×B, i.e. the typical velocity

becomes comparable with the speed of light. The former occurs in the atmo-

sphere, where it is responsible for radio waves, whilst the latter may become

important near a black hole, where all velocities become comparable with the

speed of light. In all other cases the Faraday displacement current may safely

be neglected. The resulting equations are also called the pre-Maxwell equa-

tions.

10.4 Frozen-in magnetic fields

If magnetic diffusion vanishes, i.e. η → 0 and σ →∞ (high conductivity limit),
we may neglect the diffusion term and the induction equation then takes the
form

∂B

∂t
= ∇× (u×B) = −(u ·∇)B + (B ·∇)u−B(∇ · u). (10.18)

Compare this now with the evolution equation of a material line element, δl.
Let u be the velocity on one end of the line element, then the velocity at the
other end of the line element δl is u+ (δl ·∇)u. Thus, within the time dt the
change of δl is equal to dtδl. Therefore the evolution of δl satisfies the equation

d

dt
δl = (δl ·∇)u (10.19)
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This equation is equivalent to the evolution equation of the magnetic field if
η = 0 and if ∇ · u = 0 is assumed. The latter assumption is unessential: if
∇ · u 6= 0 then we have to invoke the continuity equation

The derivative d/dt is here taken in a frame co-moving with the fluid at speed
u. This derivative is also called lagrangian derivative; to emphasize that one
deals with a lagrangian derivative one often uses a capital D for the differential.
Expressing it in terms of the normal non-moving frame of reference this becomes

D/Dt ≡ ∂/∂t+ (u ·∇). (10.20)

If the velocity is divergence-free (no sources or sinks, i.e. the flow is incompress-
ible) then the magnetic field evolves according to

DB

Dt
= (B ·∇)u, (10.21)

which is exactly the same equation as that for δl. Thus,we conclude that the
magnetic field vectors evolve in the same way as material line elements do. If
the B-vectors had finite length, the two ends of the vector would coincide with
the locations of particles in the flow. Furthermore, if the flow diverges locally
it will stretch the magnetic field lines, which will leads to their enhancement.
This stretching is an important ingredient of all dynamos.

10.5 The magnetic vector potential

It is sometimes convenient to consider the evolution of the vector potential A,
because then the magnetic field B = ∇×A is guaranteed to be divergence-free.
The induction equation (10.13) can be “uncurled”, i.e. the curl can be removed
on both sides of the equation. However, this leads to an uncertainly, because a
gradient term could always be added to the uncurled equation without changing
B. Thus, we have

∂A

∂t
= u×B − J/σ −∇φ, (10.22)

where φ is called the gauge potential, which is really like an integration constant.
We are free to choose any gauge that is convenient. Note that

µ0J = ∇×∇×A ≡ −∇2A+ ∇(∇ ·A). (10.23)

A convenient gauge is the so-called Lorentz gauge,

φ = ∇ ·A, (10.24)

in which the evolution equation for A becomes

∂A

∂t
= u×B + η∇2A. (10.25)

However, this works only if the magnetic diffusivity η = (µ0σ)−1 is constant.
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Figure 10.3: Flux conservation. As many field lines enter the volume as field
lines leave the volume.

10.6 Flux conservation

The condition ∇ · B = 0 means that there are no magnetic monopoles, from
which magnetic field lines would originate. This becomes obvious when taking
the volume integral of ∇ ·B = 0, which can be turned into a surface integral
by Gauss’ integral theorem; so

0 =

∫
V

B dV =

∮
S

B · dS, (10.26)

see Fig. 10.3. Here, S = ∂V is the closed surface bounding the volume V . If
field lines go out of the volume, then there must be an equal amount of field
lines going into the volume, such that

∮
S
B · dS = 0.

In Fig. 10.4 we consider the magnetic field in a tube (flux tube). Only at
the two ends does the field stick out of the tube. Integrating over the tube we
have

0 =

∮
S

B · dS =

∮
S1

B · dS +

∮
S2

B · dS. (10.27)

Note that in Fig. 10.4 the normal of the surface element points outwards. We
now define the flux though a surface S as

Φ =

∫
S

B · dS, (10.28)

where now dS points always in the same direction. Then we see that

Φ = constant along the tube. (10.29)

This property is referred to as flux conservation.
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Figure 10.4: Flux conservation. The total surface integral gives zero: nothing
comes from the wall of the tube and the contributions from the two ends must
be equal in magnitude, but of opposite sign.

Figure 10.5: Two interlinked flux loops.

10.7 Connection with topology

The dot product A ·B is of some importance in that it can be related to the
topology of magnetic flux ropes. Let us define the quantity

H =

∫
V

A ·B dV, (10.30)

where the integration volume is chosen such that the normal component of B
vanishes on the boundary, i.e. n̂ ·B = 0. Let us consider two interlinked flux
loops (Fig. 10.5).

For the volume V1 of the first loop we have

H1 =

∫
V1

A ·B dV =

∫
V1

A ·B (dl · dS), (10.31)

where dS is the surface element across the tube and dl is the line element
along the tube. Note that B ‖ dl ‖ dS, so the integral can also be written as
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Figure 10.6: The trefoil knot.

∫
(A · dl)(B · dS). In A ·B only the component of A that is parallel to B (and

dl) matters. This component is only affected by the field of the other tube, but
since the field of the other tube vanishes inside V1, the parallel component of A
must be constant in V1. Therefore we can split the integral into two separate
integrals, so

H1 =

(∫
S1

B · dS
) (∮

C1

A · dl
)
, (10.32)

where C1 is a closed line along the tube. (It doesn’t matter where across the
tube this line goes because the parallel component ofA, and therefore alsoA·dl,
is constant). Now, the first integral is just the flux Φ1 of the first tube. The
second integral is actually the flux of the second tube, Φ2, because, according
to Stokes’ integral theorem,

Φ2 =

∫
S2

B · dS =

∫
S(C1)

(∇×B) · dS =

∮
C1

A · dl. (10.33)

Here S(C1) is the surface enclosed by the curve C1. We were able to take the
integral over this bigger cross-section, because the field outside S2 and inside
S(C1) vanishes. Therefore,

H1 = Φ1Φ2. (10.34)

By the same arguments we find the same result for H2 when considering the
other tube, so H2 = Φ1Φ2. Therefore the integral over all space is

H =

∫
V

A ·B dV = H1 +H2 = 2Φ1Φ2. (10.35)

For loops that are linked in more complicated ways one gets the product of
the fluxes multiplied by the winding number. In particular, for the trefoil knot
shown in Fig. 10.6, one gets the result H = 2Φ2, even through this knot consists
only of a single (knotted) flux tube.
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10.8 Conservation of magnetic helicity

We can easily derive an equation for the evolution of the magnetic helicity,

dH

dt
=

d

dt

∫
V

A ·B dV =

∫
V

∂

∂t
(A ·B) dV =

∫
V

(
∂A

∂t
·B +A · ∂B

∂t

)
dV

(10.36)
using equation (10.10) and its uncurled form,

∂A

∂t
= −E + ∇φ. (10.37)

This leads to

dH

dt
=

∫
V

(−E ·B +B ·∇φ−A ·∇×E) dV. (10.38)

Using integration by parts using

A ·∇×E = −E ·B −∇ · (E ×A) (10.39)

and, because ∇ ·B = 0,

B ·∇φ = ∇ · (Bφ) + φ∇ ·B = ∇ · (Bφ), (10.40)

we have
dH

dt
= −2

∫
V

(E ·B) dV −
∮

(E ×A+Bφ) · dS. (10.41)

If the integration is over all space we can ignore surface integrals. The surface
integral gives also no contribution if the boundary conditions are periodic or if
the boundaries are perfectly conduction (no horizontal electric field; i.e. a short
circuit), i.e.

dH

dt
= −2

∫
V

(E ·B) dV. (10.42)

In all other cases, however, the surface integral can give a contribution.
Now, looking at Ohm’s law, equation (10.12), we have

E = −u×B + ηµ0J , (10.43)

and so the helicity equation takes the form

dH

dt
= −2ηµ0

∫
V

(J ·B) dV. (10.44)

In the ideal case, η = 0, and magnetic helicity is conserved.

10.9 The main points of this chapter

Magnetic fields have some similarities to velocity fields (diffusion and advection
properties), but there are also some new effects (restoring forcing allowing MHD
waves, and the importance of helicity).
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Chapter 11

Alfvén and magnetosonic
waves

In this chapter we demonstrate the technique of linearizing the MHD equations,
which can then be used to study phenomena of small amplitude. This applies
mainly to waves (provided they are of small amplitude), but it also applies to
weak perturbations that can in some systems grow exponentially and would
eventually no longer be small. In that case such an analysis can establish the
possibility of an instability.

11.1 Linearizing the MHD equations

We now consider the isothermal MHD equations in the form

ρ
∂v

∂t
+ ρv ·∇v = −c2s∇ρ−∇

(
B2

2µ0

)
+

1

µ0
(B ·∇)B. (11.1)

Whenever we linearize, we have to linearize about something, which must be a
solution to the equations. Those solutions may well be complicated, but then
we won’t be able to do the analysis so easily on the blackboard. Therefore we
now go for simple solutions. One solution is where the magnetic field is constant
and uniform, i.e. B = B0, and where the density is also constant, i.e. ρ = ρ0,
but the velocity is zero, i.e. v = v0 = 0. In that case the terms on the lhs
of equation (11.1) vanish. The terms on the rhs of equation (11.1) also vanish
because because ρ0 and B0 are uniform. So we do have a solution now.

We now proceed by linearizing term by term, i.e. we write

ρ = ρ0 + ρ′, (11.2)

v = v0 + v′ = v′, (11.3)

B = B0 +B′. (11.4)

83
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The first term in (11.1) then becomes

ρ
∂v

∂t
= (ρ0 + ρ′)

∂v′

∂t
= ρ0

∂v′

∂t
+ ρ′

∂v′

∂t
. (11.5)

Here the second term is quadratic in the perturbations. Since those pertur-
bations are small, then something small squared will be even smaller and will
hence be neglected. The advection term is already nonlinear in the perturba-
tions, because there is no zero-order term, so it vanishes altogether. Next, the
pressure gradient term is linear already, so we have

c2s∇ρ = c2s∇ρ′, (11.6)

because ρ0 is constant. For the magnetic pressure gradient we have

∇
(
B2

2µ0

)
= ∇

(
B0 ·B′

µ0

)
+ quadratic terms, (11.7)

because

B2 = (B0 +B′) · (B0 +B′) = B2
0 + 2B0 ·B′ +B′2, (11.8)

of which only the second term survives. The first one is constant and gives no
contribution under the gradient, and the last term is quadratic in the perturba-
tions. Finally, the magnetic stretching term gives simply

1

µ0
(B ·∇)B =

1

µ0
(B0 ·∇)B′ + quadratic terms. (11.9)

Thus, our linearized momentum equation takes the form

ρ0
∂v′

∂t
= −c2s∇ρ′ −∇

(
B0 ·B′

µ0

)
+

1

µ0
(B0 ·∇)B′. (11.10)

You can imagine that with a little bit of experience one can write down
those equations straight away. We do this now with the remaining equa-
tions, the induction and continuity equations, looking at equations (??)
and (??),

∂B′

∂t
= B0 ·∇v′ −B0∇ · v′. (11.11)

∂ρ′

∂t
+ ρ0∇ · v′ = 0, (11.12)

Next, we go through some examples of various degrees of interest.
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11.2 Alfvén waves in the presence of a vertical
magnetic field

We assume that all variables can be decomposed into plane waves in the form

v′x = v̂xe
ik·x−iωt, (11.13)

v′y = v̂ye
ik·x−iωt, (11.14)

v′z = v̂ze
ik·x−iωt, (11.15)

B′x = B̂xe
ik·x−iωt, (11.16)

B′y = B̂ye
ik·x−iωt, (11.17)

B′z = B̂ze
ik·x−iωt, (11.18)

ρ′ = ρ̂eik·x−iωt, (11.19)

which allows us to derive a set of algebraic equations. For the velocity compo-
nents we have

− iωv̂x = −ikxρ̂
c2s
ρ0
− ikxB̂z

B0

µ0ρ0
+ ikzB̂x

B0

µ0ρ0
(11.20)

− iωv̂y = −ikyρ̂
c2s
ρ0
− ikyB̂z

B0

µ0ρ0
+ ikzB̂y

B0

µ0ρ0
(11.21)

− iωv̂z = −ikz ρ̂
c2s
ρ0

(11.22)

where the last two magnetic terms have canceled. The continuity equation is

− iωρ̂ = −ikxρ0ûx − ikyρ0ûy − ikzρ0ûz (11.23)

The magnetic equations are now for the form

− iωB̂x = +ikzB0ûx (11.24)

− iωB̂y = +ikzB0ûy (11.25)

− iωB̂z = −ikxB0ûx − ikyB0ûy (11.26)

where, again, the ikz terms have canceled in the last equation.
It is now convenient to write those equations in matrix form

−iω 0 0 ikx
c2s
ρ0
−ikz B0

µ0ρ0
0 +ikx

B0

µ0ρ0

0 −iω 0 iky
c2s
ρ0

0 −ikz B0

µ0ρ0
+iky

B0

µ0ρ0

0 0 −iω ikz
c2s
ρ0

0 0 0
ikxρ0 ikyρ0 ikzρ0 −iω 0 0 0
−ikzB0 0 0 0 −iω 0 0

0 −ikzB0 0 0 0 −iω 0
ikxB0 ikyB0 0 0 0 0 −iω





v̂x
v̂y
v̂z
ρ̂
B̂x
B̂y
B̂z


=



0
0
0
0
0
0
0


.

