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Lecture 4: Rayleigh—Bénard problem

Convection plays an important role in geo- and astrophysics. Without it, the would be no turbulence
and no magnetic fields in the Sun, for example. This problem has been studied for a long time and goes
back to early work of Count Rumford. In a historical account, Brown (1957) mentions in this connection
the year 1797,

In this chatty style, Count Rumford began to describe in 1797
his discovery of the thermal current in fluids. His first observations
of convection currents werc accidental, as he watched the behavior
of the contents of the hore of a large thermometer he was using in
an experiment:

I saw the whole mass of the liquid in the tube in a most rapid motion
running swiftly in rwo opposite direcrions, up and down ar the same time,
The bulb of the thermemeter, which is of copper, had been made two
yvears before 1 found leisure to begin my experiments, and having been

The decisive statement about ascending currents is made here:

the thermometer was agitated. . . . On examining the motion of the
spirits of wine with a lens, I found that the ascending current occupied
the axis of the tube and that it descended by the sides of the tube. On
inclining the tube a little, the rising current moved out of the axis and
occupied the side of the tube which was uppermost, while the descending
currents vccupied the whole of the lower side of ir.

The Count recognized that he had made a discovery of the first
magnitude, and he correctly assigned the thermal motions to the
changes in density of the fluid as a result of heating. The hot liquid,
being lighrer, tended to rise and the heavier liquid, which was cold,
fell, and thus the currents could bhe separated into a continuous
motion, To dramatize the experimental observations of these cur-

But the word convection cas coined only much later.

It was not until 1834 that the well-known William Prout, writing
in one of the Bridgewater Treatises, suggested:?

There is at present no single term in our Janguage employed to denote
this mode of propagation of hear; but we venture to propose for thar
purpose the term comvection (comvectip, a carrying or converging),
which not only expresses the leading facts, but also accords very well
with the two other terms [conduction and radiation].

Even after this name was suggested, it took twenty years for
convection to find its way to the universal acceptance which the
term now enjoys.

A detailed account of the subsequent discoveries that went into our theoretical
understanding of this phenomenon is given by (Chandrasekhan (1961). After the
original experimental work of Bénard (1900) and theoretical work of Rayleigh (1916),
the mathematical formulation that is used nowadays in many textbooks goes back
to work by Jeffreys (1926). It was also Jeffreys (1930), who generalized the theory
to the compressible case, where the temperature gradient is to be replaced by the
superadiabatic gradient, which is the famous |Schwarzschild (1906) criterion.

Discrepancies between Bénard’s original experiments and the theoretical calcu-
lations are explained by the importance of surface tension, which was ignored in the early work. This
leads to the so-called Marangoni effect which describes the mass transfer along an interface between two
fluids due to surface tension gradient.

Figure 1: Convec-
tion experiment.



1 Governing equations

The best studied case is that of very weak stratification, so one can adopt the Boussinesq approximation.
In the absence of rotation and magnetic field, we have
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where g = (0,0, —g) is gravity. The essential point here is that the fluid is incompressible and the
density is almost constant except for a weak response to changes in the temperature, which leads to a
temperature-dependent buoyancy of the form

p=po+ (%)P(T—To)- (4)

This coefficient is negative and it is proportional to what is usually called a, i.e., —py*(9p/0T)p = .
For a perfect gas, @« = 1/T, but one also wants to consider water and other liquids, where oT is of the
order of 10%; see (Chandrasekhar (1961) for details.

The temperature is assumed fixed on the two boundaries, so the hydrostatic solution must obey
V2T = 0, which leads to a linear temperature profile, Ty(z) = Tpo — Bz, where 3 is the negative
temperature gradient. The set of linearized equations can then be written in the form

V. u; = 0 (5)
ou 1 N
57; = —%VPl +aTigz + vViu, (6)
oT
aitl - ,Buzl == HV2T1. (7)

2 Eliminating the pressure

A common trick is to apply the double curl. With the first curl, we eliminate the pressure, and with the
second curl, the buoyancy term has just a z component, i.e.,

