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ABSTRACT
High Mach number shocks are ubiquitous in interstellar turbulence.
The Pencil Code is particularlywell suited to the study ofmagnetohy-
drodynamics in weakly compressible turbulence and the numerical
investigation of dynamos because of its high-order advection and
time evolution algorithms. However, the high-order algorithms and
lack of Riemann solver to follow shocks make it less well suited to
handling high Mach number shocks, such as those produced by
supernovae (SNe). Here, we outline methods required to enable the
code to efficiently and accurately model SNe, using parameters that
allow stable simulation of SN-driven turbulence, in order to construct
a physically realistic galactic dynamo model. These include the res-
olution of shocks with artificial viscosity, thermal conductivity and
mass diffusion; the correction of themass diffusion terms and a novel
generalisation of the Courant condition to include all source terms
in the momentum and energy equations. We test our methods with
the numerical solution of the one-dimensional (1D) Riemann shock
tube, also extended to a 1D adiabatic shock with parameters and
Mach number relevant to SN shock evolution, including shocks with
radiative losses. We extend our test with the three-dimensional (3D)
numerical simulation of individual SN remnant evolution for a range
of ambient gas densities typical of the interstellar medium and com-
pare these to the analytical solutions of Sedov–Taylor (adiabatic) and
the snowplough and Cioffi et al. results incorporating cooling and
heating processes. We show that our new timestep algorithm leads
to linear rather thanquadratic resolutiondependenceas the strength
of the artificial viscosity varies, because of the corresponding change
in the strength of interzone gradients.
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1. Introduction

Astrophysical turbulence often occurs in highly compressible flows such as the
interstellar medium (ISM), where turbulence is driven by repeated supernova (SN)
explosions (Elmegreen and Scalo 2004, Scalo and Elmegreen 2004). The Pencil
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Code1 (Brandenburg and Dobler 2002) has been extensively applied to weakly compress-
ible flows, such as occur in stellar turbulence (Haugen et al. 2004a), stellar magnetocon-
vection (Käpylä et al. 2008, 2009, 2012, 2016, Bushby et al. 2018), stellar and planetary
dynamos (McMillan and Sarson 2005,Dobler et al. 2006) and accretion disks (deVal-Borro
et al. 2006, Käpylä and Korpi 2011). The Pencil Code is well suited to the investigation
of dynamos, both small-scale (fluctuation or random) modes and large-scale (mean or
system-wide) modes. It uses sixth order in space and third order in time advection algo-
rithms to capture the flow with near-spectral accuracy, and is optimised for excellent
performance on clusters of superscalar processors.

This code has been applied to the study of SN-driven ISM turbulence and the galactic
dynamo (Gent et al. 2013a, b, Käpylä et al. 2017), building on more idealised Pencil Code
experiments with highMach numbers (Haugen et al. 2004a, b). From these results, a large-
scale dynamo (LSD) was obtained for a system resembling the solar neighbourhood of
the Milky Way, but the parameters chosen resulted in magnetic Prandtl numbers varying
strongly by phase, with the result that a small-scale dynamo (SSD) was only present in the
hot phase. Here we shall report on improvements to the hydrodynamic part of the Pencil
Code model – which include using only the minimum artificial viscosity needed to permit
the resolution of strong shocks withMach numbers of order 100, improvement of themass
diffusion algorithm and force-dependent time constraints to improve the stability of the
code – and test the results for various shocks.

Spectral methods are effective for accurately solving initial value problems without
discontinuities and well suited for elliptic equations. Reframing the problem as a super-
position of basis equations can, however, be computationally intensive. Handling shocks
still must occur in real space, applying similar tools as finite difference and volume ele-
ment schemes. In this space either artificial diffusion or a Riemann solver is normally
required. Regardless of the order of accuracy of the various codes, artificial viscosity effec-
tively reduces to a first-order method in the vicinity of the shock. An alternative is to use
Godunovmethods to solve for the fluxes at zone boundaries. These rely on exact or approx-
imate solutions to the Riemann problem at each zone boundary. Although accurate, they
are computationally expensive and sensitive to the addition of new physics that can change
the signal propagation characteristics.

In this article, we shall explain the methods and parameter choices required for the
Pencil Code to handle the 1D Riemann shock tube test (see section 2) and report its per-
formance for various levels of shock reaching above Mach 100 (see section 3). We then
describe some additional steps required to handle highly compressible SN-driven turbu-
lence, including radiative cooling, and in section 4 present the results of Sedov–Taylor
and snowplough tests for SN remnant evolution across a range of ambient gas density and
model resolution. In section 4.4, we describe some additions to the Pencil Code timestep-
ping control, to maintain numerical stability for these challenging simulations and the
interplay between the different timestep criteria in realistic models. Finally, we summarise
our work in section 5.

1 https://github.com/pencil-code.
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2. Method

Our strategy to model strong shocks is to use upwind differencing (effectively a form of
hyperdiffusion) when solving each partial differential equation (PDE), to ensure the sys-
tem is resolved at the grid scale; and to apply artificial viscosity and thermal diffusivity
at the shock fronts, following Stone and Norman (1992), to avoid discontinuities in the
derivatives by smoothing the shock profile. The fifth-order implementation of the upwind
differencing applied here is detailed in the Pencil Code manual2 section H.2. The current
implementation of artificial diffusivities is adapted from the earlier treatments of Haugen
et al. (2004b) and Mee (2007).

2.1. Artificial shock viscosity

In the momentum equation, the shock capturing viscosity is applied as

ρ
Du
Dt

= · · · + ∇(ρ ζν∇ · u), (1)

where u denotes velocity, ρ gas density and

D
Dt

= ∂

∂t
+ u · ∇ (2)

is the material derivative. The viscous coefficient takes the form

ζν = νshock fshock, (3)

where

fshock =
〈
max
5

[
(−∇ · u)+

]〉 (
min

(
δx, δy, δz

))2. (4)

Taking only positive values of −∇ · u and otherwise zero, at any point the maximum
value within two zones in any direction is applied.3 This field is then smoothed using a
seven-point smoothing polynomial with Gaussian weights [1,9,45,70,45,9,1]/180 to obtain
fshock. Hence, the artificial viscosity is applied only locally at the shocks and has quadratic
dependence on the divergence. The dimensionless constant νshock � 1.

An additional source term in the equation of energy arises from the viscous heating
produced by the artificial viscosity.We solve the energy equation in the form of the specific
entropy s, so we have

ρT
Ds
Dt

= · · · + ρ ζν (∇ · u)2 , (5)

where T denotes temperature.