(11.27)
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We won’t consider this rather large system of equations at this point. Instead
we want to observe what happens when we assume that the system is one-
dimensional. Hence, we ignore the x and y components of the wave vector, so
our matrix becomes

−iω 0 0 0 −ikz B0

µ0ρ0
0 0

0 −iω 0 0 0 −ikz B0

µ0ρ0
0

0 0 −iω ikz
c2s
ρ0

0 0 0
0 0 ikzρ0 −iω 0 0 0

−ikzB0 0 0 0 −iω 0 0
0 −ikzB0 0 0 0 −iω 0
0 0 0 0 0 0 −iω





v̂x
v̂y
v̂z
ρ̂
B̂x
B̂y
B̂z


=



0
0
0
0
0
0
0


.

(11.28)
We notice that the last equation disappears altogether. We notice further that
the third and fourth equations decouple from the remaining four equations. In
order to have non-trivial solutions (where the hatted variables themselves don’t
vanish), we have to require that the determinant of the matrix vanishes. Because
the matrix decouples into two matrices, M1 and M2, we have to require that
either detM1 = 0 or detM2 = 0, where

M1 =


−iω 0 −ikz B0

µ0ρ0
0

0 −iω 0 −ikz B0

µ0ρ0
−ikzB0 0 −iω 0

0 −ikzB0 0 −iω

 , M2 =

(
−iω ikz

c2s
ρ0

ikzρ0 −iω

)
(11.29)

There are two separate dispersion relations. From detM2 = 0 we have

ω2 = c2sk
2
z . (11.30)

The resulting dispersion relation from detM2 = 0 is

ω4 − 2v2
Ak

2ω2 + v4
Ak

4 = 0. (11.31)

This is a biquadratic equation, or a quadratic equation in ω2. However, in this
case it can also be written as

(ω2 − v2
Ak

2)2 = 0, (11.32)

which simply means that there are Alfvén waves were either the x or the y
components of the field are involved.

11.3 One-dimensional Alfvén waves revisited

Given that in one dimension the Alfvén waves simplify significantly we begin
all over again, focusing attention immediately on the essential points. The
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linearized, pressureless, ideal MHD equations in one dimension, in the presence
of a vertical magnetic field, are

∂v′x
∂t

=
B0

µ0ρ0

∂B′x
∂z

, (11.33)

∂B′x
∂t

= B0
∂v′x
∂z

, (11.34)

Differentiating the first equation in time and inserting the second equation for
∂B′x/∂t yields a wave equation, similar to the equation describing sound waves.
In the more complicated situations described below it turns out to be easier
however to take the solution to be in the form

v′x = v̂xe
ikz−iωt, (11.35)

B′x = B̂xe
ikz−iωt, (11.36)

which allows us to derive a set of two algebraic equations,

− iωv̂x − 2Ωv̂y =
B0

ρ0µ0
ikB̂x, (11.37)

− iωB̂x = B0ikv̂x. (11.38)

It is convenient to write those equations in matrix form

(
−iω −ik B0

µ0ρ0
−ikB0 −iω

)(
v̂x
B̂x

)
=


0
0
0
0

 . (11.39)

For a nontrivial solution the determinant of the governing matrix has to vanish

detM ≡ det

(
−iω −ik B0

µ0ρ0
−ikB0 −iω

)
= −ω2 +

B2
0

µ0ρ0
k2 = 0, (11.40)

This leads to the dispersion relation ω = ω(k) with

ω = ±vAk, (11.41)

where vA is the Alfvén speed with v2
A = B2

0/(ρ0µ0).

Unlike sound waves, where the restoring force is the pressure gradient, for
Alfvén waves the restoring force is the magnetic field. Another important dif-
ference is the fact that now the field has only components perpendicular to the
direction of propagation. Here the direction of propagation is z, but B has only
a nonvanishing component in the x direction. For sound waves, on the other
hand, the velocity has only a component in the direction of propagation.
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11.3.1 The effects of rotation

We now assume that we are in a rotating system of reference, where the rotation
axis is the z axis, which is also the direction of the applied magnetic field, so
Ω = (0, 0,Ω) and so the Coriolis force (per unit mass) is

FCor = −2Ω× v =

 0
0
−2Ω

×
 vx
vy
vz

 =

+2Ωvy
−2Ωvx

0

 . (11.42)

Adding this term to the equations causes immediately some coupling to the y
components of both the velocity and the magnetic field. The linearized, pres-
sureless, ideal MHD equations in one dimension, in the presence of rotation, are
then

∂v′x
∂t
− 2Ωv′y =

B0

µ0ρ0

∂B′x
∂z

, (11.43)

∂v′y
∂t

+ 2Ωv′x =
B0

µ0ρ0

∂B′y
∂z

, (11.44)

∂B′x
∂t

= B0
∂v′x
∂z

, (11.45)

∂B′y
∂t

= B0

∂v′y
∂z

. (11.46)

As usual, we assume the solution to be of the form

v′x = v̂xe
ikz−iωt, (11.47)

v′y = v̂ye
ikz−iωt, (11.48)

B′x = B̂xe
ikz−iωt, (11.49)

B′y = B̂ye
ikz−iωt, (11.50)

which allows us to derive a set of algebraic equations.

− iωv̂x − 2Ωv̂y =
B0

ρ0µ0
ikB̂x, (11.51)

− iωv̂y + 2Ωv̂x =
B0

ρ0µ0
ikB̂y, (11.52)

− iωB̂x = B0ikv̂x, (11.53)

− iωB̂y = B0ikv̂y. (11.54)

It is convenient to write those equations in matrix form
−iω −2Ω −ik B0

µ0ρ0
0

2Ω −iω 0 −ik B0

µ0ρ0
−ikB0 0 −iω 0

0 −ikB0 0 −iω



v̂x
v̂y
B̂x
B̂y

 =


0
0
0
0

 . (11.55)
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For a nontrivial solution the determinant of the governing matrix has to vanish

detM ≡ det


−iω −2Ω −ik B0

µ0ρ0
0

2Ω −iω 0 −ik B0

µ0ρ0
−ikB0 0 −iω 0

0 −ikB0 0 −iω

 . (11.56)

To calculate the determinant we split it into sub-determinants:

detM = −iω det

 −iω 0 −ik B0

µ0ρ0
0 −iω 0

−ikB0 0 −iω

+ 2Ω det

 2Ω 0 −ik B0

µ0ρ0
−ikB0 −iω 0

0 0 −iω


−ik B0

µ0ρ0
det

 2Ω −iω −ik B0

µ0ρ0
−ikB0 0 0

0 −ikB0 −iω

 .(11.57)

Determinants of 3× 3 matrices are easy to calculate, so

detM = −iω
[
(−iω)3 − (−iω)

(
−k2 B2

0

µ0ρ0

)]
+ 2Ω

[
2Ω(−iω)2

]
−ik B0

µ0ρ0

[
−k2 B2

0

µ0ρ0
(−ikB0)− (−iω)2(−ikB0)

]
. (11.58)

Thus,

detM = −ω2

[
−ω2 + k2 B2

0

µ0ρ0

]
− 4Ω2ω2 − k2 B2

0

µ0ρ0

[
−k2 B2

0

µ0ρ0
+ ω2

]
, (11.59)

or
detM = ω4 − ω2k2v2

A − 4Ω2ω2 + (k2v2
A)2 − k2v2

Aω
2, (11.60)

where v2
A = B2

0/(µ0ρ0) is the square of the Alfvén speed. Setting the determi-
nant to zero leads to the dispersion relation

ω4 − ω2(2v2
Ak

2 + 4Ω2) + v4
Ak

4 = 0. (11.61)

This is a biquadratic equation, or a quadratic equation in ω2.

11.3.2 The effects of rotation and shear

The linearized, pressureless, ideal MHD equations in one dimension, in the
presence of rotation and shear with a vertical magnetic field, are

∂v′x
∂t
− 2Ωv′y =

B0

µ0ρ0

∂B′x
∂z

, (11.62)

∂v′y
∂t

+ 1
2Ωv′x =

B0

µ0ρ0

∂B′y
∂z

, (11.63)
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∂B′x
∂t

= B0
∂v′x
∂z

, (11.64)

∂B′y
∂t

= B0

∂v′y
∂z
− 3

2ΩB′x, (11.65)

We assume the solution to be of the form

v′x = v̂xe
ikz−iωt, (11.66)

v′y = v̂ye
ikz−iωt, (11.67)

B′x = B̂xe
ikz−iωt, (11.68)

B′y = B̂ye
ikz−iωt, (11.69)

which allows us to derive a set of algebraic equations.

− iωv̂x − 2Ωv̂y =
B0

ρ0µ0
ikB̂x, (11.70)

− iωv̂y + 1
2Ωv̂x =

B0

ρ0µ0
ikB̂y, (11.71)

− iωB̂x = B0ikv̂x, (11.72)

− iωB̂y = B0ikv̂y − 3
2ΩB̂x. (11.73)

It is convenient to write those equations in matrix form
−iω −2Ω −ik B0

µ0ρ0
0

1
2Ω −iω 0 −ik B0

µ0ρ0
−ikB0 0 −iω 0

0 −ikB0
3
2Ω −iω



v̂x
v̂y
B̂x
B̂y

 =


0
0
0
0

 . (11.74)

For a nontrivial solution the determinant of the governing matrix has to vanish

detM ≡ det


−iω −2Ω −ik B0

µ0ρ0
0

1
2Ω −iω 0 −ik B0

µ0ρ0
−ikB0 0 −iω 0

0 −ikB0
3
2Ω −iω

 . (11.75)

To calculate the determinant we split it into sub-determinants:

detM = −iω det

 −iω 0 −ik B0

µ0ρ0
0 −iω 0

−ikB0
3
2Ω −iω

+ 2Ω det

 1
2Ω 0 −ik B0

µ0ρ0
−ikB0 −iω 0

0 3
2Ω −iω



−ik B0

µ0ρ0
det

 1
2Ω −iω −ik B0

µ0ρ0
−ikB0 0 0

0 −ikB0 −iω

 .(11.76)
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Determinants of 3× 3 matrices are easy to calculate, so

detM = −iω
[
(−iω)3 − (−iω)

(
−k2 B2

0

µ0ρ0

)]
+ 2Ω

[
1
2Ω(−iω)2 − k2 B2

0

µ0ρ0

3
2Ω

]
−ik B0

µ0ρ0

[
−k2 B2

0

µ0ρ0
(−ikB0)− (−iω)2(−ikB0)

]
.(11.77)

Thus,

detM = −ω2

[
−ω2 + k2 B2

0

µ0ρ0

]
+2Ω

[
− 1

2Ωω2 − k2 B2
0

µ0ρ0

3
2Ω

]
−k2 B2

0

µ0ρ0

[
−k2 B2

0

µ0ρ0
+ ω2

]
,

(11.78)
or

detM = ω4 − ω2k2v2
A − Ω2ω2 − 3Ω2k2v2

A + (k2v2
A)2 − k2v2

Aω
2, (11.79)

where v2
A = B2

0/(µ0ρ0) is the square of the Alfvén speed. Setting the determi-
nant to zero leads to the dispersion relation

ω4 − ω2(2v2
Ak

2 + Ω2) + v2
Ak

2(v2
Ak

2 − 3Ω2) = 0. (11.80)

This is a biquadratic equation, or a quadratic equation in ω2. There are two
solutions for ω2, ω2

1 and ω2
2 , say. We can therefore write the dispersion relation

in the form
(ω2 − ω2

1) (ω2 − ω2
2) = 0, (11.81)

or
ω4 − ω2(ω2

1 + ω2
2) + ω2

1ω
2
2 = 0. (11.82)

Comparing with equation (11.105) we see that one of the two solutions is neg-
ative, i.e. ω2

1ω
2
2 < 0 when

k2v2
A < 3Ω2. (11.83)

In that case ω is plus or minus an imaginary number. Since the solution is
proportional to e−iωt that means that the solution behaves like

e−iωt = e±|Im(ω)|t. (11.84)

The solution for which the upper sign applies grows fastest. We thus say that
the solution is unstable. Eventually the magnitude of the velocity and magnetic
field perturbations will be so large that the linearized equations are no longer
valid.

Note that we were able to draw conclusions about stability and instability
even though we did not actually solve the dispersion relation. This happens
quite often, especially with higher order polynomials. But in the present case
an explicitly solution can easily be written down. It is

ω2
1,2 = v2

Ak
2 + 1

2Ω2 ±
√

4v2
Ak

2Ω2 + 1
4Ω4 (11.85)
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We see that the presence of shear has a destabilizing effect on the slow mag-
netosonic waves. This instability is also known as Balbus-Hawley instability and
it has great relevance for causing turbulence in accretion discs. The maximum
growth rate is reached when v2

Ak
2 = 15

16Ω2, and the corresponding value of ω2

is then −ω2 = 9
16Ω2 ≈ 0.56Ω2, or Imω = 3

4Ω.

