
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20

Geophysical & Astrophysical Fluid Dynamics

ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: https://www.tandfonline.com/loi/ggaf20

Driving solar coronal MHD simulations on high-
performance computers

Philippe-A. Bourdin

To cite this article: Philippe-A. Bourdin (2019): Driving solar coronal MHD simulations
on high-performance computers, Geophysical & Astrophysical Fluid Dynamics, DOI:
10.1080/03091929.2019.1643849

To link to this article:  https://doi.org/10.1080/03091929.2019.1643849

Published online: 29 Jul 2019.

Submit your article to this journal 

Article views: 19

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ggaf20
https://www.tandfonline.com/loi/ggaf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03091929.2019.1643849
https://doi.org/10.1080/03091929.2019.1643849
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ggaf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03091929.2019.1643849
https://www.tandfonline.com/doi/mlt/10.1080/03091929.2019.1643849
http://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2019.1643849&domain=pdf&date_stamp=2019-07-29
http://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2019.1643849&domain=pdf&date_stamp=2019-07-29


GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS
https://doi.org/10.1080/03091929.2019.1643849

Driving solar coronal MHD simulations on high-performance
computers

Philippe-A. Bourdin

Space Research Institute, Austrian Academy of Sciences, Graz, Austria

ABSTRACT
The quality of today’s research is often tightly limited to the avail-
able computing power and scalability of codes to many proces-
sors. For example, tackling the problem of heating the solar corona
requires a most realistic description of the plasma dynamics and the
magnetic field. Numerically solving such amagneto-hydrodynamical
(MHD) description of a small active region (AR) on the Sun requires
millions of computation hours on current high-performance com-
puting (HPC) hardware. The aim of this work is to describe meth-
ods for an efficient parallelisation of boundary conditions and data
input/output (IO) strategies that allow for a better scaling towards
thousands of processors (CPUs). The Pencil Code is tested before
and after optimisation to compare the performance and scalability
of a coronal MHD model above an AR. We present a novel bound-
ary condition for non-vertical magnetic fields in the photosphere,
where we approach the realistic pressure increase below the pho-
tosphere. With that, magnetic flux bundles become narrower with
depth and the flux density increases accordingly. The scalability is
improved by more than one order of magnitude through the HPC-
friendly boundary conditions and IO strategies. This work describes
also the necessary nudging methods to drive the MHD model with
observed magnetic fields from the Sun’s photosphere. In addition,
we present the upper and lower atmospheric boundary conditions
(photospheric and towards the outer corona), including swamp lay-
ers to diminish perturbations before they reach the boundaries. Alto-
gether, these methods enable more realistic 3D MHD simulations
than previous models regarding the coronal heating problem above
an AR – simply because of the ability to use a large amount of CPUs
efficiently in parallel.
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1. Introduction

Cutting-edge science is often limited only by computational resources. More realistic
models come into reach with the continuously increasing computer power. One such fun-
damental step towards better understanding the famous coronal heating problem and
plasma heating mechanisms was achieved with the work of Bourdin et al. (2013) and
their following publications. This step only became feasible, because the Pencil Code got

CONTACT Philippe-A. Bourdin Philippe.Bourdin@oeaw.ac.at
This article has been republished with a minor change. This change does not impact the academic content of the article.

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03091929.2019.1643849&domain=pdf&date_stamp=2019-07-31
http://orcid.org/0000-0002-6793-601X
mailto:Philippe.Bourdin@oeaw.ac.at


2 P.-A. BOURDIN

extended with some massive-parallel methods that enabled large-scale models to be run
within the time of a typical PhD contract. Otherwise, scaling to less processors, the main
simulation run described in Bourdin et al. (2013) would have taken about four years using
256 processors instead of about one year it took with 1024 processors.

The coronal heating mechanisms are unclear since many decades (Klimchuk 2006).
For a better understanding of the coronal heating, novel models need to be as realistic
as possible, so that the most relevant physical processes may be captured and analysed in
a data post-processing step. It is currently not possible to use only observations for that
task, because some key quantities like the coronal 3D structure and amplitude of the mag-
netic field still remain inaccessible. Still, long-standing theories need to be verified, like
the entangling of magnetic field lines in the corona through shuffling of footpoints in the
photosphere (Parker 1972). This could lead to so-called nanoflares that heat the corona
through small and short-lived magnetic reconnection events after the field became entan-
gled in the corona (Parker 1988). Magneto-hydrodynamic (MHD) turbulence and Alfvén
wave turbulence compete to explain the coronal heat input (see the results of Rappazzo et
al. 2007, 2008 versus results from van Ballegooijen et al. 2011, 2014). More recent models
may test these scenarios against a realistic coronal magnetic field configuration (Bourdin
et al. 2016).