2 http://pencil-code.nordita.org/doc/manual.
3 At sixth-order accuracy, we may apply a maximum fromwithin one, two or three zones, with three yielding more stability
at the expense of increased smoothing. Empirical trials of SN-driven turbulence as discussed in section 4.4 indicate two
zones to be sufficient.
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2.2. Thermal diffusion

Including a similar artificial thermal diffusion ζχ to the energy equation significantly
damps numerical oscillations arising behind the shock front with negligible effect on
the overall structure of the shock solutions. In the nonadiabatic system, particularly
where cooling produces thermally unstable regimes, thermal diffusion can confine ther-
mal instabilities to the limits of the numerical resolution. The thermal diffusion takes the
form

ρT
Ds
Dt

= · · · + ∇·(cpρ ζχ∇T
)
, (6)

where cp denotes the specific heat of the gas at constant pressure and the thermal diffusivity
coefficient takes the form

ζχ = χshockfshock. (7)

This coefficient is calculated using local maxima and smoothing fshock, as for the artificial
viscosity, above. A modest value χshock = 0.5 is adequate for weak to moderate adiabatic
shocks.

2.3. Mass diffusion

Finally, we consider the inclusion ofmass diffusion.Of course, there is no physicalmass dif-
fusion term in the continuity equation, so this is a purely artificial numerical device. Mass
diffusion is not necessary to model even strong shock solutions with the Pencil Code (as
considered in detail in section 3), although its use does tend to damp the oscillations in the
wake of the shock. However, experiments with SN-driven turbulence show that interacting
shocks in that context are prone to local numerical instabilities (effectively wall heating),
where the density drops and the temperature rises without limit, producing a hot zone. The
application of mass diffusion suppresses this problem.

Withmass diffusion, in the absence of sinks or sources, the continuity equation becomes

Dρ

Dt
= −ρ∇ · u + ζD∇2ρ + ∇ζD ·∇ ρ, (8)

where

ζD = Dshock fshock, (9)

with fshock as defined in (4) and Dshock � 1. Adding a non-physical diffusion to the
equation has consequences for the conservation of momentum and energy. Hence, correc-
tions to each equation are required. If we consider the momentum and energy equations
absent the artificial diffusion, we have

ρ
Du
Dt

= RHS, ρ
De
Dt

= RHS,

D
Dt

(ρu) − u
Dρ

Dt
= RHS,

D
Dt

(ρe) − e
Dρ

Dt
= RHS,

D
Dt

(ρu) + uρ∇ · u = RHS,
D
Dt

(ρe) + cv Tρ∇ · u = RHS,
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where e = cv T denotes the internal energy and cv is the specific heat at constant volume.
When we include the mass diffusion in the continuity equation we obtain

D
Dt

(ρu) + u
(
ρ∇ · u − ζD∇2ρ − ∇ζD ·∇ ρ

) �= RHS, (10)

D
Dt

(ρe) + cv T
(
ρ∇ · u − ζD∇2ρ − ∇ζD ·∇ ρ

) �= RHS. (11)

Hence, to conserve the properties of momentum and energy we must also subtract these
extra terms from the respective RHS. For momentum we have

ρ
Du
Dt

= · · · − u
(
ζD∇2ρ + ∇ ζD ·∇ ρ

)
(12)

and for energy we have

ρT
Ds
Dt

= · · · − cv T
(
ζD∇2ρ + ∇ ζD ·∇ ρ

)
. (13)

We define an array of artificial diffusion coefficients as cshock ≡ [Dshock, νshock,χshock].

2.4. Timestep determination

The Pencil Code uses an explicit finite difference scheme, which can be faster than implicit
schemes, but is not unconditionally stable. A necessary, although not necessarily sufficient,
stability condition is to satisfy various Courant conditions on the time step, such as for
advection and diffusion. For advection, this condition reads

1
δt

≥ max
(

Umax

cδt δxmin

)
, (14)

where cδt < 1 is the Courant number dedicated to the control of the advective timestep,
δxmin = min(δx, δy, δz) is the minimum grid spacing at each location, and for the MHD
case

Umax = max
(

|u| +
√
c2s + v2A

)
. (15)

cs and vA denote the sound speed and Alfvén speed, respectively. With maximal speeds
of order 103 km s−1 typical of such turbulence, however, this is rarely significant in deter-
mining the maximum timestep. We also must account for the artificial diffusion terms we
have introduced to resolve shocks. The diffusive time step is controlled by the Courant
condition

1
δt

≥ max
(

ζmax

cδt,v δx2min

)
, (16)

where cδt,v < 1 is a Courant coefficient for the diffusive timestep, ζmax = max(ζν , γ ζχ , ζD)

is the maximum diffusive coefficient acting at each point in the grid. In the MHD case,
magnetic diffusivity ζη may also be included in ζmax.
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It has previously been observed that strong heat sources or sinks can cause stresses on
the numerical solvers that the conventional timestep control described above does not
address. In the context of ISM simulations and SN-driven turbulence the effect of cool-
ing and heating can cause numerical instability if not also accounted for.Minimum cooling
times are typically around 100 years for the temperature anddensity ranges commonly con-
sidered in ISM simulations, but can be as low as 10 years. This is not usually a problem as
other processes often require shorter time resolution. Heating by SN is instant and there-
fore presents a challenge primarily through heat diffusion timescales. The main source
of heating driving the timestep due to the supersonic flows is viscous heating. To ensure
the heating/cooling time is resolved, the net heating H is summed and the timestep δt
constrained by its absolute maximum throughout the grid as

1
δt

≥ max
( |H|max

cδt,s e

)
, (17)

where cδt,s < 1 controls the fractional change of energy permitted in any cell.
In weakly compressible flows the largest values on the right-hand side of the entropy

equation can be adequately resolved in time, but for the highly compressible flows of SN-
driven turbulence the sum of all changes to the energy can be many orders of magnitude
greater than the evolving entropy of order unity. To address this theHmax in equation (17)
is instead replaced by themaximal sumof the right-hand side of the entropy equation df (s),
so that

1
δt

≥ max
( |df (s)|max

cδt,s cv

)
(18)

is used to constrain the timestep, with the maximum fractional change in entropy given
by cδt,s. We find empirically that this time step constraint dominates immediately after SN
explosions during SN-driven turbulent runs.