Figure 11.1: Dispersion relation for slow magnetosonic and Alfven waves. Solid
lines denote Alfven waves. For them ω2 is always positive. Dashed lines refer
to slow magnetosonic waves. For not too large values of k they can become
unstable (ω2 < 0, so ω becomes imaginary!).

11.3.3 Eigenfunction for the Balbus-Hawley instability

A simple way to get the eigenfunction of the Balbus-Hawley instability, of in fact
of any linear eigenvalue problem, is to use the original equations starting with
the most simple one. The simplest one is equation (11.72), because it involves
just 2 terms. We may choose the coefficient in front of v̂x to one, so

v̂x = 1 (11.86)

Using equation (11.72) it follows that

B̂x = − ik
iω
B0 (11.87)
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Next we use equation (11.70) to find v̂y

v̂y = −
iω + B0

ρ0µ0
ik
(
− ik
iωB0

)
2Ω

(11.88)

or

v̂y =
ω2 − v2

Ak
2

2Ωiω
(11.89)

Finally, we need to calculate B̂y, but we have two equations still unused, (11.71)
and (11.73). We use first equation (11.71) to obtain

B̂y =
−iωv̂y + 1

2Ωv̂x

ikv2
A

B0 (11.90)

or, using the above results,

B̂y =
−(

ω2−v2Ak
2

2Ω ) + 1
2Ω

ikv2
A

B0 (11.91)

so

B̂y = ikB0
ω2 − v2

Ak
2 − Ω2

2Ωk2v2
A

(11.92)

Finally, we can use the last equation, (11.73) to check everything, so we plug in
the results obtained so far. We have

− iωB̂y = B0ikv̂y − 3
2ΩB̂x. (11.93)

so

− iω(ikB0)
ω2 − v2

Ak
2 − Ω2

2Ωk2v2
A

= B0ik
ω2 − v2

Ak
2

2Ωiω
− 3

2Ω

(
− ik
iω
B0

)
. (11.94)

We cancel ikB0 on both sides, and multiply by iω, so

ω2 ω
2 − v2

Ak
2 − Ω2

2Ωk2v2
A

=
ω2 − v2

Ak
2

2Ω
+ 3

2Ω. (11.95)

Multiplying by 2Ωk2v2
A yields

ω2 (ω2 − v2
Ak

2 − Ω2) = (ω2 − v2
Ak

2)k2v2
A + 3Ω2k2v2

A. (11.96)

which gives the old biquadratic equation,

ω4 − ω2(2v2
Ak

2 − Ω2) + (k2v2
A − 3Ω2)k2v2

A = 0, (11.97)

so everything seems to have gone alright. Anyway, the eigenfunction is therefore
v̂x
v̂y
B̂x
B̂y

 =


1

ω2−v2Ak
2

2Ωiω

− ik
iωB0

ikB0
ω2−v2Ak

2−Ω2

2Ωk2v2
A

 (11.98)
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11.3.4 The effect of magnetic and ambipolar diffusion

For a nontrivial solution the determinant of the governing matrix has to vanish

detM ≡ det


−iω −2Ω −ik B0

µ0ρ0
0

1
2Ω −iω 0 −ik B0

µ0ρ0
−ikB0 0 −iω̃ 0

0 −ikB0
3
2Ω −iω̃

 . (11.99)

where −iω̃ = −iω − ηk2. To calculate the determinant we split it into sub-
determinants:

detM = −iω det

 −iω 0 −ik B0

µ0ρ0
0 −iω̃ 0

−ikB0
3
2Ω −iω̃

+ 2Ω det

 1
2Ω 0 −ik B0

µ0ρ0
−ikB0 −iω̃ 0

0 3
2Ω −iω̃



−ik B0

µ0ρ0
det

 1
2Ω −iω −ik B0

µ0ρ0
−ikB0 0 0

0 −ikB0 −iω̃

 .(11.100)

Determinants of 3× 3 matrices are easy to calculate, so

detM = −iω
[
(−iω)(−iω̃)2 − (−iω̃)

(
−k2 B2

0

µ0ρ0

)]
+ 2Ω

[
1
2Ω(−iω̃)2 − k2 B2

0

µ0ρ0

3
2Ω

]
−ik B0

µ0ρ0

[
−k2 B2

0

µ0ρ0
(−ikB0)− (−iω)(−iω̃)(−ikB0)

]
.(11.101)

detM = −iω
[
(−iω)(−iω̃)2 − (−iω̃)

(
−k2 B2

0

µ0ρ0

)]
+ 2Ω

[
1
2Ω(−iω̃)2 − k2 B2

0

µ0ρ0

3
2Ω

]
−ik B0

µ0ρ0

[
−k2 B2

0

µ0ρ0
(−ikB0)− (−iω)(−iω̃)(−ikB0)

]
.(11.102)

Thus,

detM = −ω2

[
−ω̃2 + σk2 B2

0

µ0ρ0

]
+2Ω

[
− 1

2Ωω̃2 − k2 B2
0

µ0ρ0

3
2Ω

]
−k2 B2

0

µ0ρ0

[
−k2 B2

0

µ0ρ0
+ σω2

]
,

(11.103)
where σ = ω̃/ω has been introduced as a short hand. This can be simplified to
give

detM = ω4 − σω2k2v2
A − Ω2ω2 − 3Ω2k2v2

A + (k2v2
A)2 − k2v2

Aσω
2, (11.104)

where v2
A = B2

0/(µ0ρ0) is the square of the Alfvén speed. Setting the determi-
nant to zero leads to the dispersion relation

ω4 − ω2(2σv2
Ak

2 + Ω2) + v2
Ak

2(v2
Ak

2 − 3Ω2) = 0. (11.105)
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11.4 Nonaxisymmetric Balbus-Hawley instabil-
ity

Due to shear, one expects a strong toroidal magnetic field in accretion discs. In
that case ... B0 = (0, B0, 0), so

j×B0 = B0 ·∇b−∇(B0 ·b) = B0(∂yb−∇by) = B0

 ∂y −∂x 0
0 0 0
0 −∂z ∂y

 bx
by
bz


(11.106)

∇× (u×B0) = B0 ·∇u−B0∇ ·u = B0

 ∂y 0 0
−∂x 0 −∂z

0 0 ∂y

ux
uy
uz

 (11.107)

∇× (U0 × b) = −U0 ·∇b+ b ·∇U0 = −Sx∂yb+ S

 0
bx
0

 (11.108)

In the general nonaxisymmetric case we can solve the problem by letting kx
be time-dependent, ie kx = kx(t), with

kx(t) = kx(0) + qΩt. (11.109)

In that case the solutions are of the form q = q̂(t) exp[ik(t) ·x], and we are left
with a system of ordinary differential equations,

dq̂

dt
= −iL̂q̂ (11.110)

with the matrix

Â ≡ −iL̂(t) =


0 2Ω 0 iky −ikx(t) 0

−(2− q)Ω 0 0 0 0 0
0 0 0 0 −ikz iky

iky 0 0 0 0 0
−ikx(t) 0 −ikz −qΩ 0 0

0 0 iky 0 0 0

 (11.111)

being explicitly time-dependent. Note that in the absence of shear, q = 0, the
matrix A is antihermitian, ie A∗ij = −Aji. This means that

6∑
i=1

q∗i Aijqj is purely imaginary (11.112)

If either q = 0 or kx = 0, we have the dispersion relation −ω2D(ω,k) = 0
with

D = ω4 − ω2(k2 + k2
y + κ2) + k2

yk
2 + κ2(k2

y + k2
z). (11.113)
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In the general case, however, if one ignores the time dependence of kx(t), one
has

iωD + (ω2 − k2
y)qΩkxky = 0. (11.114)

If pressure forces are included, we have

Â ≡ −iL̂(t) =



0 2Ω 0 ikyvA −ikx(t)vA 0 −ikxcs
−(2− q)Ω 0 0 0 0 0 −ikycs

0 0 0 0 −ikzvA ikyvA −ikzcs
ikyvA 0 0 0 0 0 0
−ikx(t)vA 0 −ikzvA −qΩ 0 0 0

0 0 ikyvA 0 0 0 0
−ikxcs −ikycs −ikzcs 0 0 0 0


(11.115)

11.4.1 Alternative formulation

Ignore magnetic pressure gradient (assume that it is being balanced by the gas
pressure gradient), so we have

B0 ·∇b = B0∂yb = B0

 ∂y 0 0
0 ∂y 0
0 0 ∂y

 bx
by
bz

 (11.116)

B0 ·∇u = B0

 ∂y 0 0
0 ∂y 0
0 0 ∂y

ux
uy
uz

 (11.117)

so the full matrix is

Â ≡ −iL̂(t) =


0 2Ω 0 iky 0 0

−(2− q)Ω 0 0 0 iky 0
0 0 0 0 0 iky

iky 0 0 0 0 0
0 iky 0 −qΩ 0 0
0 0 iky 0 0 0

 (11.118)

Corresponds to the dispersion relation

−ω6+ω4
[
3v2

Ak
2 + 2(2− q)Ω2

]
−ω2v2

Ak
2
[
3v2

Ak
2 + 4(1− q)Ω2

]
+v4

Ak
4(v2

Ak
2−2qΩ2) = 0.

(11.119)
Has unstable eigenvalues for 3Ω2 > v2

Ak
2, just like in the axisymmetric case.

11.5 Magnetosonic waves

We now consider the linearized MHD equations in vector notation,

− iωv̂ = −ik(c2s/ρ0)ρ̂− ikB0 · B̂
µ0ρ0

+
ik ·B0

µ0ρ0
B̂, (11.120)
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− iωρ̂ = −ik · v̂, (11.121)

− iωB̂ = (ik ·B0)v̂ − (ik · v̂)B0. (11.122)

We multiply equation (11.120) by −iω and substitute for −iωρ̂ and −iωB̂ using
Eqs. (11.121) and (11.122), so

−ω2v̂ = −ik(c2s/ρ0)(−ik·v̂)− ik

µ0ρ0

[
(ik ·B0)(v̂ ·B0)− (ik · v̂)B2

0

]
+
ik ·B0

µ0ρ0
[(ik ·B0)v̂ − (ik · v̂)B0] ,

(11.123)
or

(k2v2
A−ω2)v̂ = +k

[
−(k · v̂)(c2s + v2

A) + (k ·B0)(v̂ ·B0)v2
A

]
+B̂0(k·B0)(k·v̂)v2

A.
(11.124)

We now assume that the wave vector points in the x direction and that the
magnetic field vector lies in the x− y plane, i.e.

k =

 k
0
0

 , B0 =

 cosψ
sinψ

0

B0. (11.125)

Therefore,

v̂ · B̂0 = B0 (v̂x cosψ + v̂y sinψ), k ·B0 = kB0 cosψ, k · v̂ = kv̂x. (11.126)

With this the z component of the right hand side vanishes, but because v̂z does
not generally vanish we have k2v2

A − ω2 = 0, which gives already two possible
solutions:

ω = ±kvA. (11.127)

For the remaining two components we have to satisfy the x and y components
separately, i.e.

(k2v2
A−ω2)v̂x = k2

[
−v̂x(c2s + v2

A) + cosψ(v̂x cosψ + v̂y sinψ) v2
A

]
+cosψ(v̂x cosψ)v̂xk

2v2
A.

(11.128)
(k2v2

A − ω2)v̂y = sinψ cosψ v2
Ak

2v̂x (11.129)

This is a system of two algebraic equations. Written in matrix form we have,(
(k2v2

A − ω2) + (c2s + v2
A)k2 − 2 cos2ψ v2

Ak
2 cosψ sinψ v2

Ak
2

− cosψ sinψ v2
Ak

2 (k2v2
A − ω2)

)(
v̂x
v̂y

)
=

(
0
0

)
(11.130)

which leads to the dispersion relation[
(k2v2

A − ω2) + (c2s + v2
A)k2 − 2 cos2ψ v2

Ak
2
]

(k2v2
A−ω2)+cos2ψ sin2ψ v4

Ak
4 = 0

(11.131)
We note that there are altogether three wave types, slow and fast magnetosonic
waves and Alfvén waves. The frequency depends on the values of k, the angle
between the wave vector k and the magnetic field B0, and of course the values
of the sound speed and the Alfén speed. The dependence of the frequency as a
function of the angle between k and B0 is shown in Fig. 11.2 for different values
of cs and vA. In the special case ψ = 0 we have

(k2c2s − ω2)(k2v2
A − ω2) = 0. (11.132)
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Figure 11.2: Dispersion relation for Alfven waves. Solid lines denote the fast
magnetosonic waves, dashed lines Alfvén waves, and dotted lines slow magne-
tosonic waves.

11.5.1 Eigenfunctions

Here we only bother to give one particular eigenfunction for the case where B0

and k are aligned. In that case, Alfvén waves and fast magnetosonic waves are
degenerate (see Fig. 11.2), so we are left with two modes.

vx = εscs sin k(x− cst), ln ρ = εs sin k(x− cst), (11.133)

vy = εAvA sin k(x− vAt), by = εAB0 sin k(x− vAt). (11.134)

We note that the vector potential is A = (0, 0, Az) with Az = εAk
−1B0 sin k(x−

vAt).



