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Lecture 4: Rayleigh–Bénard problem

Convection plays an important role in geo- and astrophysics. Without it, the would be no turbulence
and no magnetic fields in the Sun, for example. This problem has been studied for a long time and goes
back to early work of Count Rumford. In a historical account, Brown (1957) mentions in this connection
the year 1797,

The decisive statement about ascending currents is made here:

But the word convection cas coined only much later.

Figure 1: Convec-
tion experiment.

A detailed account of the subsequent discoveries that went into our theoretical
understanding of this phenomenon is given by Chandrasekhar (1961). After the
original experimental work of Bénard (1900) and theoretical work of Rayleigh (1916),
the mathematical formulation that is used nowadays in many textbooks goes back
to work by Jeffreys (1926). It was also Jeffreys (1930), who generalized the theory
to the compressible case, where the temperature gradient is to be replaced by the
superadiabatic gradient, which is the famous Schwarzschild (1906) criterion.

Discrepancies between Bénard’s original experiments and the theoretical calcu-
lations are explained by the importance of surface tension, which was ignored in the early work. This
leads to the so-called Marangoni effect which describes the mass transfer along an interface between two
fluids due to surface tension gradient.



1 Governing equations

The best studied case is that of very weak stratification, so one can adopt the Boussinesq approximation.
In the absence of rotation and magnetic field, we have

∇ · u = 0, (1)

Du

Dt
= − 1

ρ0
∇P +

ρ

ρ0
g + ν∇2

u, (2)

DT

Dt
= κ∇2T, (3)

where g = (0, 0,−g) is gravity. The essential point here is that the fluid is incompressible and the
density is almost constant except for a weak response to changes in the temperature, which leads to a
temperature-dependent buoyancy of the form

ρ = ρ0 +

(

∂ρ

∂T

)

P

(T − T0). (4)

This coefficient is negative and it is proportional to what is usually called α, i.e., −ρ−1

0 (∂ρ/∂T )P = α.
For a perfect gas, α = 1/T , but one also wants to consider water and other liquids, where αT is of the
order of 106; see Chandrasekhar (1961) for details.

The temperature is assumed fixed on the two boundaries, so the hydrostatic solution must obey
∇2T = 0, which leads to a linear temperature profile, T0(z) = T00 − βz, where β is the negative
temperature gradient. The set of linearized equations can then be written in the form

∇ · u1 = 0 (5)

∂u1

∂t
= − 1

ρ0
∇P1 + αT1gẑ + ν∇2

u1 (6)

∂T1

∂t
− βuz1 = κ∇2T1. (7)

2 Eliminating the pressure

A common trick is to apply the double curl. With the first curl, we eliminate the pressure, and with the
second curl, the buoyancy term has just a z component, i.e.,

∇×∇×





0
0

αgT1



 = ∇×





∂x
∂y
∂z



×





0
0

αgT1
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T1,xz
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−∇2
⊥
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 , (8)

where ∇2
⊥

= ∂2
x + ∂2

y is the horizontal Laplacian and commas denote partial derivatives. Furthermore,
making use of the relation ∇×∇× = −∇2 +∇∇· and the fact that ∇ ·u1 = 0, we have ∇×∇×u1 =
−∇2

u1, and so we arrive directly at

(

∂

∂t
− ν∇2

)

∇2
u1 = αgẑ∇2

⊥T1, (9)

or, more specifically for the z component of the velocity, at

(

∂

∂t
− ν∇2

)

∇2uz1 = αg∇2
⊥T1, (10)

and for the temperature we have analogously

(

∂

∂t
− κ∇2

)

T1 = βuz1. (11)
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This is a system of two partial differential equations that can easily be combined into one:
(

∂

∂t
− ν∇2

)(

∂

∂t
− κ∇2

)

∇2uz1 = αβg∇2
⊥uz1. (12)

(This equation applies equally to T1.) Furthermore, it is advantageous to nondimensionalize the equations
by measuring length in units of d, which is the vertical thickness of the layer, so we write [x] = d, and
time in units of the viscous time, [t] = d2/ν.