The momentum equation must also be considered as a whole, similar to the treatment
of the energy equation (18). The troublesome contribution to the code stability is to be
found in viscous force, in general expressed as

Du
Dt

= · · · + ν∇2u + ν

3
∇(∇ · u)+ 2S·(ν∇lnρ + ∇ν

)+ ζν∇
(∇·u)+ ∇ζν

(∇·u),
(19)

involving the rate of strain tensor S of the form

2Sij = ∂ui
∂xj

+ ∂uj
∂xi

− 2
3
δij∇·u. (20)

Note also, the viscous heat applying to the energy equation is proportional to S2 ≡ SijSij.
In the diffusive timestep only the coefficients ν and ζν are considered. The gradients in
the expression are ignored, and in the case of SN turbulence, these contributions can be of
order±107–109 km s−1 Gyr−1. Increasing viscosity to smooth the gradients can be counter
productive, making the viscous forces even larger. Instead, we limit the total change in
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momentum df (u) with a newly developed time step limitation of

1
δt

≥ max
( |df (u)|max

cδt,f |u|nom

)
, (21)

where cδt,f < 1 is a Courant number applying to control of the forcing timestep and |unom|
is a sufficiently small nominal velocity. In practice, cδt,f |u|nom � 20 km s−1 is stable. An
alternative approach might be to reduce cδt,v � 1, but this would reduce the timestep
under all circumstances, whereas the forcing timestep control is more flexible and limits
the timestep only when needed. The impact of this timestep control on a turbulent ISM
simulation is considered in section 4.4.

2.5. Sound-speed dependent shear viscosity

The numerical solutions to the experiments included in this article are adequately mod-
elled without any prescription for viscosity other than the artificial shock-dependent
viscosity already described. However, in the turbulent SN-driven system, the numerical
stability has been found to benefit from viscosity proportional to the speed of sound cs.
The ISM is typified by huge variation in temperature and associated characteristic tur-
bulent velocities. Together with the artificial viscosity, this applies a numerically stable
constraint on the mesh Reynolds number. Whilst little is understood about the behaviour
of turbulent viscosity in the ISM, such temperature dependent behaviour for the ISM can
be argued to more closely approach the molecular Spitzer viscosity, ν ∝ ρ−1T2.5, than the
usual application of constant ν.

Various applications of physical viscositymay be considered, such as Laplacian for ν∇2u
or bulk which applies to the trace, omitted from the rate of strain tensor S. Here we apply
shear viscosity arising from the divergence of the traceless rate of strain tensor. In this form,
the contribution of∇ν in (19) is nonzero, and additional viscous heating 2ρνS2 applies to
the energy equation. The sound-speed dependent viscosity is not included in section 3. To
demonstrate that these results hold for the prescription we intend for the modelling of SN
turbulence, we include this viscosity in the form ν � cs δx throughout section 4.

3. Riemann shock tube test

3.1. Weak andmoderate shocks

To assess the quality of the shock handling scheme, we consider the Riemann shock tube
test using the standard setup described by Sod (1978), based on the exact analytical solution
obtained by Hawley et al. (1984). Results from a weak and a moderate shock test in a one-
dimensional grid over 256 points with closed boundaries are depicted in figures 1 and 2,
respectively. For direct comparison with Caunt and Korpi (2001, figures 11 and 12), we use
the adiabatic index γ = 1.4. In each case, an initial discontinuity in density and energy is
located at x=0.5 with zero velocity, and on the right the dimensionless density ρ = 0.125
and pressure p=0.1. In the weak shock in figure 1, the density and pressure on the left
are both 1.0, and for the moderate shock in figure 2 they are 10. The analytic solutions
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Figure 1. Weak Riemann shock tube test (Sod 1978) with 256 grid points at t= 0.245, where the den-
sity and pressure on the left is initially set to ρ, p = 1.0, 1.0, and on the right ρ, p = 0.125, 0.1. Figures
showdensity, pressure, velocityu, internal energy e and the analytic solution (orange line). The diffusivity
coefficients used are cshock = [0, 4, 0.5]. (Colour online)

Figure 2. Moderate shock tube test (Sod1978)with 256gridpoints at t= 0.150,where thedensity, pres-
sure on the left is initially set toρ, p = 10.0, 10.0, andon the rightρ, p = 0.125, 0.1. Figures showdensity,
pressure, velocity, internal energy and the analytic solution (orange line). The diffusivity coefficients used
are cshock = [0, 4, 0.5]. (Colour online)

are included for comparison. For these parameters, a reasonable solution can be obtained
with the artificial diffusivities νshock = 4.0 and χshock = 0.5, and with no mass diffusion
(Dshock = 0).
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Figure 3. The weak shock tube test (Sod 1978) detailed in figure 1 with cshock = [0, 4, 0.5] at t= 0.245
resolved with 512 grid points. Zoomed-in profiles show contact discontinuity (left) and shock front
(right) for initial discontinuity smoothing scale 
 ∈ [0, 2.5]δx, for gas density (upper) and internal energy
(lower). (Colour online)

However, if the initial discontinuity inmass and energy is not smoothed, then significant
oscillations occur in the wake of the shock, which in stronger shocks can lead to artifi-
cial hot zones forming due to wall heating, which crash the code. The initial discontinuity
profile has the form, here for density,

ρ(x) = ρleft +
(

ρleft − ρright

2

)[
1 + tanh

( x
nδx

)]
, (22)

where the smoothing length 
 = nδx In figure 3, we show the results at the shock front
and contact discontinuity of applying 
 ∈ [0, 2.5]δx. The shock front profiles in the right
panels retain a similar shape, but delayed with increased initial smoothing. This is where
the artificial viscosity is present throughout the evolution. In contrast, the left panels show
stronger high frequency wiggles forming at the contact discontinuity for the unsmoothed
initial profiles. An optimal smoothing scale is 
 = 1.5δx, and this is used for the weak and
moderate shock-tube tests in this paper. In simulations of SN-driven turbulence with SN
shocks introduced to a highly nonuniform ambient ISM, we have no such fine tuning over
the level of discontinuity smoothing, but we apply a 3D-Gaussian profile for the initial
injection of energy in the SN experiments, rather than steeper or discontinuous profiles,
to minimise such numerical instabilities forming in the contact discontinuities behind the
shock fronts.

In figures 1 and 2, with Mach numbers about 1 and 2.5, respectively, we see the main
deviation from the analytic solution is smoothing at the transitions, particularly at the
contact discontinuities between x=0.6 and 0.8, most evident in the plots for gas density
and internal energy. With increasing resolution, which we show in figure 4, the numerical
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Figure 4. Themoderate shock tube test (Sod 1978) detailed in figure 2 at t= 0.150 with grid resolution
between 32 and 2048. Zoomed-in shock front near x= 0.9 applying shock-dependent artificial diffusion
with diffusivity coefficients cshock = [0, 4, 0.5], initial discontinuity profile smoothing scale 
 = 1.5δx
and hyperdiffusion in the form of upwind differencing. Figures show gas density, pressure, velocity and
internal energy. (Colour online)

solution asymptotically approaches the analytic solution. We consider grid sizes between
32 and 2048 for the moderate shock, and zoom in on the shock front and the contact
discontinuity.