Chapter 12

Dynamos

The dynamo mechanism provides a means of converting kinetic energy into mag-
netic energy. We shall focus on the astrophysically relevant case of a turbulent
dynamo, as opposed to a laminar one. Laminar dynamos are easier to under-
stand – and we shall discuss some simple examples – while turbulent dynamos
have to be tackled via direct numerical simulations or by stochastic methods.
Both will be discussed below.

12.1 Energetics

Important insight can be gained by considering the magnetic energy equation.
By taking the dot product of equation (10.13) with B/(2µ0) and integrating
over the volume V we obtain

d

dt

∫
V

B2

2µ0
dV = −

∫
V

U · (J ×B) dV −
∫
V

J2

σ
dV −

∮
∂V

E ×B
µ0

dS. (12.1)

This equation shows that the magnetic energy can be increased by doing work
against the Lorentz force, provided this terms exceeds resistive losses (second
term) or losses through the surface (Poynting flux). Likewise, by taking the dot
product of equation (2.7) with ρU and integrating one arrives at the kinetic
energy equation

d

dt

∫
V

1
2ρU

2 dV = +

∫
V

p∇ ·U dV +

∫
V

U · (J ×B) dV

+

∫
V

ρU · g dV −
∫
V

2νρS2 dV, (12.2)

where Sij = 1
2 (ui,j + uj,i) − 1

3δijuk,k is the rate of strain tensor, and commas
denote derivatives. In deriving equation (12.2) we have assumed stress-free
boundary conditions, so there are no surface terms and no kinetic energy is lost
through the boundaries. Equations (12.1) and (12.2) show that the generation
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Figure 12.1: Energy budget in a local accretion disc simulation where the
turbulence is maintained by the Balbus-Hawley instability. The numbers on
the arrows indicate the approximate energy conversion rates in units of ΩEM,
where Ω is the angular velocity and EM is the steady state value of the magnetic
energy.

of magnetic energy goes at the expense of kinetic energy, without loss of net
energy.

In many astrophysical settings one can distinguish four different energy reser-
voirs that are involved in the dynamo process: magnetic, kinetic, thermal, and
potential energy. In accretion discs the magnetic energy comes ultimately from
potential energy which is first converted into kinetic energy. This is only possi-
ble by getting rid of angular momentum via Reynolds and/or Maxwell stresses.
Half of the potential energy goes into orbital kinetic energy and the other half
goes into turbulent kinetic energy which is then dissipated into heat and radi-
ation. This requires turbulence to produce small enough length scales so that
enough kinetic energy can indeed be dissipated on a dynamical time scale. This
turbulence is most likely driven by the Balbus-Hawley (or magneto-rotational)
instability. In Fig. 12.1 we show the energy diagram from a local simulation
of the Balbus-Hawley instability. Here, the magnetic field necessary for the in-
stability is maintained by a dynamo process. Most of the turbulent energy is
dissipated by Joule heating. The magnetic energy typically exceeds the kinetic
energy by a factor of about 3 or more, but is below the thermal energy by a
factor of about 10–20.

In the case of solar convection the energy for the dynamo comes ultimately
from the nuclear reactions in the center of the star. This acts as a source of
thermal energy which gets converted into kinetic energy via the convection in-
stability. The corresponding energy diagram for this case is shown in Fig. 12.2.
Potential energy does not contribute directly: it only contributes through rear-
ranging the mean density stratification.
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Figure 12.2: Energy budget in a local convection simulation. The dynamo
is convectively driven by the luminosity entering from below, giving rise to
convection via work done by adiabatic compression, Wc ≡

∫
p∇ · udV , and

through work done against the Lorentz force, WL =
∫
u · (J ×B) dV . Energy

is being fed back from magnetic and kinetic energy to thermal energy via Joule
and viscous heating, QJ and Qv. Some of the kinetic energy is constantly being
exchanged with potential energy EP via Wb =

∫
ρg · udV

12.2 Kinematic dynamos

The onset of dynamo action can be studied in the linear approximation, i.e. the
velocity field is assumed to be given (kinematic problem). There is in general a
critical value of the magnetic Reynolds number above which the magnetic field
grows exponentially. A lot of work has been devoted to the question of whether
the growth rate can remain finite in the limit Rm → ∞ (the so-called fast
dynamo). Fast dynamos are physically meaningful only until nonlinear effects
begin to modify the flow to limit further growth of the field.

In the following we consider two simple examples of a dynamo. Both are
slow dynamos, i.e. magnetic diffusion is crucial for the operation of the dynamo.
We also discuss the stretch-twist-fold dynamo as a qualitative example of what
is possibly a fast dynamo.
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12.2.1 The Herzenberg dynamo

In the wake of Cowling’s antidynamo theorem1 the Herzenberg dynamo played
an important role as an early example of a dynamo where the existence of excited
solutions could be proven rigorously. The Herzenberg dynamo does not attempt
to model an astrophysical dynamo. Instead, it was complementary to some of
the less mathematical and more phenomenological models at the time, such as
Parker’s migratory dynamo as well as the observational model of Babcock, and
the semi-observational model of Leighton, all of which were specifically designed
to describe the solar cycle.

The Herzenberg dynamo is based on the mutual interaction of the magnetic
fields produced by two spinning spheres in a conducting medium. In its simplest
variant, the axes of the two spheres lie in planes that are parallel to each other,
but the axes have an angle ϕ to each other; see Fig. 12.3, which shows the field
vectors from a numerical simulation of the Herzenberg dynamo.

Dynamo action is possible unless the angle ϕ is exactly 0◦, 90◦, or 180◦. For
90◦ < ϕ < 180◦ nonoscillatory dynamo action is possible. In the limit where
the radius of the spheres, a, is small compared with their separation d, one
can expand the field locally in terms of multipoles to lowest order. Defining a
magnetic Reynolds number as Rm = ωd2/η, where ω is the spin frequency of
each of the spheres, the critical magnetic Reynolds number for dynamo action,
Rcrit, is found to be

R−2
crit = − 1

4800

(a
d

)6

sin2ϕ cosϕ (for 90◦ < ϕ < 180◦), (12.3)

which shows that the smallest value of Rcrit is reached for ϕ ≈ 125◦. Criti-
cal magnetic Reynolds numbers are several hundreds, but they would be only
around ten if we were to redefine the magnetic Reynolds number based on some
typical wavenumber. The dynamo works on the principle that each sphere winds
up its ambient field, creates thereby a strong toroidal field around itself, but be-
cause there is an angle between the two spheres the toroidal field of one sphere
acts as a poloidal field for the other sphere. For the toroidal field of each sphere
to propagate to the other sphere, a non-zero diffusion is necessary, hence making
this dynamo a slow dynamo.

Already back in the sixties, the idea of the Herzenberg dynamo has been
verified experimentally using two conducting cylinders embedded in a solid block

1Larmor prosed in 1919 that the solar field might be generated by a self-excited dy-
namo. However, in 1933 Cowling published his anti-dynamo theorem, which states that
two-dimensional (axisymmetric) magnetic fields cannot be sustained by dynamo action. Lar-
mor (1934) responds to Cowling (1933) with the words “The view that I advanced briefly
and tentatively long ago, which has come to be referred to as, perhaps too precisely, the self-
exciting dynamo analogy, is still, so far as I know, the only foundation on which a gaseous
body such as the Sun could possess a magnetic field: so that if it is demolished there could
be no explanation of the Sun’s magnetism even remotely in sight.”
Cowling, T. G.: 1933, “The magnetic field of sunspots,” Mon. Not. Roy. Astron. Soc. 94,
39–48
Larmor, J.: 1934, “The magnetic field of sunspots,” Mon. Not. Roy. Astron. Soc. 94, 469–471
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Figure 12.3: Three-dimensional visualization of the magnetic field geometry of
the Herzenberg dynamo. B-vectors are shown when their length exceeds about
25% of the maximum value

of the same material. The cylinders were in electric contact with the block
through a thin lubricating film of mercury.

The asymptotic theory of Herzenberg assumed that a/d � 1; for excellent
reviews of the Herzenberg dynamo see. Using numerical simulations it has been
shown that equation (12.3) remains reasonably accurate even when a/d ≈ 1.
These simulations also show that in the range 0◦ < ϕ < 90◦ dynamo action is
still possible, but the solutions are no longer steady but oscillatory. In the early
papers, only steady solutions were sought, which is the reason why no solutions
were originally found for 0◦ < ϕ < 90◦.

12.2.2 The Roberts flow dynamo

In the early years of dynamo theory most examples were constructed and mo-
tivated based on what seems physically possible and plausible. An important
element of astrophysical dynamos is that the flow is bounded in space and that
the magnetic field extends to infinity. Later, and especially in recent years, these
restrictions were relaxed in may approaches. One of the first examples is the G.
O. Roberts dynamo. The flow depends on only two coordinates, U = U(x, y),
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Figure 12.4: Roberts flow pattern with periodicity 2a, corresponding to equa-
tion (12.4).

and can be written in the form

U(x, y) =
√

2∇× (ϕz) + ∇×∇× (ϕz), (12.4)

with the stream function ϕ = (U0/kf) sin kxx sin kyy, where kx = ky = π/a; see
Fig. 12.4. This flow is fully helical with W = kfU , were k2

f = k2
x + k2

y and
W = ∇×U . While the flow is only two-dimensional (in the sense that U is a
function only of x and y), the magnetic field must be three-dimensional for all
growing solutions (dynamo effect). The field must therefore also depend on z.

The governing equations are homogeneous with coefficients that are indepen-
dent of z and t. The solutions of the kinetic problem can therefore be written
in the form

B(x, y, z, t) = Re
[
B̂kz (x, y) exp(ikzz + λt)

]
, (12.5)

where B̂kz is the eigenfunction, which is obtained by solving the eigenvalue
problem

λÂkz = U × B̂kz + η
(
∇2 − k2

z

)
Âkz , (12.6)

where B̂kz = ∇×Âkz +ikz×Âkz is expressed in terms of Âkz , which is a mixed
representation of the vector potential; in real space the vector potential would

be Re
[
Âkz (x, y) exp(ikzz + λt)

]
. For kz = kx = ky ≈ 0.71kf , the marginal state

(λ = 0) is reached when Rcrit ≡ U0/(ηkf)crit ≈ 3.90. The larger the domain in
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Figure 12.5: Critical magnetic Reynolds number, Rcrit = U0/(ηkf)crit, for
the Roberts flow as a function of kz/kf , where k2

f = k2
x + k2

y. The critical
magnetic Reynolds number based on kz, Rcrit,kz = U0/(ηkz)crit, has a minimum
at kz ≈ 0.34kf ≈ 0.48kx. The case of a squared domain with kx = ky = kz, i.e.
kz/kf = 1/

√
2, is indicated by the vertical dash-dotted line.

the z-direction, the lower is the critical magnetic Reynolds number. However,
the critical magnetic Reynolds number based on kz, Rcrit,kz = U0/(ηkz)crit, has
a minimum at kz ≈ 0.34kf ≈ 0.48kx with Rcrit,kz ≈ 3.49; cf. Fig. 12.5.

The horizontally averaged eigenfunction is B̂kz = (i, 1, 0), corresponding to
a Beltrami wave, which has maximum magnetic helicity with a sign that is
opposite to that of the flow. In the present case, the kinetic helicity of the flow
is positive, so the magnetic and current helicities of the mean field are negative.

The significance of this solution is two-fold. On the one hand, this dynamo
is the prototype of any fully helical dynamo capable of generating a large scale
field. On the other hand, it is a simple model of the Karlsruhe dynamo ex-
periment where a similar flow of liquid sodium is generated by an arrangement
of pipes with internal ‘spin generators’ making the flow helical. It is also an
example of a flow where the generation of the magnetic field can be described
in terms of mean field electrodynamics.

Unlike the original Roberts flow dynamo, the flow in the Karlsruhe dynamo
experiment is bounded and embedded in free space. Within the dynamo domain,

the mean field, B̂kz = (i, 1, 0), has only (x, y)-components. The field lines must
close outside the dynamo domain, giving therefore rise to a dipole lying in the
(x, y)-plane. Similar fields have long been predicted for rapidly rotating stars.
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Figure 12.6: A schematic illustration of the stretch-twist-fold-merge dynamo.

12.3 Fast dynamos: the stretch-twist-fold pic-
ture

An elegant heuristic dynamo model illustrating the possibility of fast dynamos
is what is often referred to as the Zeldovich ‘stretch-twist-fold’ (STF) dynamo
(see Fig. 12.6). We briefly outline it here, as it illustrates nicely several features
of more realistic dynamos.

The dynamo algorithm starts with first stretching a closed flux rope to twice
its length preserving its volume, as in an incompressible flow (A→B in Fig. 12.6).
The rope cross-section then decreases by factor two, and because of flux freezing
the magnetic field doubles. In the next step, the rope is twisted into a figure
eight (B→C in Fig. 12.6) and then folded (C→D in Fig. 12.6) so that now there
are two loops, whose fields now point in the same direction and together occupy
a similar volume as the original flux loop. The flux through this volume has
now doubled. The last important step consists of merging the two loops into
one (D→A in Fig. 12.6), through small diffusive effects. This is important in
order that the new arrangement cannot easily undo itself and the whole process
becomes irreversible. The newly merged loops now become topologically the
same as the original single loop, but now with the field strength scaled up by
factor 2.