(

∂

∂t
−∇2

)(

ν

κ

∂

∂t
−∇2

)

∇2uz1 =
αβgd4

νκ
∇2

⊥uz1. (13)

As a consequence of nondimensionalization, two nondimensional numbers have appeared, the Prandtl
and Rayleigh numbers,

Pr =
ν

κ
, Ra =

αβgd4

νκ
. (14)

respectively. Thus, we have
(

∂

∂t
−∇2

)(

Pr
∂

∂t
−∇2

)

∇2uz1 = Ra∇2
⊥uz1. (15)

3 Spectral ansatz for a specific boundary condition

Before considering the case of general boundary conditions, let us first consider a case where we can
assume the solution to be of the form uz1 = ûz1(z) e

σt+ik·x,
(

σ + k2
) (

Prσ + k2
)

k2 = Ra k2⊥. (16)

thus, we have

Prσ2 + (1 + Pr)σk2 + k4 = Ra
k2
⊥

k2
. (17)

At this point, we can already say that there exists a nontrivial solution with σ = 0 when Ra = k6/k2
⊥
.

Such a solution corresponds to the marginally excited, nonoscillatory state.1

If σ = 0 is the critical condition of interest, then the wavevector of interest is that corresponding to
the longest wavelength that fits into the domain. Thus now depends on the boundary conditions. In fact,
the only boundary condition that would be allowed with the adopted spectral ansatz is the stress-free
condition, with zero temperature fluctuation, i.e.,

u1x,z = u1y,z = u1z = T1 = 0 (on z = ±d/2). (18)

In that case, we have

u1x ∝ sin kzz, u1y ∝ sin kzz, u1z ∝ cos kzz, Tz ∝ cos kzz with kz = π/d. (19)

Figure 2: Ra(k2

⊥) = (k2

⊥ + k2

z
)3/k2

⊥.

Now that kz is fixed, we would still be free to vary k⊥.
The preferred value of k⊥ is the one that minimizes
Ra(k2

⊥
) = (k2

⊥
+ k2z)

3/k2
⊥
. Thus we solve dRa/dk2

⊥
= 0,

i.e.,

dRa/dk2⊥ = 3(k2⊥ + k2z)
2/k2⊥ − (k2⊥ + k2z)

3/k4⊥ = 0. (20)

Thus, 3 k2
⊥
− (k2

⊥
+ k2z) = 0, and therefore

k2⊥ = k2z/2 = π2/2, (21)

or k⊥ = π/
√
2 ≈ 2.22; see Figure 2.

For k⊥ = π/
√
2 and kz = π, the value of Ra is

Ra = (k2⊥ + k2z)
3/k2⊥ = (π2/2 + π2)3/(π2/2) =

27

4
π4 ≈ 657.5 . (22)

which is the critical value for the onset of convection in a horizontally infinitely extended layer. Obviously,
if one does a simulation in a horizontally periodic domain, it won’t be infinitely extended, and therefore
k⊥ can only be a multiple of the smallest horizontal domain size.

1There could in principle also be another condition for a marginally excited solution where Reσ = 0, but Imσ 6= 0,

which would be oscillatory and thus with nonvanishing σ.
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Figure 3: Dispersion relation for different values of Ra and Pr; increasing values are indicated by
increasing thickness.

4 Dispersion relation

Note that have not yet solved the dispersion relation. Let us now solve Equation (17) for fixed kz = π as
a function of k2

⊥
. This, we have k2 = k2

⊥
+ π2. Let us rewrite Equation (17) in standard form as

σ2 +
1 + Pr

Pr
σk2 +

k4

Pr
− Ra

Pr

k2
⊥

k2
= 0. (23)

and write the solutions as

σ± = −1 + Pr

2Pr
k2 ±

√

(1 + Pr)2

4Pr2
k4 − k4

Pr
+

Ra

Pr

k2
⊥

k2
. (24)

The result is plotted in Figure 3.
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