3.2. HighMach number shock

The standard shock tube tests indicate that the code can adequately cope with weakly
compressible flows. For shocks associated with SN-driven turbulence, however, this is not
sufficient. Simulations of the ISM commonly include minimal temperatures near 100K
(sound speed 0.5 km s−1) and maximal velocities above 1000 km s−1. Even if we exclude
the improbable extrema of Mach 2000 associated with SN explosions deep within molec-
ular clouds, we regularly encounter Mach 100 shocks in these simulations, depending on
the ambient temperature around each SN location.

In figure 5, we show the results of a Riemann shock test exceeding Mach 100. The adia-
batic index is 5/3. The pressure discontinuity is about five orders of magnitude. As well
as increasing the artificial viscosity and thermal diffusivity coefficients to νshock = 6.0,
χshock = 2.0, we also include an artificial diffusion to the continuity equation, as described
in section 2.3. In this example, we set Dshock = 1.0.

In the density profile of figure 5, there is a small overshoot in energy behind the shock,
accompanied by some numerical oscillation at the contact discontinuity. Whether the
spikes or dips are the larger depends on the level of smoothing relative to the strength
of the discontinuity profile. As mentioned earlier, we have little control of the structure of
the shock injections in the turbulent ISM environment, so we expect some such artefacts to
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Figure 5. High Mach number shock tube test (Sod 1978) with 256 grid points at t= 0.0014, where the
density, pressure on the left is initially set to ρ, p = 1.0, 6.4 · 10−10, and on the right ρ, p = 0.125, 4.8 ·
10−15. Figures show gas density, pressure, velocity, internal energy and the analytic solution (orange
line). The diffusivity coefficients used are cshock = [1, 6, 2]. (Colour online)

be present, but choose coefficients to optimally dampen such oscillations. The post-shock
density does not quite reach the analytic value.

We consider the effect of resolution in figure 6, by zooming in on the shock front at
this same moment in its evolution. For resolution below 128 grid points the numerical
solution is a poor approximation of the analytic solution.We see that the post-shock density
is slightly lower than the analytic solution, with correspondingly higher energy. We shall
show in section 3.3 that this asymptotic disparity with the analytic result is due to the mass
diffusion term. Apart from the smoothed profile at the shock front (x � 0.91) the greatest
numerical error arises for density and energy at the contact discontinuity (x � 0.81), where
a further step function evolves. As the resolution increases, the distribution converges to a
profile more closely aligned with the analytical solution. Even at the contact discontinuity
the errors mostly reduce, except for enhanced extrema nearest the discontinuity. Further
investigation is required to address this latter detail.

To test the convergence of the scheme, we compare for each resolution the L1 error
norm, given by ( Stone and Norman 1992)

ε =
( N∑

i=1

∣∣qi − q̃i
∣∣)/N, (23)

with N, qi and q̃i denoting the number of gridpoints, the numerical solution and analyt-
ical solution, respectively. The errors are shown in figure 7 for the moderate shock-tube
test, figure 4, and the high Mach number shock-tube resolution comparisons displayed in
figure 6. For the moderate solution, we find the convergence rate ε ∝ δx0.96, while for the
highMach number solution this reduces to δx0.74. So the higher order accuracy of the Pen-
cil Code is restricted to first-order accuracy for the shock handling. However, this is very
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Figure 6. Results for various grid resolutions (32–2048 grid points) for the high Mach number (> 100)
Riemann shock-tube test shown in figure 5. Figures show gas density, pressure, velocity and internal
energy, and the analytic solution. The diffusivity coefficients used are cshock = [1, 6, 2]. (Colour online)

Figure 7. Convergence study for the moderate shock tube test shown in figure 4 and the strong shock
tube test shown in figure 6. Fit values are shown in legend. Points with same colour were run at same
resolution in the two different models. (Colour online)

localised and the modelling of the turbulence, for which these methods are intended, still
mainly benefits from the higher order capabilities of the code.

3.3. Dependence on diffusivity andmass diffusion correction

The analytic solutions to the weak and moderate shock tube tests are reasonably satisfied
with modest artificial viscosity and artificial thermal diffusivity, without any requirement
to introduce artificial mass diffusion to the continuity equation. First we shall consider the
effects of the two former applications of diffusivity on the numerical solution and then we
shall discuss the motivation and consequences of adopting mass diffusion.
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Figure 8. Variation of solution for high Mach number shock tube (figure 5) with varying shock viscosity
coefficient νshock ∈ [1, 2, 4, 6, 8], compared to the analytic solution zoomed in near the shock front, at
t= 0.0014 and 256 zone resolution. Figures show gas density, pressure, velocity, internal energy and the
analytic solution (orange line). The diffusivity coefficients are cshock = [1, νshock, 2]. (Colour online)

When we consider the effect of the artificial viscosity for the strong shock tube test
(Mach 100), illustrated in figure 8, we see that for νshock = 1.0 an instability appears to
overpressure the shock, spreading the faster shock front and reducing its density. As the
viscosity coefficient increases the solution approaches the analytic value for the post-shock
density and energy, although more smoothed at the corners. The pressure and veloc-
ity shock fronts converge to the analytic position, although also slightly broadened, but
as seen in the resolution comparisons of figure 6, the solution improves as resolution
increases. As can be seen from νshock = 6 and 8, the numerical solution does not continue
to broaden, but approaches an asymptotic profile. Further increases do not significantly
smooth the shock profiles, but can reduce the timestep and induce nonlinear instabili-
ties due to increased viscous forces or viscous heating, as discussed in section 4.4. These
solutions adequately suppress the wiggles in the wake of the shock.

Now consider the dependence of the solution on the shock thermal conductivity χshock
shown in figure 9. In all profiles we find weak dependence on the strength of χshock. The
artificial thermal diffusion could reasonably be neglected, except for the density and energy
extrema in the wake of the contact discontinuity.

Compared to the dependence on artificial viscosity, increases in the shock thermal dif-
fusion beyond χshock = 4 or 8 appear to cause less additional diffusion. These values do
not appear strongly advantageous over values of 1 and 2, yet we know from experiments
with SN turbulence and the higher resolution snowplough tests reported in section 4 that
the slightly larger oscillations illustrated in the density profile for χshock = 0 are sufficient
to lead to numerical instability. We recommend a nonzero value of χshock, for moderately
compressible turbulenceχshock � 1.0 and for highly compressible turbulenceχshock � 2.0.
Higher values should be avoided to limit diffusion, particularly in energy.
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Figure 9. Variation of solution for high Mach number shock tube (figure 5) with varying shock thermal
diffusivity coefficient χshock ∈ [0, 1, 2, 4, 6, 8] at t= 0.0014 and 256 zone resolution. Figures show gas
density, pressure, velocity, internal energy, and the analytic solution (orange line), zoomed in near the
shock front. The diffusivity coefficients are cshock = [1, 6,χshock]. (Colour online)