0 83; 0 895 +OégT1,y Tl,xz
V x V x 0 =Vx |09y |x 0 =0y | x| —aglhx | =ag| Tiy. ) (8)
agTy 0. agTy 0, 0 —ViTl

where V2 = 92 + 85 is the horizontal Laplacian and commas denote partial derivatives. Furthermore,
making use of the relation V x Vx = —V2 4+ VV.- and the fact that V-u; = 0, we have VX V x u; =
—V2u;, and so we arrive directly at

(8875 — uv2> Viu; = agzV3 T, (9)

or, more specifically for the z component of the velocity, at

<§t - 1/V2> V2u,, = agV2 Ty, (10)

and for the temperature we have analogously

<§t - /<;V2> Ty = Bu.,. (11)



This is a system of two partial differential equations that can easily be combined into one:

(gt — V2> <88t - HV2> V2u.1 = afgV3iu. (12)

(This equation applies equally to T;.) Furthermore, it is advantageous to nondimensionalize the equations
by measuring length in units of d, which is the vertical thickness of the layer, so we write [x] = d, and
time in units of the viscous time, [t] = d?/v.

B o 4t
(6t -V ) (V ot V2> Vi, = aﬂg Vi U1 (13)

As a consequence of nondimensionalization, two nondimensional numbers have appeared, the Prandtl
and Rayleigh numbers,

4
pr— Ra- L (14)
K VK
respectively. Thus, we have
0 0
((‘)t - v2> ( o v2> V2u,; = RaV? u,;. (15)

3 Spectral ansatz for a specific boundary condition

Before considering the case of general boundary conditions, let us first consider a case where we can
assume the solution to be of the form u,; = @, (z) e7*+F®,
(o0 + k%) (Pro+k*) k* = Rak?. (16)
thus, we have
k2
a-=.
L2
At this point, we can already say that there exists a nontrivial solution with ¢ = 0 when Ra = k%/ k2
Such a solution corresponds to the marginally excited, nonoscillatory statel]
If 0 = 0 is the critical condition of interest, then the wavevector of interest is that corresponding to
the longest wavelength that fits into the domain. Thus now depends on the boundary conditions. In fact,

the only boundary condition that would be allowed with the adopted spectral ansatz is the stress-free
condition, with zero temperature fluctuation, i.e.,

Ulg,z = Uly,z = Ulz = Tl =0 (On = id/2) (18)

Pro? +(1+Pr)ok*+k* =R (17)

In that case, we have
Ulp X sink,z, iy xsink,z, wui; xcosk,z, T,oxcosk,z with k., =m/d. (19)

Now that k. is fixed, we would still be free to vary k; .
The preferred value of k£, is the one that minimizes

Ra(k?) = (k2 + k2)3/k%. Thus we solve dRa/dk? = 0, 10000 E
ie.,

©
dRa/dk] = 3(k1 +k2)*/k1 — (K1 +k2)°/KL =0. (200 = 1599
Thus, 3k% — (k% + k2) =0, and therefore

kL =k2/2=m%/2, (21) ool . . .
or k) = /2~ 2.22; see Figure & 2 4 6 8 10
For k]_:ﬂ'/\/ﬁ and k, = m, the value of Ra is k, d
Figyre 2: Ra(k )= (kT +k2)%/k7.
Ra= (k2 + k2)3 /K2 = (x2/2 + 72)3)(n2)2) = Qje 657.5. T (22)

which is the critical value for the onset of convection in a horizontally infinitely extended layer. Obviously,
if one does a simulation in a horizontally periodic domain, it won’t be infinitely extended, and therefore
k1 can only be a multiple of the smallest horizontal domain size.

1There could in principle also be another condition for a marginally excited solution where Reo = 0, but Imo # 0,
which would be oscillatory and thus with nonvanishing o.
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Figure 3: Dispersion relation for different values of Ra and Pr; increasing values are indicated by
increasing thickness.

4 Dispersion relation

Note that have not yet solved the dispersion relation. Let us now solve Equation (7)) for fixed k, = 7 as
a function of k2. This, we have k* = k? + 72, Let us rewrite Equation (I7) in standard form as

b - 22, (23)

and write the solutions as

B— o4 2oL (24)

The result is plotted in Figure
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