Repeating the algorithm n times, leads to the field in the flux loop growing
by factor 2n, or at a growth rate ∼ ln 2/T where T is the time for the STF
steps. This makes the dynamo potentially a fast dynamo, whose growth rate
does not decrease with decreasing resistivity. Also note that the flux through
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a fixed ‘Eulerian surface’ grows exponentially, although the flux through any
Lagrangian surface is nearly frozen; as it should be for small diffusivities.

The STF picture illustrates several other features: first we see that shear is
needed to amplify the field at step A→B. However, without the twist part of
the cycle, the field in the folded loop would cancel rather than add coherently.
To twist the loop the motions need to leave the plane and go into the third
dimension; this also means that field components perpendicular to the loop are
generated, albeit being strong only temporarily during the twist part of the
cycle. The source for the magnetic energy is the kinetic energy involved in the
STF motions.

Most discussions of the STF dynamo assume implicitly that the last step of
merging the twisted loops can be done at any time, and that the dynamo growth
rate is not limited by this last step. This may well be true when the fields in the
flux rope are not strong enough to affect the motions, that is, in the kinematic
regime. However as the field becomes stronger, and if the merging process is
slow, the Lorentz forces due to the small scale kinks and twists will gain in
importance compared with the external forces associated with the driving of
the loop as a whole. This may then limit the efficiency of the dynamo.

In this context one more feature deserves mentioning: if in the STF cycle
one twists clockwise and folds, or twists counter-clockwise and folds one will
still increase the field in the flux rope coherently. However, one would introduce
opposite sense of writhe in these two cases, and so opposite internal twists. So,
although the twist part of the cycle is important for the mechanism discussed
here, the sense of twist can be random and does not require net helicity. This
is analogous to a case when there is really only a small scale dynamo, but
one that requires finite kinetic helicity density locally. We should point out,
however, that numerical simulations have shown that dynamos work and are
potentially independent of magnetic Reynolds number even if the flow has zero
kinetic helicity density everywhere.

If the twisted loops can be made to merge efficiently, the saturation of the
STF dynamo would probably proceed differently. For example, the field in the
loop may become too strong to be stretched and twisted, due to magnetic curva-
ture forces. Another interesting way of saturation is that the incompressibility
assumed for the motions may break down; as one stretches the flux loop the field
pressure resists the decrease in the loop cross-section, and so the fluid density
in the loop tends to decrease as one attempts to make the loop longer. (Note
that it is B/ρ which has to increase during stretching.) The STF picture has
inspired considerable work on various mathematical features of fast dynamos
and some of this work can be found in the book by Childress and Gilbert which
in fact has STF in its title!
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12.4 Fast ABC-flow dynamos

ABC flows are solenoidal and fully helical with a velocity field given by

U =

C sin kz +B cos ky
A sin kx+ C cos kz
B sin ky +A cos kx

 . (12.7)

When A, B, and C are all different from zero, the flow is no longer integrable
and has chaotic streamlines. There is numerical evidence that such flows act
as fast dynamos. The magnetic field has very small net magnetic helicity. This
is a general property of any dynamo in the kinematic regime and follows from
magnetic helicity conservation. Even in a nonlinear formulation of the ABC
flow dynamo problem, where the flow is driven by a forcing function similar to
equation (12.7) the net magnetic helicity remains unimportant. This is however
not surprising, because the development of net magnetic helicity requires suffi-
cient scale separation, i.e. the wavenumber of the flow must be large compared
with the smallest wavenumber in the box (k = k1). If this is not the case, helical
MHD turbulence behaves similarly to nonhelical turbulence. A significant scale
separation also weakens the symmetries associated with the flow and the field,
and leads to a larger kinematic growth rate, more compatible with the turnover
time scale.

Most of the recent work on nonlinear ABC flow dynamos has focused on the
case with small scale separation and, in particular, on the initial growth and
possible saturation mechanisms. In the kinematic regime, these authors find a
near balance between Lorentz work and Joule dissipation. The balance origi-
nates primarily from small volumes where the strong magnetic flux structures
are concentrated. The net growth of the magnetic energy comes about through
stretching and folding of relatively weak field which occupies most of the vol-
ume. The mechanism for saturation could involve achieving a local pressure
balance in these strong field regions.
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Solar cycle

In this section we discuss properties of magnetic fields observed in various as-
trophysical settings. We focus specifically on aspects that are believed to be
important for nonlinear dynamo theory and its connection with magnetic he-
licity. We begin with a discussion of the solar magnetic field, which consists
of small scale and large scale components. The typical length scale associ-
ated with the large scale field is the width of the toroidal flux belts with the
same polarity which is around 30◦ in latitude, corresponding to about 300 Mm
(1 Mm = 1000 km). The pressure scale height at the bottom of the convection
zone is about 50 Mm, and all scales shorter than that may be associated with
the small scale field.

The theory of the large scale component has been most puzzling, while the
small scale field could always be explained by turbulence and convection shred-
ding and concentrating the field into isolated flux bundles. The simultaneous
involvement of a so-called small scale dynamo may provide another source for
the small scale field, which needs to be addressed. We begin by outlining the
observational evidence for large scale fields in the sun and in stars, and discuss
then the evidence for magnetic fields in accretion discs and galaxies, as well as
galaxy clusters.

13.0.1 Solar and stellar magnetic fields

The sun has a magnetic field that manifests itself in sunspots through Zeeman
splitting of spectral lines. It has long been known that the sunspot number varies
cyclically with a period between 7 and 17 years. The longitudinally averaged
component of the radial magnetic field of the sun shows a markedly regular
spatio-temporal pattern where the radial magnetic field alternates in time over
the 11 year cycle and also changes sign across the equator (Fig. 13.1). One can
also see indications of a migration of the field from mid latitudes toward the
equator and the poles. This migration is also well seen in a sunspot diagram,
which is also called a butterfly diagram, because the pattern formed by the
positions of sunspots in time and latitude looks like a sequence of butterflies
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Figure 13.1: Longitudinally averaged radial component of the observed solar
magnetic field as a function of cos(colatitude) and time. Dark (blue) shades
denote negative values and light (yellow) shades denote positive values. Note
the sign changes both in time and across the equator (courtesy of R. Knaack).

lined up along the equator (Fig. 13.2).

At the solar surface the azimuthally averaged radial field is only a few gauss
(1 G = 10−4 Tesla). This is rather weak compared with the peak magnetic
field in sunspots of about 2 kG. In the bulk of the convection zone, because
of differential rotation, the magnetic field is believed to point mostly in the
azimuthal direction, and it is probably much larger near the bottom of the
convection zone due to an effect known as downward pumping.

Estimates of the field strength in the deeper convection zone

In the bulk of the solar convection zone the thermal energy transport is reason-
ably well described by mixing length theory. This theory yields a rough estimate
for the turbulent rms velocity which is around urms = 20 m s−1 near the bottom
of the solar convection zone. With a density of about ρ = 0.2 g cm−3 this cor-
responds to an equipartition field strength of about 3 kG. (The equipartition
field strength is here defined as Beq =

√
µ0ρ urms, where µ0 is the magnetic

permeability.)

A similar estimate is obtained by considering the total (unsigned) magnetic
flux that emerges at the surface during one cycle. This argument is dubious,
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Figure 13.2: Solar butterfly diagram showing the sunspot number in a space-
time diagram. Note the migration of sunspot activity from mid-latitudes toward
the equator (courtesy of D. N. Hathaway).

because one has to make an assumption about how many times the flux tubes in
the sun have emerged at the solar surface. Nevertheless, the notion of magnetic
flux (and especially unsigned flux) is rather popular in solar physics, because
this quantity is readily accessible from solar magnetograms. The total unsigned
magnetic flux is roughly estimated to be 1024 Mx. Distributed over a meridional
cross-section of about 500 Mm in the latitudinal direction and about 50 Mm in
radius (i.e. the lower quarter of the convection zone) yields a mean field of about
4 kG, which is in fair agreement with the equipartition estimate above.

Another type of estimate concerns not the mean field but rather the peak
magnetic field in the strong flux tubes. Such tubes are believed to be ‘stored’
either just below or at the bottom of the convection zone. By storage one means
that the field survives reasonably undisturbed for a good fraction of the solar
cycle and evolves mostly under the amplifying action of differential rotation.
Once such a flux tube becomes buoyant in one section of the tube it rises,
expands and becomes tilted relative to the azimuthal direction owing to the
Coriolis force. Calculations based on the thin flux tube approximation predict
field strengths of about 100 kG that are needed in order to produce the observed
tilt angle of bipolar sunspots near the surface.

The systematic variation of the global field of the sun is important to un-
derstand both for practical reasons, e.g. for space weather forecasts, and for
theoretical reasons because the solar field is a prime example of what we call
large scale dynamo action.

The 11 year cycle of the sun is commonly explained in terms of αΩ dynamo
theory (§ 14.5), but this theory faces a number of problems that will be discussed
later. Much of the resolution of these problems focuses around magnetic helicity.
This has become a very active research field in its own right. Here we discuss
the observational evidence.

Magnetic helicity of the solar field

Magnetic helicity studies have become an important observational tool to quan-
tify the complexity of the sun’s magnetic field. Examples of complex magnetic
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Figure 13.3: The famous “Grand daddy” prominence of 4 June 1946 (left) and
a big coronal mass eruption of 2 June 1998 from the LASCO coronograph on
board the SOHO satellite (right). Note the complexity of the ejected structures,
being suggestive of helical nature. Courtesy of the SOHO consortium. SOHO
is a project of international cooperation between ESA and NASA.

structures being ejected from the solar surface are shown in Fig. 13.3. The
significance of magnetic helicity for understanding the nonlinear dynamo has
only recently been appreciated. Here we briefly review some of the relevant
observational findings.

The only information about the magnetic helicity of the sun available to
date is from surface magnetic fields, and these data are necessarily incomplete.
Nevertheless, some systematic trends can be identified.

Vector magnetograms of active regions show negative (positive) current he-
licity in the northern (southern) hemisphere. From local measurements one
can only obtain the current helicity density, so nothing can be concluded about
magnetic helicity, which is a volume integral. Under the assumption of isotropy,
the spectra of magnetic and current helicity are however simply related by a
wavenumber squared factor. This implies that the signs of current and mag-
netic helicities agree if they are determined in a sufficiently narrow range of
length scales.

Berger and Ruzmaikin have estimated the flux of magnetic helicity from the
solar surface using magnetograms. They discussed the α effect and differential
rotation as the main agents facilitating the loss of magnetic helicity. Their
results indicate that the flux of magnetic helicity due to differential rotation
and the observed radial magnetic field component is negative (positive) in the
northern (southern) hemisphere, and of the order of about 1046 Mx2 integrated
over the 11 year cycle; see Fig. 13.4.

Chae estimated the magnetic helicity flux based on counting the crossings
of pairs of flux tubes. Combined with the assumption that two nearly aligned
flux tubes are nearly parallel, rather than anti-parallel, his results again sug-
gest that the magnetic helicity is negative (positive) in the northern (southern)
hemisphere. The same sign distribution was also found by DeVore who con-



113

Figure 13.4: Net magnetic flux through the solar surface at the northern hemi-
sphere (left hand panel) and magnetic helicity flux for northern and southern
hemispheres (right hand panel, lower and upper curves, respectively). Adapted
from Berger and Ruzmaikin.

Figure 13.5: X-ray image at 195 Å showing an N-shaped sigmoid (right-handed
writhe) of the active region NOAA AR 8668 at the northern hemisphere (1999
August 21 at 18:51 UT).

sidered magnetic helicity generation by differential rotation. He finds that the
magnetic helicity flux integrated over an 11 year cycle is about 1046 Mx2 both
from active regions and from coronal mass ejections. Thus, the sign agrees with
that of the current helicity obtained using vector magnetograms. This idea
of a bi-helical field is supported further by studies of sigmoids: an example is
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Fig. 13.5, which shows a TRACE image of an N-shaped sigmoid (right-handed
writhe) with left-handed twisted filaments of the active region NOAA AR 8668,
which is typical of the northern hemisphere. This observation is quite central
to our new understanding of nonlinear dynamo theory.
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Mean field dynamo theory

14.1 Solar and stellar magnetic fields

The sun has a magnetic field that manifests itself in sunspots through Zeeman
splitting of spectral lines. It has long been known that the sunspot number varies
cyclically with a period between 7 and 17 years. The longitudinally averaged
component of the radial magnetic field of the sun shows a markedly regular
spatio-temporal pattern where the radial magnetic field alternates in time over
the 11 year cycle and also changes sign across the equator (Fig. 13.1). One can
also see indications of a migration of the field from mid latitudes toward the
equator and the poles. This migration is also well seen in a sunspot diagram,
which is also called a butterfly diagram, because the pattern formed by the
positions of sunspots in time and latitude looks like a sequence of butterflies
lined up along the equator (Fig. 13.2).