In figure 10, we display results for varying values of Dshock. When this is set to zero,
the lag in the position of the shock front is largest, but the post-shock density approaches
the analytic value most closely. There does not appear to be convergence to an asymptotic

Figure 10. Variation of solution for high Mach number shock tube (figure 5) with varying shock mass
diffusion coefficient Dshock ∈ [0, 1, 2, 4, 8] at t= 0.0014, and 256 zone resolution. Figures show gas den-
sity, pressure, velocity, internal energy and the analytic solution zoomed in near the shock front. The
diffusivity coefficients are cshock = [Dshock, 6, 2]. (Colour online)
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Figure 11. Results with 256 grid points for high Mach number Riemann shock-tube interacting triplet.
Numerical solutions for density, velocity and energy are compared formass diffusion coefficientDshock =
0 and 1 at t= 0.0006 (left panels) and 0.0015 (right panels). cshock = [Dshock, 6, 2]. (Colour online)

profile as Dshock increases, with tests using values above 50 showing greater diffusion at
both the shock and the contact discontinuity. Larger magnitude extrema at the contact
discontinuity may even appear for higher values.

In all the experiments presented in this paper, the mass diffusion does not improve the
numerical solutions. However, the SN-driven turbulence experiments are susceptible to
numerical instabilities near interacting shocks, and artificial mass diffusion has been found
to suppress these effects. To investigate the underlying process, we applied a shock-tube test
with three initial discontinuities, designed to induce collisions between shock waves.

The initial density, velocity and energy profiles are displayed in figure 11, alongside
their evolved profiles at t=0.0006 and 0.0015 for Dshock = 0 and 1. At 0.0006, the energy
peak near x=0.5 is near the convergent flow and subject to the viscosity applying near the
shock. The energy near the compression is not more enhanced without mass diffusion. At
t=0.0015, the spike in energy at x=0.4 is almost an order of magnitude higher than at
t=0.0006, and is not near the compressive flows at x=0.5 and 0.3. The energy spike is sig-
nificantly enhanced without mass diffusion and is associated with a deeper local minimum
in the density.

We conclude from this analysis that modest artificial viscosity and thermal diffusivity
allow a reasonable representation of adiabatic shocks with high Mach number. The lag
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in shock position and thickness of the shock front in the lowest resolution runs are not
significantly dependent on the values of the diffusion coefficients, and are both resolu-
tion artefacts. The mass diffusion spreads the mass in the shock front beyond the analytic
region. Numerical instability in the full turbulent simulations seems to occur at interact-
ing shocks that produce wall heating and density deficits. Inclusion of mass diffusion likely
regularises these points, inhibiting numerical instability. Dshock � 1 or 2 is recommended
and appears sufficient to avoid numerical instability.

4. 3D supernova remnants

Previous tests of SNmodelling with the Pencil Code are reported in Gent (2012, Appendix
A). These included higher shock diffusivity coefficients, explicit shear viscosity and ther-
mal conductivity, and suppression of the cooling near shock fronts. We now use access to
greater computational resources to apply the tests across a wider range of ambient den-
sities and grid resolution, with enhanced timestep control, the improved treatment of
artificial viscosity described here and without unphysical suppression of radiative cooling.
Numerical results are compared with analytic solutions for an SN remnant expanding into
a perfect, homogeneous, monatomic gas at rest. For these experiments, we apply adiabatic
index γ = 5/3.

The SN energy is injected into the existing density distribution in a sphere with an initial
nominal radius of R0. The energy injection radial profile follows

E(R) = E0 exp
(
− [R/R0]2

)
, (24)

with normalising coefficient E0 set such that the volume integral of E(R) is 1051 erg. The
remnant origin is located on a grid point, and R0 � 5 grid zones. This provides a suf-
ficiently smooth initial shock front, which can also be handled in a highly nonuniform
turbulent injection site, while the remnant formed has a reasonably uniform internal
temperature.

Although the minimum initial radius is at least 5 grid zones, a further constraint is to
expand the injection radius to ensure at least 50M
 is present to limit extreme heating of
the gas and corresponding drops in the time step, as well as numerical instability. Conse-
quently the 0.001 cm−3 model has an initial radius of 78 pc. For these tests, the low density
models can cope with smaller injection radii, but in the turbulent systemwe need to ensure
there is enough total mass to avoid local numerical instability. Some authors avoid the
additional complications of turbulent injection sites by smoothing the gas to a uniform
density. For example, Joung and Mac Low (2006) adjust the radius to enclose 60M
, then
smooth the volume to a uniform density. To handle explosions in high density regions,
where delayed evacuation of the remnant interior induces excess cooling that can inhibit
the power of the SN, one solution is simply to delete enough mass inside the injection site
to allow high enough temperature or to move the mass to the remnant shell at injection. So
far, we have been able to avoid suchmeasures and, particularly when evolving the dynamo,
would prefer not to unphysically remove the gas from the magnetic field or consider also
rearranging its ambient vector potential field.
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Figure 12. Time evolution of remnant shell radius in the adiabatic Sedov–Taylor regime for ambient
gas number density between 0.1 and 5 cm−3 with resolution along each side of 4 pc. The diffusivity
coefficients used are cshock = [1, 6, 2] and viscosity ν = 0.004cs kpc km s−1. (Colour online)

4.1. Adiabatic remnant

The early stages of SN evolution are approximately adiabatic. For a uniform ambi-
ent medium they are well described by the Sedov–Taylor analytic solution (Tay-
lor 1950, Sedov 1959),

R =
(

κ
ESN
ρ0

)1/5
t2/5, (25)

where R is the remnant radius, ESN the explosion energy, ρ0 the ambient gas density and
the dimensionless parameter κ ≈ 2.026 for γ = 5/3 (Ostriker and McKee 1988).

In figure 12 for a range of ambient ISM densities, we compare the radial evolution of the
remnant shell between our numerical models and the analytic solution described by (25).
The coefficients used are cshock = [1, 6, 2]. As explained in section 2.5, we also include
for all SN remnant experiments viscosity ν � cs δx to verify that the numerical solution
remains valid for the parameters relevant to modelling SN-driven turbulence. The power
law growth of the radius is in reasonable agreement with the analytic prediction, while
only slightly more retarded as the ambient density increases. From (19), we see a contribu-
tion to the viscous forces from the gradients of ln ρ, ν and ∇·u. The net effect is negative,
becoming more relevant as density increases.