We complement the approach of Rempel (2012) that includes parts of the convection
zone below the photosphere to drive the magnetic field. While Rempel (2017) uses more
advanced physics, our models are driven by actual photospheric observations and hence
are able to match observed structures in the corona directly. This work is a continuation of
Pencil Code models, like first presented in Bingert et al. (2010) that led to a better under-
standing on why the cross-section of coronal loops appears as roughly constant (Peter and
Bingert 2012). Still, we do not know if such loops have a single- ormulti-stranded structure
in their magnetic fields (Peter et al. 2013). Chen et al. (2014) use a convection simulation
with two emerging sunspots to drive a separate corona model. Peter et al. (2015) review
what MHD models can tell us on coronal heating mechanisms. For different phenomena,
like type-II spicules or amore realistic chromosphere, other groups include radiative trans-
fer or ambipolar diffusion in their equation sets (Hansteen et al. 2010, Martínez-Sykora
et al. 2011, Wedemeyer-Böhm et al. 2012).

We note that the Alfvén velocity is at least about one order of magnitude larger in the
corona than in the chromosphere, which suggests that any changes in the chromospheric
magnetic field would almost instantly and quasi-statically change the coronal field config-
uration (Bourdin et al. 2014, 2015). The field may either reconnect and release magnetic
twist into the solar wind, the twisting magnetic perturbation may leave the corona before
a substantial twist is build up on “open” field lines that connect to the heliosphere, or the
perturbationmay cross the whole corona on closed loops and eventually twist the chromo-
spheric field on the other end of the loop, where the Alfvén velocity becomes lower again.
To address this topic, we need to know the coronal field more precisely and wemay indeed
track coronal field lines from 3DMHDmodel data (Bourdin et al. 2018).

In order to obtain realistic coronal magnetic fields, we need to drive the MHD sim-
ulation with observations of real solar magnetograms, e.g. of a full active region (AR)
that features some coronal EUV-bright loops that are known to be at least 1MK hot. We
cover an AR with some surrounding quiet Sun (about 240 × 240Mm2) with 1024 × 1024
grid points. The vertical grid resolution varies form about 100 km for the photosphere



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 3

and chromosphere to about 800 km in the upper corona. Furthermore, the photospheric
horizontal shifting motions from granulation are required to ultimately test the field-line
braiding mechanism. To this end, we implemented a photospheric granulation driver in
the solar_corona module of the Pencil Code together with schemes for photospheric
and chromospheric nudging that always gently push the model towards the observed state
in the photosphere and that provide a lower solar atmosphere that adapts to pressure and
temperature stratification changes in the corona. Our chromosphere acts here as a flexible
lower boundary condition and as a reservoir for mass and internal energy, which is also
the case in reality, because the lower atmosphere hosts significantly more mass than the
corona.

With a novel boundary condition for the photospheric magnetic field we allow the
granulation driver to push the foot points of field lines. This changes the horizontal com-
ponent of the magnetic field already in the photosphere and in the grid cells above, which
is required to test the braiding mechanism proposed by Parker (1972). Therefore, we
need to extrapolate the magnetic field to the interior of the Sun, in order to provide the
required ghost zones for the computation of numerical dervatives. Because the pressure
increases below the photosphere, magnetic flux tubes shrink in their diameter with depth;
see section 2.4 for details.

In the following we describe the photospheric and chromospheric nudging, the granu-
lation driver, a new magnetic-field extrapolation, as well as coronal boundary conditions.
Finally, we analyse the parallelisation of the Fourier transform and the data access (IO)
routines.