At the solar surface the azimuthally averaged radial field is only a few gauss
(1 G = 10−4 Tesla). This is rather weak compared with the peak magnetic field
in sunspots of about 2 kG; see Fig. 13.1. In the bulk of the convection zone,
because of differential rotation, the magnetic field is believed to point mostly in
the azimuthal direction, and it is probably much larger near the bottom of the
convection zone due to an effect known as downward pumping.

14.2 Phenomenological considerations

Important insights into the operation of the solar dynamo have come from close
inspection of magnetic fields on the solar surface. One important ingredient is
differential rotation. At the equator the sun is rotating about 30% faster than
at the poles. This means that any poloidal field will be sheared out and toroidal
field aligned with the direction of the shear will be generated. Mathematically,
this is described by the stretching term in the induction equation, i.e.

dBtor

dt
= Bpol ·∇Utor + ... . (14.1)
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This term describes the generation of magnetic field Btor in the direction of
the flow Utor from a cross-stream poloidal magnetic field Bpol. To an order of
magnitude, the amount of toroidal field generation from a 100 G poloidal field
in a time interval ∆t = 108 s = 3 yr is

∆Btor = Bpol ∆Ω�∆t ≈ 100 G× 10−6 × 108 = 104 G, (14.2)

where we have used Ω� = 3 × 10−6 s−1 for the solar angular velocity, and
∆Ω�/Ω� = 0.3 for the relative latitudinal differential rotation. So, a 10 kG
toroidal field can be regenerated completely from a 100 G poloidal field in about
3 years. However, in the bulk and the upper parts of the solar convection
zone the poloidal fields are weaker (3-10 G), which would yield toroidal fields
on the order of 300-1000 G. This would be far too weak a field if it was to rise
coherently all the way from the bottom of the convection zone, which is still the
standard picture. However, if the field of bipolar regions is produced locally in
the upper parts of the convection zone, as recently supposed a 300 G field might
well be sufficient. The 2 kG fields in sunspots could then be the result of local
compression by an ambient flow.

Further, magnetic flux frequently emerges at the solar surface as bipolar re-
gions. The magnetic field in sunspots is also often of bipolar nature. It was long
recognized that such bipolar regions are tilted. This is now generally referred to
as Joy’s law. The sense of average tilt is clockwise in the northern hemisphere
and counter-clockwise in the southern. This tilt is consistent with the interpre-
tation that a toroidal flux tube rises from deeper layers of the sun to upper layers
where the density is less, so the tube evolves in an expanding flow field which,
due to the Coriolis force, attains a clockwise swirl in the northern hemisphere
and counter-clockwise swirl in the southern hemisphere; see Fig. 14.1.

Observations suggest that once a tilted bipolar region has emerged at the
solar surface, the field polarities nearer to the poles drift rapidly toward the
poles, producing thereby new poloidal field. Underneath the surface, the field
continues as before, but there it is also slightly tilted, although necessarily in the
opposite sense (see Fig. 14.2). Because of differential rotation, the points nearest
to the equator move faster, helping so to line up similarly oriented fields. As is
evident from Fig. 14.2, a toroidal field pointing east in the northern hemisphere
and west in the southern will develop into a global northward pointing field
above the surface.

14.3 Mean-field electrodynamics

In 1955 Parker first proposed the idea that the generation of a poloidal field,
arising from the systematic effects of the Coriolis force (Fig. 14.3), could be
described by a corresponding term in the induction equation,

∂Bpol

∂t
= ∇×

(
αBtor + ...

)
. (14.3)
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Figure 14.1: Solar magnetogram showing bipolar regions, their opposite orien-
tation north and south of the equator, and the clockwise tilt in the northern
hemisphere and the counter-clockwise tilt in the southern hemisphere. Note
that the field orientation has reversed orientation at the next cycle (here after
10 years). Courtesy of the High Altitude Observatory.

It is clear that such an equation can only be valid for averaged fields (denoted by
overbars), because for the actual fields, the induced electromotive force (EMF)
U ×B, would never have a component in the direction of B. While being phys-
ically plausible, this approach only received general recognition and acceptance
after Roberts and Stix (1972) translated the work of Steenbeck, Krause, Rädler
(1966) into English. In those papers the theory for the α effect, as they called
it, was developed and put on a mathematically rigorous basis. Furthermore, the
α effect was also applied to spherical models of the solar cycle (with radial and
latitudinal shear) and the geodynamo (with uniform rotation).

In mean field theory one solves the Reynolds averaged equations, using either
ensemble averages, toroidal averages or, in cases in cartesian geometry with
periodic boundary conditions, two-dimensional (e.g. horizontal) averages. We
thus consider the decomposition

U = U + u, B = B + b. (14.4)

Here U and B are the mean velocity and magnetic fields, while u and b are
their fluctuating parts. These averages satisfy the Reynolds rules,

U1 +U2 = U1 +U2, U = U , Uu = 0, U U = U U , (14.5)
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Figure 14.2: Sketch of the Babcock-Leighton dynamo mechanism. As bipolar
regions emerge near the surface, they get tilted in the clockwise sense in the
northern hemisphere and counter-clockwise in the southern hemisphere. Be-
neath the surface this process leaves behind a poloidal field component that
points here toward the north pole on either side of the equator. Once the
remaining subsurface field gets sheared by the surface differential rotation, it
points in the opposite direction as before, and the whole process starts again.

Figure 14.3: Production of positive writhe helicity by an uprising and expand-
ing blob tilted in the clockwise direction by the Coriolis force in the southern
hemisphere, producing a field-aligned current J in the opposite direction to B.

∂U/∂t = ∂U/∂t, ∂U/∂xi = ∂U/∂xi. (14.6)

Some of these properties are not shared by several other averages; for gaussian

filtering U 6= U , and for spectral filtering U U 6= U U , for example. Note that

U = U implies that u = 0.

In the remainder we assume that the Reynolds rules do apply. Averaging
equation (10.13) yields then the mean field induction equation,
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∂B

∂t
= ∇×

(
U ×B + E − ηJ

)
, (14.7)

where
E = u× b (14.8)

is the mean EMF. Finding an expression for the correlator E in terms of the
mean fields is a standard closure problem which is at the heart of mean field
theory. In the two-scale approach one assumes that E can be expanded in powers
of the gradients of the mean magnetic field. This suggests the rather general
expression

Ei = αij(g, Ω̂,B, ...)Bj + ηijk(g, Ω̂,B, ...)∂Bj/∂xk, (14.9)

where the tensor components αij and ηijk are referred to as turbulent trans-
port coefficient. They depend on the stratification, angular velocity, and mean
magnetic field strength. The dots indicate that the transport coefficients may
also depend on correlators involving the small scale magnetic field, for example
the current helicity of the small scale field. We have also kept only the lowest
large scale derivative of the mean field; higher derivative terms are expected to
be smaller.

The general form of the expression for E can be determined by rather general
considerations. For example, E is a polar vector and B is an axial vector, so αij
must be a pseudo-tensor. The simplest pseudo-tensor of rank two that can be
constructed using the unit vectors g (symbolic for radial density or turbulent

velocity gradients) and Ω̂ (angular velocity) is

αij = α1δij g · Ω̂ + α2ĝiΩ̂j + α3ĝjΩ̂i. (14.10)

Note that the term g · Ω̂ = cos θ leads to the co-sinusoidal dependence of α
on latitude, θ, and a change of sign at the equator. Additional terms that are
nonlinear in g or Ω̂ enter if the stratification is strong or if the body is rotating
rapidly. Likewise, terms involving U , B and b may appear if the turbulence
becomes affected by strong flows or magnetic fields. In the following section we
discuss various approaches to determining the turbulent transport coefficients.

One of the most important outcomes of this theory is a quantitative formula
for the coefficient α1 in equation (14.10) by Krause (1967)

α1 g · Ω̂ = − 16
15τ

2
coru

2
rmsΩ ·∇ ln(ρurms), (14.11)

where τcor is the correlation time, urms the root mean square velocity of the
turbulence, and Ω the angular velocity vector. The other coefficients are given
by α2 = α3 = −α1/4. Throughout most of the solar convection zone, the
product ρurms decreases outward.1 Therefore, α > 0 throughout most of the

1This can be explained as follows: in the bulk of the solar convection zone the convective
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northern hemisphere. In the southern hemisphere we have α < 0, and α varies
with colatitude θ like cos θ. However, this formula also predicts that α reverses
sign very near the bottom of the convection zone where urms → 0. This is
caused by the relatively sharp drop of urms.

14.4 Turbulent transport coefficients

Various techniques have been proposed for determining turbulent transport co-
efficients. Even in the kinematic regime, where the changes in the velocity field
due to Lorentz forces are ignored, these techniques have some severe uncertain-
ties. Nevertheless, the various techniques produce similar terms, although the
so-called minimal τ approximation (MTA) does actually predict an extra time
derivative of the electromotive force. We only mention here that in MTA the
triple correlations are not neglected, as they are in FOSA; see § 14.4.1. Instead,
the triple correlations are approximated by quadratic terms. This is similar in
spirit to the usual τ approximation used in the Eddy Damped Quasi-Normal
Markovian (EDQNM) closure approximation. where the irreducible part of
quartic correlations are approximated by a relaxation term proportional to the
triple correlations. Other approaches include direct simulations, calculations
based on random waves or individual blobs, or calculations based on the as-
sumption of delta-correlated velocity fields.

14.4.1 First order smoothing approximation

The first order smoothing approximation (FOSA) or, synonymously, the quasi-
linear approximation, or the second order correlation approximation is the sim-
plest way of calculating turbulent transport coefficients. The approximation
consists of linearizing the equations for the fluctuating quantities and ignoring
quadratic terms that would lead to triple correlations in the expressions for the
quadratic correlations. This technique has traditionally been applied to calcu-
lating the turbulent diffusion coefficient for a passive scalar or the turbulent
viscosity (eddy viscosity).

Suppose we consider the induction equation. The equation for the fluctuat-
ing field can be obtained by subtracting equation (14.7) from equation (10.13),
so

∂b

∂t
= ∇×

(
U × b+ u×B + u× b− E − ηj

)
, (14.12)

where j = ∇ × b ≡ J − J is the fluctuating current density. The first order
smoothing approximation consists of neglecting the term u × b on the RHS of
equation (14.12), because it is nonlinear in the fluctuations. This can only be
done if the fluctuations are small, which is a good approximation only under

flux is approximately constant, and mixing length predicts that it is approximately ρu3rms.
This in turn follows from Fconv ∼ ρurmscpδT and u2rms/Hp ∼ gδT/T together with the
expression for the pressure scale height Hp = (1 − 1

γ
)cpT/g. Thus, since ρu3rms ≈ const, we

have urms ∼ ρ−1/3 and ρu3rms ∼ ρ2/3.
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rather restrictive circumstances, for example if Rm is small. The term E is
also nonlinear in the fluctuations, but it is not a fluctuating quantity and gives
therefore no contribution, and the U×b is often neglected because of simplicity.
The neglect of the U term may not be justified for systems with strong shear
(e.g. for accretion discs) where the inclusion of U itself could lead to a new
dynamo effect, namely the shear–current effect. In the case of small Rm, one
can neglect both the G term and the time derivative of b, resulting in a linear
equation

η∇2b = −∇×
(
u×B

)
. (14.13)

This can be solved for b, if u is given. E can then be computed relatively easily.
However, in most astrophysical applications, Rm � 1. In such a situation,

FOSA is thought to still be applicable if the correlation time τcor of the turbu-
lence is small, such that τcorurmskf � 1, where urms and kf are typical velocity
and correlation wavenumber, associated with the random velocity field u. Un-
der this condition, the ratio of the nonlinear term to the time derivative of b is
argued to be ∼ (urmskfb)/(b/τcor) = τcorurmskf � 1, and so G can be neglected
(but see below). We then get

∂b

∂t
= ∇×

(
u×B

)
. (14.14)

To calculate E , we integrate ∂b/∂t to get b, take the cross product with u, and
average, i.e.

E = u(t)×
∫ t

0

∇×
[
u(t′)×B(t′)

]
dt′. (14.15)

For clarity, we have suppressed the common x dependence of all variables. Using
index notation, we have2

E i(t) =

∫ t

0

[
α̂ip(t, t

′)Bp(t
′) + η̂ilp(t, t

′)Bp,l(t
′)
]

dt′, (14.16)

with α̂ip(t, t
′) = εijkuj(t)uk,p(t′) and η̂ilp(t, t

′) = −εijpuj(t)ul(t′), where we have

used Bl,l = 0 = ul,l, and an additional term εijkuj(t)uk(t′)δlp in η̂ilp(t, t
′) has

been omitted, because it will soon drop out. In the statistically steady state, we
can assume that α̂ip and η̂ilp depend only on the time difference, t−t′. Assuming
isotropy (again only for simplicity), these tensors must be proportional to the
isotropic tensors δip and εilp, respectively, so we have

E(t) =

∫ t

0

[
α̂(t− t′)B(t′)− η̂t(t− t′)J(t′)

]
dt′, (14.17)

2 Note that [u ×∇ × (u ×B)]i = εijkεklmεmnpuj∂l(unBp) = α̂ipBp + η̂ilpBp,l, where
commas denote partial differentiation and time arguments in α̂ip = α̂ip(t, t′), η̂ilp = η̂ilp(t, t′),

and Bp = Bp(t′) has been omitted. Contracting εklmεmnp = δknδlp − δkpδln gives α̂ip =

εijk(ujuk,p − ujul,lδkp, and η̂ilp = εijk(ujukδlp − ujulδkp).
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where α̂(t−t′) = − 1
3u(t) · ω(t′) and η̂t(t−t′) = 1

3u(t) · u(t′) are integral kernels,
and ω = ∇×u is the vorticity of the velocity fluctuation (see the footnote3 for
details).