4.2. Momentum conserving, pressure-driven andmomentum-driven snowplough

When radiative cooling processes are included, the SN evolution changes. The Pencil Code
currently has two implementations of radiative cooling associatedwith SN turbulence, both
based on piecewise power law dependence of the cooling coefficient on temperature. These
are described in Gent et al. (2013a, see their figure 1) and are based on Rosen et al. (1993)
(RB) and a combination of Wolfire et al. (1995) and Sarazin and White (1987) (WSW).
The contribution from FUV heating follows Wolfire et al. (1995) (see Gent et al. 2013a),
which is truncated for temperatures above 104 K. As the remnant expands and the shock
front accumulates more gas from the ambient ISM, cooling becomes more efficient in
the increasingly dense shell. With the loss of energy, the shell speed falls. The standard



18 F. A. GENT ET AL.

momentum-conserving snowplough solution for a radiative SN remnant has the form

R = R0
[
1 + 4

Ṙ0
R0

(t − t0)
]1/4

, (26)

where R0 is the radius of the SN remnant at the time t0 of the transition from the adia-
batic stage and Ṙ0 is the shell expansion speed at t0. The transition time is determined by
Woltjer (1972) to align with half of the SN energy being lost to radiation; this happens
when

Ṙ0 = 230 km s−1
( n0
1 cm−3

)2/17 ( ESN
1051 erg

)1/17
, (27)

with n0 the gas number density of the ambient ISM. The transitional expansion speed thus
depends very weakly on parameters.

Cioffi et al. (1988) obtained numerical and analytical solutions for an expanding SN
remnant with special attention to the transition from the Sedov–Taylor stage to the
radiative stage. These authors adjusted an analytical solution for the pressure-driven snow-
plough stage to fit their numerical results to an accuracy of within 2% and 5% in terms of
R and Ṙ, respectively. (Their numerical resolution was 0.1 pc in the interstellar gas and
0.01 pc within ejecta.) They thus obtained

R = Rp
(
4
3
t
tp

− 1
3

)3/10
, (28)

where the subscript p denotes the radius and time for the transition to the pressure-driven
stage. The estimated time of this transition is

tp � 13Myr
(

ESN
1051 erg

)3/14 ( n0
1 cm−3

)−4/7
. (29)

This continues into the momentum-driven stage with
(

R
Rp

)4
= 3.63 (t − tm)

tp

[
1.29 −

(
tp
tm

)0.17
]

+
(
Rm

Rp

)4
, (30)

where subscript m denotes the radius and time for this second transition,

R4m = 4.66
t
tp

[
1 − 0.939

(
t
tp

)−0.17
+ 0.153

(
t
tp

)−1
]

(31)

and

tm � 61 tp

(
Ṙej

103 km s−1

)3 (
ESN

1051 erg

)−3/14 ( n0
1 cm−3

)−3/7
, (32)

where Ṙej � 5000 km s−1 is the initial velocity of the 4M
 ejecta. The shell momentum in
the latter solution tends to a constant, and the solution thus convergeswith themomentum-
conserving snowplough (see (26)); but, depending on the ambient density, the expansion
may become subsonic and the remnant merge with the ISM beforehand.
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To ultimately follow the analytical solution we require the injection radius to be sig-
nificantly less than Rp, so that the early evolution remains adiabatic. Although, in most
cases our remnant injection site is sufficiently compact and diffuse to evolve to follow the
analytical solution, for low resolution and high ambient density, R0 may be near or even
beyond Rp. In such cases an adjustment needs to be made to compensate for the radiative
losses that would have preceeded. We follow the approach of Simpson et al. (2015, their
equation (16)) to define a fraction fkin of ESN injected as kinetic energy.

fkin = 3.97 × 10−6μ

δx2
n0
ESN

R7p
t2p

, (33)

where μ is the mean molecular weight, and Rp and tp themselves depend on n0 and
ESN, and metallicity Z, which we assume to be 1. Rp, tp and ESN are normalised by pc,
103 years and 1051 erg, respectively. Following Kim and Ostriker (2015) we normalise n0
by ρ0/(1.4mH), assuming 10% helium abundance andmH the hydrogen atomic mass. This
fraction can be greater than 1 and a high fraction of kinetic energy makes the model
more vulnerable to numerical instability, so we apply a cap of 0.075, and apply only where
Rp < 1.5R0 for δx > 1 pc.

The remnant shell radial profiles are computed for the ambient densities n0 =
(0.001, 0.01, 0.1, 1, 5) cm−3 used in the tests reported here. Although these semi-analytical
models are a useful comparison to examine the accuracy of our numerical models, there
are differences to consider. The Cioffi et al. (1988) 1D analysis was conducted for ambi-
ent ISM with number density 0.1 cm−3 and ambient temperature 10K to ensure the blast
wave remained strong; their cooling follows a different piecewise power law fit (Raymond
et al. 1976) than we use, and is truncated below 1.2 · 104 K; and they do not include UV
heating. They use resolution 0.1 pc outside the remnant and 0.01 pc to resolve the ejecta.
Because heating and cooling apply in our models at lower temperatures, for each density
and each cooling function the ambient temperature is set at thermal equilibrium, so the
external pressure remains constant over time.

Results for the RB cooling curve are illustrated in figure 13. The power law is a good
fit for the ambient density 0.1 cm−3, most closely matching the Cioffi et al. (1988) setup,
although the shell radius is somewhat retarded in our model.

In figure 14, we see better agreementwithCioffi et al. (1988) for the combination cooling
model, except for ambient density n0 = 5 cm−3. This is accounted for by the truncation
in the cooling applied by Cioffi et al. (1988). For comparison, we tested the combination
cooling model with cooling truncated below 1.2 × 104 K and obtain excellent agreement
with the analytic solution at all ambient densities as shown in figure 14. The cooling at
all temperatures is faster for the RB model than the combination WSW cooling model, so
it is understandable that the remnants in the former case would expand slower. We note
that the ambient temperatures vary between the model cooling function and its truncated
version, since we applied a thermostatic equilibrium to the ambient ISM, and hence the
truncated models have merger with the ISM earlier at the higher sound speed. The time at
which the remnant reaches Mach 2 (non-truncated cooling) is added to indicate how close
the numerical solution is to the analytic solution when the remnant is near to becoming
subsonic with respect to the ambient medium.
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Figure 13. Timeevolutionof remnant shell radius followingcooling functionofRB for ambientgasnum-
ber density between 0.001 and 5 cm−3 with grid cell resolution of 4 pc. The diffusivity coefficients used
are cshock = [1, 6, 2] and ν = 0.004cs kpc km s−1. (Colour online)

Figure 14. Time evolution of remnant shell radius following cooling function of WSW, and for the same
cooling function, but truncated below T = 1.2 × 104 K for ambient gas number density between 10−3

and 5 cm−3 at grid resolution of 4 pc. The Cioffi et al. (1988) analytic solution is indicated for comparison.
The diffusivity coefficients used are cshock = [1, 6, 2] and ν = 0.004cs kpc km s−1. The time is marked at
which the shell speed has slowed to Mach 2 for the non-truncated cooling model. (Colour online)