2. Photospheric nudging

The photosphere is the lower boundary condition for our simulation domain. This requires
us to set the temperature T, the density ρ, and the vertical components of the vector quan-
tities that are perpendicular to this boundary, the vertical velocity uz and the magnetic
field Bz. In the photosphere, the convective cells from below practically reach the layer,
where radiation efficiently cools the plasma.Hence, the advective heat transport by convec-
tion ends and the vertical transport of hot plasma breaks into granules, where the plasma
motion has a horizontal component of some km/s at about 0.5–0.8Mmaround the granule
centre (Ruiz Cobo et al. 1996). Once cooled, the now denser plasma gets submerged below
the surface due to gravity and will eventually be heated again to complete the convection
cycle.

In the same time, we know that plasma beta, the ratio between thermal and magnetic
pressure, is near or above unity at the photosphere, in average (Bourdin 2017). As a result,
the horizontal motions of breaking granules will advect the magnetic field with them.
Many subsequently rising and decaying granules may push the field lines even on spatial
scales larger than one single granule and in a random-walk fashion. Finally, magnetic flux
bundles are rooted below the photosphere and constantly undergo a smooth global recon-
figuration due to dynamo processes, which leads to horizontal motions of these patches on
spatial scales much larger than one granule, but typically with a significantly lower speed.
To complete the spectrum of photospheric driving motions, we will need to consistently
combine both, small-scale granular motions and the large-scale magnetic reconfiguration
in the photosphere.
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2.1. Magnetic field

For the photosphericmagnetic field nudgingweuse actual observations of theHinode satel-
lite, where the data from SOT/NFI (Solar Optical Telescope/Narrowband Filter Imager)
give us the line-of-sight (LOS) component of themagnetic field in the photosphere (Kosugi
et al. 2007, Tsuneta et al. 2008); see gray-scale background in figure 1. The resolution of our
LOSmagnetograms is about 120 kmper pixel.Magnetograms do not resemble visible-light
intensity observations (cf. Bourdin 2011) and hence we do neither directly see the granules
in such magnetograms nor could we derive the horizontal plasma motions. Even intensity
maps of the photosphere from the same telescope would not resolve a granule with more
than a few pixels. Therefore, we cannot recover the horizontal granular advection from
Hinode data and have to find another way to mimic realistic granulation; see section 2.3.

The LOSmagnetograms are uncalibrated and we use the smaller field-of-view (FOV) of
the SOT/SP (Spectro-Polarimetric) instrument (Lites et al. 2013) that provides calibrated
vector magnetograms and co-align both, the LOS and SP data, while we reduce the resolu-
tion of the LOS to the SP data. A pixel by pixel comparison allows us to find the calibration
factor for the full-FOV LOS magnetograms. For consitency, we also interpolate two LOS
magnetograms in time to match the exact SP observation time. Because both instrument’s
detectors have a slight rotation against each other, we split the common FOV in about
8 × 8 subfields and coaling them separately. These steps help to reduce the broadness of
the scatter in the distribution of the correlated data that we show in figure 2.

Figure 1. Hinode line-of-sight magnetogram (grayscale, saturated at ±300 G) with overlaid velocity
vectors (blue) obtained with a local correlation tracking. The observation was made near disc centre
and is from 2007 November 14 (colour online).
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Figure 2. Distribution of co-aligned uncalibrated SOT/NFI and calibrated SOT/SP data. The red line rep-
resents a least-absolute-deviation (LAD) fit with its uncertainty interval marked by dotted lines. Figure
taken from Bourdin (2014a); see figure 2.4 on page 31 (colour online).

The horizontal extent of our NFI FOV is about one seventh of the solar radius. We
correct the LOS magnetograms for the surface curvature within the FOV of SOT/NFI by
assuming that all strong flux concentrations are mainly vertical, so that we may scale the
magnetic field amplitude of both polarities with 1/ cos θ , where θ is the angle between the
LOS and the vertical direction. We now co-align the time series of magnetograms to the
one inmiddle of the time series so that we correct for spacecraft jitter and the rotating Sun.
Finally, we crop all images to their common FOV.

For each of the magnetograms we rescale both polarities separately and with a constant
factor to obtain flux-balanced observations. This is required here to avoid an average mag-
neticmonopole that would force all of its flux to leave through the upper boundary, because
the simulation domain is periodic in the horizontal directions. Also this avoids unwanted
effects from a time-varying total flux that would have to propagate immediately through
the whole domain because of our boundary conditions and hence disturb the actual coro-
nal magnetic field in an unnatural way. In any case, the total magnetic flux of the whole Sun
is always zero. Natural localised flux imbalances on the real Sun cause magnetic connectiv-
ity to remote regions, which we cannot include in our model due to the limited simulation
domain size. The connectivity that we miss through our flux balancing is minor and does
not significantly change the field geometry in our model.