If we assume the integral kernels to be proportional to the delta function,
δ(t − t′), or, equivalently, if B can be considered a slowly varying function of
time, one arrives at

E = αB − ηtJ (14.18)

with

α = − 1
3

∫ t

0

u(t) · ω(t′) dt′ ≈ − 1
3τcoru · ω, (14.19)

ηt = 1
3

∫ t

0

u(t) · u(t′) dt′ ≈ 1
3τcoru2. (14.20)

When t becomes large, the main contribution to these two expressions comes
only from late times, t− t′ � t, because then the contributions from early times
are no longer strongly correlated with u(t). By using FOSA we have thus solved
the problem of expressing E in terms of the mean field. The turbulent transport
coefficients α and ηt depend, respectively, on the helicity and the energy density
of the turbulence.

One must however point out the following caveat to the applicability of
FOSA in case of large Rm. Firstly note that even if τcorurmskf � 1, one can have
Rm = (τcorurmskf)/(ητcork

2
f )� 1, because the diffusion time (ητcork

2
f )−1 can be

much larger than the correlation time of the turbulence. When Rm > Rcrit ∼ 30,
small scale dynamo action will take place to produce exponentially growing
fluctuating fields, independent of the mean field. So the basic assumption of
FOSA of small b relative to B will be rapidly violated and the u × b term in
equation (14.12) cannot be neglected. Nevertheless, the functional form of the
expressions for the turbulent transport coefficients obtained using FOSA seem
to be not too different from that found in simulations. For example, it is likely
that strong fluctuations produced by small scale dynamo action do not correlate
well with u in u× b, so they would not contribute to E . This interpretation will
be developed further in § 14.4.2 on the τ approximation, which works specifically
only with those parts that do correlate.

14.4.2 MTA – the ‘minimal’ τ approximation

The ‘minimal’ τ approximation is a simplified version of the τ approximation as
it has been introduced by Orszag (1970) and used by Pouquet, Frisch and Léorat
(1976) in the context of the Eddy Damped Quasi Normal Markovian (EDQNM)
approximation. In that case a damping term is introduced in order to express
fourth order moments in terms of third order moments. In the τ approximation,

3 Note that under isotropy we have α̂ip = α̂δip and η̂ilp = η̂tεilp. Multiplying these
equations by δip and εilp, respectively, and noting that δipδip = 3 and εilpεilp = 6 we have

α̂ = 1
3
α̂ipδip = 1

3
ujεjkiuk,i = − 1

3
u · ω, and η̂t = 1

6
η̂ilpεilp = − 1

6
εijpujulεilp = − 1

3
u2, where

we have used εijpεilp = 2δjl, and the t and t′ arguments have been omitted.
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as introduced by Vainshtein and Kitchatinov and Kleeorin and Rogachevskii one
approximates triple moments in terms of quadratic moments via a wavenumber-
dependent relaxation time τ(k). The ‘minimal’ τ approximation (MTA), as it
is introduced by Blackman and Field is applied in real space in the two-scale
approximation. We will refer to both the above types of closures (where triple
moments are approximated in terms of quadratic moments and a relaxation
time τ) as the ’minimal’ τ approximation or MTA.

There are some technical similarities between FOSA and the minimal τ
approximation. The main advantage of the τ approximation is that the fluc-
tuations do not need to be small and so the triple correlations are no longer
neglected. Instead, it is assumed (and this can be and has been tested us-
ing simulations) that the one-point triple correlations are proportional to the
quadratic correlations, and that the proportionality coefficient is an inverse re-
laxation time that can in principle be scale (or wavenumber) dependent.

In this approach, one begins by considering the time derivative of E ,

∂E
∂t

= u× ḃ+ u̇× b, (14.21)

where a dot denotes a time derivative. For ḃ, we substitute equation (14.12)
and for u̇, we use the Euler equation for the fluctuating velocity field,

∂u

∂t
= − 1

ρ0
∇p+ f + Fvis +H, (14.22)

where H = −u ·∇u + u ·∇u is the nonlinear term, f is a stochastic forcing
term (with zero divergence), and Fvis is the viscous force. We have also assumed
for the present that there is no mean flow (U = 0), and have considered the
kinematic regime where the Lorentz force is set to zero. All these restrictions can
in principle be lifted (see below). For an incompressible flow, the pressure term
can be eliminated in the standard fashion in terms of the projection operator.
Now since f does not correlate with b, the only contribution to u̇× b, is the

small viscous term and the triple correlation involving b and H. The u× ḃ
term however has non-trivial contributions. We get

∂E
∂t

= α̃B − η̃t J −
E
τ
, (14.23)

where the last term subsumes the effects of all triple correlations, and

α̃ = − 1
3u · ω and η̃t = 1

3u
2 (kinematic theory) (14.24)

are coefficients that are closely related to the usual α and ηt coefficients in
equation (14.18). We recall that in this kinematic calculation the Lorentz force,
and in fact the entire u̇ equation in equation (14.21) has been ignored. Its
inclusion turns out to be extremely important: it leads to the emergence of a
small scale magnetic correction term in the expression for α̃.
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Figure 14.4: Mutual regeneration of poloidal and toroidal fields in the case of
the αΩ dynamo (left) and the α2 dynamo (right).

One normally neglects the explicit time derivative of E , and arrives then
at almost the same expression as equation (14.18), except that now one deals
directly with one-point correlation functions and not only via an approximation.
Furthermore, the explicit time derivative can in principle be kept, although it
becomes unimportant on time scales long compared with τ . In comparison
with equation (14.17), we note that if one assumes α̂(t − t′) and η̂t(t − t′) to
be proportional to exp[−(t− t′)/τ ] for t > t′ (and zero otherwise), one recovers
equation (14.23) with the relaxation time τ playing now the role of a correlation
time.

14.5 α2 and αΩ dynamos: simple solutions

For astrophysical purposes one is usually interested in solutions in spherical or
oblate (disc-like) geometries. However, in order to make contact with turbu-
lence simulations in a periodic box, solutions in simpler cartesian geometry can
be useful. Cartesian geometry is also useful for illustrative purposes. In this
subsection we review some simple cases.

Mean field dynamos are traditionally divided into two groups; αΩ and α2 dy-
namos. The Ω effect refers to the amplification of the toroidal field by shear (i.e.
differential rotation) and its importance for the sun was recognized very early
on. Such shear also naturally occurs in disk galaxies, since they are differentially
rotating systems. However, it is still necessary to regenerate the poloidal field.
In both stars and galaxies the α effect is the prime candidate. This explains
the name αΩ dynamo; see the left hand panel of Fig. 14.4. However, large scale
magnetic fields can also be generated by the α effect alone, so now also the
toroidal field has to be generated by the α effect, in which case one talks about
an α2 dynamo; see the right hand panel of Fig. 14.4. (The term α2Ω model is
discussed at the end of § 14.5.2.)

14.5.1 α2 dynamo in a periodic box

We assume that there is no mean flow, i.e. U = 0, and that the turbulence is
homogeneous, so that α and ηt are constant. The mean field induction equation
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Figure 14.5: Dispersion relation for α2 dynamo, where kcrit = α/ηT.

then reads
∂B

∂t
= α∇×B + ηT∇2B, ∇ ·B = 0, (14.25)

where ηT = η+ ηt is the sum of microscopic and turbulent magnetic diffusivity.
We can seek solutions of the form

B(x) = Re
[
B̂(k) exp(ik · x+ λt)

]
. (14.26)

This leads to the eigenvalue problem λB̂ = αik × B̂ − ηTk
2B̂, which can be

written in matrix form as

λB̂ =

−ηTk
2 −iαkz iαky

iαkz −ηTk
2 −iαkx

−iαky iαkx −ηTk
2

 B̂. (14.27)

This leads to the dispersion relation, λ = λ(k), given by

(λ+ ηTk
2)
[
(λ+ ηTk

2)2 − α2k2
]

= 0, (14.28)

with the three solutions

λ0 = −ηTk
2, λ± = −ηTk

2 ± |αk|. (14.29)

The eigenfunction corresponding to the eigenvalue λ0 = −ηTk
2 is proportional

to k, but this solution is incompatible with solenoidality and has to be dropped.
The two remaining branches are shown in Fig. 14.5.

Unstable solutions (λ > 0) are possible for 0 < αk < ηTk
2. For α > 0 this

corresponds to the range

0 < k < α/ηT ≡ kcrit. (14.30)

For α < 0, unstable solutions are obtained for kcrit < k < 0. The maximum
growth rate is at k = 1

2kcrit. Such solutions are of some interest, because they
have been seen as an additional hump in the magnetic energy spectra from fully
three-dimensional turbulence simulations.
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14.5.2 αΩ dynamo in a periodic box

Next we consider the case with linear shear, and assume U = (0, Sx, 0), where
S = const. This model can be applied as a local model to both accretion discs
(x is radius, y is longitude, and z is the height above the midplane) and to stars
(x is latitude, y is longitude, and z is radius). For keplerian discs, the shear is
S = − 3

2Ω, while for the sun (taking here only radial differential rotation into
account) S = r∂Ω/∂r ≈ +0.1Ω� near the equator.

For simplicity we consider axisymmetric solutions, i.e. ky = 0. The eigen-
value problem takes then the form

λB̂ =

 −ηTk
2 −iαkz 0

iαkz + S −ηTk
2 −iαkx

0 iαkx −ηTk
2

 B̂, (14.31)

where ηT = η + ηt and k2 = k2
x + k2

z . The dispersion relation is now

(λ+ ηTk
2)
[
(λ+ ηTk

2)2 + iαSkz − α2k2
]

= 0, (14.32)

with the solutions

λ± = −ηTk
2 ± (α2k2 − iαSkz)

1/2. (14.33)

Again, the eigenfunction corresponding to the eigenvalue λ0 = −ηTk
2 is not

compatible with solenoidality and has to be dropped. The two remaining
branches are shown in Fig. 14.6, together with the approximate solutions (valid
for αkz/S � 1)

Reλ± ≈ −ηTk
2 ± | 12αSkz|

1/2, (14.34)

Imλ± ≡ −ωcyc ≈ ±| 12αSkz|
1/2, (14.35)

where we have made use of the fact that i1/2 = (1 + i)/
√

2.
Sometimes the term α2Ω dynamo is used to emphasize that the α effect is

not neglected in the generation of the toroidal field. This approximation, which
is sometimes also referred to as the αΩ approximation, is generally quite good
provided αkz/S � 1. However, it is important to realize that this approxima-
tion can only be applied to axisymmetric solutions.

14.5.3 Eigenfunctions, wave speed, and phase relations

We now make the αΩ approximation and consider the marginally excited solu-
tion (Reλ = 0), which can be written as

Bx = B0 sin kz(z − ct), By =
√

2B0

∣∣∣ c
α

∣∣∣ sin[kz(z − ct) + ϕ], (14.36)

where B0 is the amplitude (undetermined in linear theory), and c = ωcyc/kz is
the phase speed of the dynamo wave, which is given by

c =
αS

|2αSkz|1/2
= ±ηTkz, (14.37)
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Figure 14.6: Dispersion relation for α2Ω dynamo with αkcrit/S = 0.35.
The dotted line gives the result for the αΩ approximation equations (14.34)
and (14.35). The axes are normalized using kcrit for the full α2Ω dynamo equa-
tions.

Table 14.1: Summary of propagation directions and phase relation for αΩ
dynamos.

object α S ϕ c wave propagation |ωcyc|∆t
disc − − −3π/4 + away from midplane −3π/4
disc/star? + − +3π/4 − equatorward −3π/4
star? − + −π/4 − equatorward +π/4
star + + +π/4 + poleward +π/4

where the upper (lower) sign applies when αS is positive (negative). The sign
of c gives the direction of propagation of the dynamo wave; see Table 14.1 for a
summary of the propagation directions in different settings.

An important property of the αΩ dynamo solutions that can be read off
from the plane wave solutions is the phase shift of ± 3

4π (for S < 0) and ±π/4
(for S > 0) between the poloidal and toroidal fields. It is customary to quote
instead the normalized time delay |ωcyc|∆t = ϕ sgn(c), by which the toroidal
field lags behind the radial field. These values are given in the last column of
Table 14.1. Note that the temporal phase shift only depends on the sign of the
shear S and not on α.
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Chapter 15

Differential rotation

It became clear from the discussion in § 14 that differential rotation plays an
important role in producing a large scale magnetic field in the Sun. It may
also be important for the dynamo in disposing of its excess small scale current
helicity, as discussed in the previous section. In this section we discuss the
theoretical basis for explaining the origin and properties of solar and stellar
differential rotation.