The relationship between cooling, temperature and density is nonlinear, so it is not
clear that the relations derived by Cioffi et al. (1988) for 0.1 cm−3 ambient ISM should
also apply for the other densities. Nonetheless the results at all ambient densities seem
reasonable. For higher densities (above 1 cm−3) at this resolution, the inclusion of fkin
is required.
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Figure 15. Two-dimensional quarter slices from the z= 0 plane depicting gas number density, tem-
perature and x-component of velocity. Ambient gas number density is (top) 5 cm−3, (middle) 0.1 cm−3

and (bottom) 10−3 cm−3. Each snapshot corresponds to the time at which the remnant shell speed
falls to Mach 2 for the ambient ISM. Note the resulting order of magnitude change in the size scale
(and thus numerical resolution of the shock) from top to bottom. The diffusivity coefficients used are
cshock = [1, 6, 2] and ν = 0.004cs kpc km s−1. (Colour online)

4.3. Effects of ambient density, resolution and diffusivity

Snapshots of the remnant density, temperature and velocity distributions at 4 pc resolution
for ambient densities 5, 0.1 and 0.01 cm−3 are displayed in figure 15. The 3D simulations
are on a Cartesian grid, with the SN origin at 0. As the profile is symmetric, unnecessary
duplication is avoided by displaying a quarter plane. The snapshots are at times when the
shell expansion is near Mach 2. In the middle column, the cooling shell is faintly visible for
5 cm−3, where its temperature has dropped below the ambient medium, while in the lower
density runs the shell has not yet cooled below the ambient ISM although visibly cooler
than the external shocked region.

For ambient density 1 cm−3, we explore the effects of resolution. At this density, the ther-
mal equilibrium with the WSW cooling and heating occurs at about 2185K, which is on
a thermally unstable branch of the cooling curve. In developing the numerical model this
density proved to be more vulnerable to instabilities than either lower or higher densities.
It therefore was of most interest for the resolution tests.
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Figure 16. Time evolution of remnant shell radius following the combined cooling function of WSW
for unit ambient density at grid resolution of 0.5–4 pc. With increasing resolution the numerical solution
converges to the semi-analytic solution of Cioffi et al. (1988). The diffusivity coefficients used are cshock =
[1, 6, 2] and ν = cs δx. The time ismarked atwhich the shell speed has slowed toMach 2. For comparison
at 4 pc resolution, we show the effect of including a fraction fkin of the SN energy as kinetic. (Colour
online)

In figure 16, we compare the time evolution of the shell radius for grid resolutions of
0.5–4 pc at ambient density 1 cm−3. There is convergence towards the analytic result with
increasing resolution. In comparing these results, we apply resolution-dependent opti-
mal radius R0 � 7.9, 8.5, 9.2 and 17 pc, respectively with increasing zone size, and with
fkin = 0. Alternatively, fixing R0 = 17 pc, the minimum size required to resolve a sphere
at 4 pc resolution yields solutions that are consistently slower with increasing resolution.
This is because, the remnant shell reaches higher densities, permitting more efficient cool-
ing. Although a radius R0 = 17 pc sphere covers 4.25 grid zones at 4 pc resolution, this is
not ideal to represent a sphere on a Cartesian grid. The evolving spherical shell is adequate
with a radius of R0 = 24 pc, but with purely thermal energy injection is subject to exces-
sive energy losses. Including the kinetic energy adjustmentwith fkin > 0 produces excellent
agreement at all resolutions, as intended. Such a solution at 4 pc resolution is included in
figure 16 to illustrate the effectiveness of the adjustment.

Slices of snapshots from these runs while the shell is expanding at Mach 2 into the
ambient ISM are displayed in figure 17. At 4 pc resolution, we see that the shell has not
yet started to cool below the ambient ISM temperature (figure 17 a, middle panel), while
at 2 pc and below, cooling occurs. In previous Pencil Code SN-driven turbulence at 4 pc
resolution cold gas below 100K was present, but this result suggests they arose primarily
from compression fronts at remnant interactions and general turbulent shocks.

The reverse shocks seen in the remnant interior at moderate resolution in figures 15
and 17 occur because the ambient pressure is non-zero, and the energy input is not an
idealised point source. In the diffuse interior with low momentum these velocities can be
higher than the remnant shell speed. The effect reduces with increasing resolution, since
the coarse Cartesian grid defining the injection sphere exacerbates this effect.

Slices of the highest resolution model of 0.5 pc grid spacing are shown in figure 18 for
snapshots at the time when the shell reaches Mach 2 for models including shear viscosity
ν and without. With ν = 0, we see the emergence of the Vishniac–Ostriker–Bertschinger
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Figure 17. Varying resolutionmodels,with (a) δx = 4 pc, (b) 2 pc and (c) 1 pc. Two-dimensional quarter-
slices from the z= 0 plane depicting gas number density, temperature and x-component of velocity are
shown. Ambient gas number density is 1 cm−3. The diffusivity coefficients used are cshock = [1, 6, 2] and
ν = cs δx. (Colour online)

(Vishniac 1983, Vishniac et al. 1985) overstability arising from the cooling reducing the
thickness of the shell. The overstability can be seen entering the nonlinear phase in the
thin, dense, cooled shell (see Mac Low and Norman 1993, for a detailed analysis), but this
is suppressed with ν = 0.0005cs.

4.4. Timestep dependence

The timestep for snowplough tests (see section 4.3) with grid resolution 0.5–4 pc is plotted
in the first panel of figure 19. Based on the diffusive timestep control, the dependence on
resolution would be expected to be quadratic in the change in δx, such that the timestep for
the δx = 0.5 pc run would be four times smaller than that of the δx = 1 pc run. In these
relatively simple single SN expanding shocks, the magnitude of the viscous forces does
not much exceed 106 km s−1 Gyr−1 and the timestep control is dominated by the artificial
thermal diffusivity ζχ . From the second panel of figure 19, it is evident that the maximal
convergence, and therefore also ζχ , approximately halves for each doubling in resolution.
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Figure 18. Varying diffusivity coefficients cshock = [1, 6, 2] and ν = 5 · 10−4cs kpc km s−1 (upper) and
ν = 0 (lower). Two-dimensional quarter-slices from the z= 0 plane depicting gas number density, tem-
perature and x-component of velocity are shown. Ambient gas number density is 1 cm−3 and the grid
resolution is 0.5 pc. The bottom panel shows Vishniac–Ostriker–Bertschinger overstability, which is
absent in the top panel where the shear viscosity suppresses the effect. (Colour online)

Figure 19. First panel: timestep evolution in unit ambient density single SN explosion runs with grid
resolution of 4, 2, 1 and 0.5 pc. Second panel: evolution of the maximal value of convergence included
in the artificial diffusion coefficients. (Colour online)

This indicates that the explicit artificial diffusivities are inversely proportional to the grid
resolution. Thus the timestep appears to drop only linearly with grid cell size, rather than
with the quadratic dependence expected for constant diffusivity.