15.1 Mean field theory of differential rotation

The origin of differential rotation has long been understood to be a consequence
of the anisotropy of convection. It has long been clear that the vertical exchange
of momentum by convection should lead to a tendency toward constant angular
momentum in the radial direction, i.e. Ω$2 = const, and hence the mean an-
gular velocity scales with radius like Ω(r) ∼ r−2. Here, $ = r sin θ denotes the
cylindrical radius (i.e. the distance from the rotation axis).

The rφ component of the viscous stress tensor contributes to the angular
momentum equation,

∂

∂t

(
ρ$2Ω

)
+ ∇ ·

[
ρ$
(
U Uφ + uuφ

)]
= 0, (15.1)

where uiuj = Qij are the components of the Reynolds tensor. In spherical
coordinates the full mean velocity vector is written as U = (U$, $Ω, Uz).

The early treatment in terms of an anisotropic viscosity tensor was purely
phenomenological. A rigorous calculation of the Reynolds stresses shows that
the mean Reynolds stress tensor is described not only by diffusive components
that are proportional to the components of the rate of strain tensor of the mean
flow, but that there are also non-diffusive components that are directly propor-
tional to the local angular velocity. In particular the rφ and θφ components of
the Reynolds tensor are of interest for driving r and θ gradients of Uφ ≡ $Ω.
Thus, for ordinary isotropic turbulent viscosity one has, using Cartesian index
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notation,
Qij = −νt

(
U i,j + U j,i

)
− ζtδijUk,k, (15.2)

where ζt is a turbulent bulk viscosity, and commas denote partial differentiation.
This expression implies in particular that

Qθφ = −νt sin θ
∂Ω

∂θ
. (15.3)

Note that for the Sun, where ∂Ω/∂θ > 0 in the northern hemisphere, this for-
mula would predict that Qθφ is negative in the northern hemisphere. However,
it was noted long ago from correlation measurements of sunspot proper motions
that Qθφ is in fact positive in the northern hemisphere. The observed profile of
Qθφ is also known as the Ward profile. The observed positive sign was used to
motivate that there must be an additional term in the expression for Qij . Using
a closure approach, such as the first order smoothing approximation that is of-
ten used to calculate the α effect in dynamo theory, one can find the coefficients
in the expansion

Qij = ΛijkΩk −NijklUk,l, (15.4)

where Λijk describes the so-called Λ effect and Nijkl is the turbulent viscos-
ity tensor. The viscosity tensor Nijkl must in general be anisotropic. When
anisotropies are included, Nijkl gets modified (but it retains its overall diffusive
properties), and Λijk takes the form

ΛijkΩk =

 0 0 V sin θ
0 0 H cos θ

V sin θ H cos θ 0

Ω, (15.5)

where V and H are still functions of radius, latitude, and time; V is thought to
be responsible for driving vertical differential rotation (∂Ω/∂r 6= 0) while H is
responsible for latitudinal differential rotation (∂Ω/∂θ 6= 0).

The first order smoothing approximation predicts the following useful ap-
proximations for V and H:

V ≈ τ
(
u2
φ − u2

r

)
, (15.6)

H ≈ τ
(
u2
φ − u2

θ

)
. (15.7)

These expressions show that when the rms velocity in the radial direction is
larger than in the azimuthal direction we must expect V < 0 and hence ∂Ω/∂r <
0. In the Sun, this effect is responsible for the negative radial shear near the
surface where strong downdrafts may be responsible for a comparatively large
value of u2

r. Likewise, when the rms velocity in the latitudinal direction is larger
than in the azimuthal direction we expect H < 0 and hence ∂Ω/∂θ < 0, so the
equator would spin slower than the poles. This does not apply to the Sun, but
it may be the case in some stars, especially when the flows are dominated by
large scale meridional circulation.
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15.2 The Λ effect from turbulence simulations

Several of the relationships described above have been tested using convection
simulations, both in local Cartesian boxes located at different latitudes as well
as in global spherical shells. Generally, the various simulations agree in that the
sign of the horizontal Reynolds stress is positive in the northern hemisphere and
negative in the southern, reproducing thus the Ward profile. The simulations
also show that the off-diagonal components of the turbulent heat transport ten-
sor are mostly positive in the northern hemisphere, and negative in the southern
hemisphere. This agrees with the sign required if the baroclinic term is to pro-
duce a tendency toward spoke-like angular velocity contours. Simulations also
reproduce the sudden drop of angular velocity at the top of the convection zone.
This agrees with a predominantly negative sign of the vertical Reynolds stress
at a similar depth. Furthermore, some of the more recent simulations show
an unexpectedly sharp increase of the horizontal Reynolds stress just near the
equator (at around ±5◦ latitude), before changing sign right at the equator.
The significance of this result for the solar differential rotation pattern is still
unclear.

15.3 Meridional flow and the baroclinic term

According to the formalism described in the previous section, a finite differen-
tial rotation can be obtained by ignoring meridional flows and solving equa-
tion (15.1) in isolation. However, this would only be a poor approximation that
becomes quickly invalid when the angular velocity becomes large compared with
the turbulent viscous decay rate. This is quantified by the Taylor number

Ta =
(
2Ω0R

2/νt

)2
. (15.8)

Using the first order smoothing expression from Rüdiger (1989), νt = (2/15) τu2
rms,

we have for values typical for the Sun (see Table 8.2), i.e. νt ≈ 1012cm2/s,
Ta ≈ 109. This value of Ta is rather large so that nonlinearities produce strong
deviations from linear theory.

As the value of Ta is increased, the Coriolis force increases, which then drives
a meridional flow. This meridional flow first increases with increasing values of
Ta, but then it reaches a maximum at Ta ≈ 3 × 105, and later declines with
increasing values of Ta. (The solar value is Ta ≈ 3×107.) This decline is because
eventually the Coriolis force can no longer be balanced against advection or
diffusion terms. This can best be seen by considering the curl of the momentum
equation,

∂Wφ

∂t
+$U ·∇

(
Wφ

$

)
− νtD

2Wφ = $
∂Ω

2

∂z
+ φ̂ ·∇T ×∇S. (15.9)

We recall that we consider here a nonrotating frame of reference, so there is no
Coriolis force. Nevertheless, part of the inertial term takes a form that is quite
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Figure 15.1: Contours of constant Ω for different values of Taylor number
(upper panel) and different values of the inverse Rossby number, affecting the
relative importance of H over V (lower panel). [Adapted from Brandenburg et
al. (1990).]

similar to the Coriolis term, but here Ω is a function of position, while in the
Coriolis term the angular velocity would normally be a constant.

In the barotropic case one has ∇T ‖∇S so there is no baroclinic term, i.e.

φ̂ · (∇T ×∇S) = 0. So, if viscous and inertial terms are small, which is indeed

the case for rapid rotation, then ∂Ω
2
/∂z has to vanish, so Ω would be constant

along cylinders; see Fig. 15.1. It is generally believed that the main reason for
Ω not having cylindrical contours in the Sun is connected with the presence of
the baroclinic term. The presence of magnetic forces may also play a role, but
unlike the baroclinic term, magnetic forces tend to produce a rather variable Ω
patterns, often connected with rapid motions near the poles where the inertia
is lower.

Currently the highest resolution simulations of global convection in spherical
shells are those by Miesch et al. (2000). These simulations show a great amount
of detail and reproduce some basic features of the Sun’s differential rotation
such as the more rapidly spinning equator. However, in low latitudes they show
strongly cylindrical Ω contours that deviate markedly from the more spoke-like
contours inferred for the Sun using helioseismology. These simulations also do
not show the near-surface shear layer where the rotation rate drops by over
20 nHz over the last 30 Mm below the surface.

Mean field simulations using the Λ effect show surprisingly good agreement
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Figure 15.2: Contours of angular velocity (left) and turbulent convective energy
flux (right) for a model with anisotropic heat transfer tensor. [Adapted from
Brandenburg et al. (1992).]

with the helioseismologically inferred Ω pattern, and they are also beginning
to address the problem of the near-surface shear layer. In these simulations
it is indeed the baroclinic term that is responsible for causing the departure
from cylindrical contours. This, in turn, is caused by an anisotropy of the
turbulent heat conductivity which causes a slight enhancement in temperature
and entropy at the poles. In the bulk of the convection zone the entropy is
nearly constant, so the radial entropy variation is smallest compared with the
radial temperature variation. It is therefore primarily the latitudinal entropy
variation that determines the baroclinic term, with

$
∂Ω

2

∂z
≈ −φ̂ ·∇T ×∇S ≈ −1

r

∂T

∂r

∂S

∂θ
< 0. (15.10)

The inequality shows that negative values of ∂Ω
2
/∂z require that the pole is

slightly warmer than the equator (∂S/∂θ < 0). However, this effect is so weak
that it cannot at present be observed. Allowing for these conditions in a sim-
ulation may require particular care in the treatment of the outer boundary
conditions. In Fig. 15.2 we show the plots of angular velocity contours and
convective energy transport in a model with anisotropic turbulent conductivity
tensor, χij . Given that the flux, F , is proportional to −χij∇jS, a negative
∂S/∂θ can be produced from a positive Fr with a positive value of χrθ.

In the discussion above we ignored in the last step a possible correlation
between entropy and temperature fluctuations, i.e. a contribution from the term
∇T ′ ×∇S′ where primes denote fluctuations. Such correlations, if of suitable

sign, might provide yet a further explanation for a non-zero value of ∂Ω
2
/∂z.
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Figure 15.3: Radial profiles of the internal solar rotation rate, as inferred from
helioseismology (sidereal, i.e. in a fixed frame). The rotation rate of active
zones at the beginning of the cycle (at ≈ 30◦ latitude) and near the end (at
≈ 4◦) is indicated by horizontal bars, which intersect the profiles of rotation
rate at r/R� ≈ 0.97. For orientation, the conventionally defined Carrington
rotation period of 27.3 days (synodic value, corresponding to 424 nHz) has been
translated to the sidereal value of 456 nHz. Courtesy of Benevolenskaya et al.
(1999).

15.4 Near-surface shear layer

The first results of helioseismology indicated significantly higher angular veloc-
ities in the sub-surface than what is seen at the surface using Doppler mea-
surements. This apparent conflict is now resolved in that helioseismological
inversions of the data from the SOHO spacecraft show a sharp negative gradi-
ent, connecting the observed surface values smoothly with the local maximum
of the angular velocity at about 35 Mm depth; see Fig. 15.3.

The theory of this negative near-surface shear layer is still a matter of on-
going research, but it is clear that negative shear would generally be the result
of predominantly vertical turbulent velocities such as strong downdrafts near
the radiating surface. However, such a layer that is dominated by strong down-
drafts was only thought to be several megameters deep, and not several tens
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Figure 15.4: Rotation law obtained by Kitchatinov & Rüdiger (2005) tak-
ing the anisotropy of the turbulence near the surface into account. [Courtesy
Kitchatinov & Rüdiger (2005).]

of megameters. With an improved theory for the anisotropy of the turbulence
especially near the surface layers, one obtains a clear radial decline of the local
angular velocity near the surface, although still not quite as much as is observed;
see Fig. 15.4. In any case, these results do at least reproduce the near-surface
shear layer qualitatively correctly. A proper understanding of this layer is now
quite timely in view of the fact that near-surface shear is likely to contribute to
the production of strong toroidal fields.

15.5 Magnetic effects

Using photospheric Doppler measurements and helioseismology so-called tor-
sional oscillations were discovered in the 1980ies. They are a cyclic modulation
of the latitudinal profile of the angular velocity at the surface of the sun. Model
calculations suggest that these oscillations can well be modeled by restoring the
Lorentz force by adding a term−$BBφ under the divergence in equation (15.1).
Unfortunately, given that there is no definitive solar dynamo model, models for
the Sun’s torsional oscillations are equally preliminary and still a matter ongoing
research.
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Chapter 16

Final words

In the past few decades there have been significant developments in under-
standing the physics of the Sun. Even regarding the radial structure of the Sun,
which was thought to be qualitatively well understood, major revisions have
emerged just recently with the refinement of three-dimensional simulations of
solar granulation. Such simulations have led to new spectral line fits that imply
a drastically reduced abundance of the heavier elements. This has consequences
for the opacities that affect the deep parts of the Sun’s interior.

There are many aspects of solar physics where a detailed understanding of
the three-dimensional flow pattern of the Sun is crucial. It is not surprising that
effects involving details of the turbulent flow field in the solar convection zone,
such as the theory of differential rotation and magnetic field generation, pro-
vide other examples where the three-dimensional dynamics is important. Fully
three-dimensional simulations of solar convection with magnetic fields produce
flow and magnetic field structures in great detail, but at present they deviate
in some important aspects from the Sun (e.g. the fraction of small scale to
large scale field is rather large; and the angular velocity contours are still too
strongly aligned with the rotation axis). Some tentative explanations are avail-
able (magnetic Prandtl number not small enough in the simulations to reduce
or even suppress small scale dynamo action, and surface conditions not realistic
enough to allow for sufficiently large a baroclinic term). Future advances in
computer technology will bring a steady increase in numerical resolution. How-
ever, increase of spatial resolution by a factor of two will always be very difficult
when close to the machine capacity. Substantial progress may rather hinge on
new insights that may emerge from a closer interrelation between local simula-
tions where turbulence is well resolved and mean field calculations that benefit
from input and calibration of detailed simulations.
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