To demonstrate the effect on timestep in evolved turbulent systems, where the viscous
forces and temperature gradients are large enough to impact the stability, the timestep and
maximum convergence are plotted in figure 20 for simulations with grid spacing of 1.56 pc
and 0.78 pc. The models apply random SN forcing to an unstratified magnetised ambient
ISM with gas number density 1 cm−3 in a periodic slab.
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Figure 20. First panel: timestep evolution in SN-driven turbulent simulations in unstratified periodic
boxes with grid resolution of 1.56 and 0.78 pc. Dotted lines indicate the average timestep for each sim-
ulation. Dshock, νshock,χshock = 1, 4, 4. Second panel: evolution of the maximal value of convergence
included in the artificial diffusion coefficients. (Colour online)

The time series are extracted from a statistical steady turbulent system, in which the
magnetic field has saturated at a strength of a few μG. Temporal mean rms velocity,
maximum velocity, and gas density and temperature extrema have similar values in each
simulation. The timestep with the increased resolution is on average 2.44 times smaller.
The magnitude of the maximal convergence displayed in the second panel of figure 20
does not differ much due to resolution, as in the case of the single SN simulations. The
drop in timestep remains approximately linear with grid cell size, but not due to the lower
strength of convergence. The timestep is most often controlled by the gradients in the flow
and the temperature. Both are typically higher with increased resolution, but the cost is
again lower than the quadratic dependence associated with constant diffusivity.

5. Summary of results

In order to stabilise shocks in the high-order Pencil code, we have demonstrated the use
of a von Neumann artificial viscosity, as implemented for example by Stone and Nor-
man (1992), in combination with the application at the shock front of artificial thermal
diffusivity and mass diffusion to the energy and continuity equations. This combination
reduces the vulnerability of the Pencil Code to numerical instability while significantly
reducing the overall diffusivity of the model previously applied by Gent (2012) to
SN-driven turbulence in the ISM. The inclusion of artificial mass diffusion alters the deter-
mination of momentum and energy, and we implement a correction term to each equation
to consistently conserve their properties. Similar artificial mass diffusion has been applied
by, for example, Ryutov et al. (2005) and Johansen et al. (2006, 2009), but without explicit
corrections to the momentum and energy equations.

We have also introduced novel additional tools for controlling the timestep depending
on the sum of all terms on the right-hand side of the momentum equation and the energy
equation. These stabilise the code by constraining the time step based on the maximal
change in time of the force and heating at each iteration. Empirically, we find the viscous
forces, viscous heating and temperature gradients tend to be extremely high in the SN tur-
bulence, and can introduce numerical instabilities if the timestep is not sufficiently small
to resolve the time evolution. The alternative of just reducing the Courant number for the
diffusive timestep may work, but as it is based on the diffusion coefficients alone tend to
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reduce the timestep more universally. The adaption to the maximal forces or heating acts
only when they are largest, often in the aftermath of an SN, so the timestep can recover
subsequently. Another advantage is that the timestep can be less sensitive to decrease in
grid spacing compared to the diffusive timestep, which scales inversely with the square
of the grid spacing. This is because the unified time steps tend to be proportional to the
size of the cell-to-cell velocity gradients, which decrease with decreasing cell size. Hence,
increases in resolution need not be so comparatively numerically expensive.

The code reaches reasonable agreement with the Riemann shock tube test for shocks
exceeding Mach 100 for a range of resolutions. A minimum value of νshock = 4 is required
for the artificial viscosity coefficient for such high Mach numbers and some artificial ther-
mal diffusivity is required to dampen instabilities in the wake of the shock front. The
replication of the strong shock profile is relatively insensitive to changes in the coefficients
νshock and χshock, in the range 4–8. Grid resolution, rather than the size of the artificial
diffusivity coefficients, is the primary determinant of the level of smoothing present in the
numerical shock profiles. The divergence of the flow is inversely proportional to the grid
size, so the effective artificial diffusivity as function of resolution scales approximately as
νshock δx−1.

The capacity of the code to model SN blast waves was tested against the Sedov–Taylor
analytic and Cioffi et al. (1988) semi-analytic solutions. Simulations were evolved until the
blast wave becomes subsonicwith respect to the ambient ISM. Themodels give good agree-
ment with the Sedov–Taylor t2/5 power law for the SN remnant shell radius evolution over
a range of ambient ISM gas number density 0.1–5 cm−3 even for a coarse grid resolution
of 4 pc.

When cooling is included the numerical models agree reasonably with the Cioffi et
al. (1988) offset power law for the shell radial expansion rate, for ambient gas number
densities 1 cm−3 and below. Making allowances for preceding cooling losses by applying a
fraction of the energy as kinetic (Kim and Ostriker 2015, Simpson et al. 2015), our models
with 4 pc grid resolution and more dense ambient ISM also yield good agreement with the
analytic solutions. This is for both cooling functions tested, and notwithstanding that the
semi-analytic solution was derived from simulations with a different cooling prescription,
and were only performed for ambient density 0.1 cm−3. We demonstrate that differences
between the numerical and analytical solutions are well explained by the differences in the
efficiency of the cooling function models.

The effect of resolution was examined, and convergence to the semi-analytic solution
was evident for increases in grid resolution from4 pc to 0.5 pc in the fiducial 1 cm−3 model.
Using less than five grid cells to resolve the initial remnant radial profile tends to be insuf-
ficient to approximate a spherical energy source on the Cartesian domain, including the
sphere origin explicitly as a gridpoint yields the optimal spherical evolution of the rem-
nant. At high resolution, a smaller injection radius improves convergence, but a larger
number of grid zones than five to model the injection radial profile is required to retain
a stable solution. For grid resolution below 1.0 pc Vishniac–Ostriker–Bertschinger thin
shell overstability begins to appear if no shear viscosity is implemented.

To directly induce cooling below the ambient temperature in the remnant shell, as
opposed to relying on shock interactions, a grid resolution of 2 pc or better is required.
However, for the purposes of modelling turbulence and the dynamo, where it is adequate
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to capture the appropriate forcing energy, velocities and length scales to drive the turbu-
lence, even the lowest grid resolution considered here provides good agreement with the
analytic solutions.

This detailed analysis of the treatment of strong shocks and minimal diffusivity enables
the code to now combine the large scale dynamo processes already present in Gent et
al. (2013b) with a prescription capable of supporting the small-scale turbulent dynamo
as present, for example, in Balsara et al. (2004). Further, investigation of the dependence
and effect of individual SN explosions in idealised uniform and stably stratified ISM with
magnetic fields and cosmic rays is a natural extension of this study.
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