When we use a non-periodic magnetogram for a periodic simulation domain, we need
to overlap the boundaries of the magnetogram with a smooth transition at the borders of
the observable FOV. This makes the magnetograms periodic and we do not see artefacts
in our model if the overlap region is about 24 pixels or about 6Mm wide.
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If we would now simply impose the obtained flux-balanced time series of LOS mag-
netograms on our lower boundary for all times, the magnetic field description would
on one hand be perfectly consistent with the observation. On the other hand, we would
effectively stop the granular driving to operate, because of two reasons: First, the gran-
ular motions are not directly recovered with LOS magnetograms. Second, our gran-
ulation driver can practically never advect a magnetic field line, because its original
state would get restored in the next iteration of the simulation. Therefore, we have to
allow the granulation to advect the field lines and in the same time we have to care-
fully restore the observed magnetic state. Luckily, small-scale granules live much shorter
than the large-scale magnetic field needs to change substantially. This allows us to apply
two nudging processes on different time scales, where we push the model into the tar-
geted states by an exponential decay with distinct characteristic half times for each
process.

2.2. Local correlation tracking

Once we want to allow for time-varying magnetograms at the lower boundary, we need
to apply also horizontal plasma motions that are consistent with the displacement of the
observed magnetic patches. When plasma beta is around unity, the magnetic field can
be shifted from plasma motions or the plasma can be dragged together with moving
field lines. Both ways, the magnetic field displacement and the plasma motion should be
consistent. Therefore, we deduce the horizontal motions of magnetic patches with a local-
correlation-tracking (LCT) method and obtain another lower-amplitude velocity field on
spatial scales larger than granules. This LCT velocity field we also need to apply in the
photosphere.

Even though we omit here electric fields that are in principle necessary to fulfill the
induction equation, the good match of the simulated AR corona with the observed one
(Bourdin et al. 2013) supports this simplification. Still, the question remains how much
the coronal heat input may change if we include those omitted photospheric electric
fields.

In the first step to obtain a velocity field out of a magnetogram time series, we rebin
the data to the optical resolution, which means we bin a square of 2 × 2 pixels into one
simulation pixel of about 235 km side length. Then we compute the local cross-correlation
coefficients of two consecutive frames of the time series, where we shift the frames to each
other by one pixel in each direction. Together with the original zero-shift correlation coef-
ficient this gives us five coefficients, where we find the sub-pixel shift vector as the local
maximum of a five-point Gaussian fit along two spatial dimensions. We apply a Gaussian-
convolution filter to the obtained map of shift vectors to remove small-scale fluctuations
that we are not interested in. Finally, we need to interpolate this vector field at the actual
pixel positions of our simulation grid.

The resulting velocity field from our LCTmethod is displayed as blue arrows in figure 1.
As we see, some magnetic patches are surrounded by a local velocity field pointing in one
direction, where the strongest velocity is near the centre of that patch; see black patch at
x = 25Mm and y = 8Mm in figure 1. The correlation decays with distance from the flux
concentrations, which is expected because one cannot deduce a horizontal velocity from
two consecutive insignificant flux regions (gray background).
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2.3. Granulation driver

To mimic the horizontal advecting motions of breaking granules in the photosphere we
use a constructed velocity field that resembles granules with a diameter of 1.6Mm. We
modify here a method described by Gudiksen and Nordlund (2005) that is based on a
weighted Voronoi tessellation driver (Schrijver et al. 1997). In contrast to Gudiksen and
Nordlund (2002) who use a random pattern for driving their simulation, we generate a
velocity field that resembles solar granulation not only in a statistical sense. Around each
granule we define an additional radius of 0.24Mm as a zone where inter-granular lanes
may form due to overlapping of the velocity fields from neighbouring granules. The typical
lifetime of a granule is Tgran = 5min. The amplitude of the typical velocity in the interior
of a granule we define as v0 = 1.028 km/s. The radial velocity within each granule must of
course be zero at the centre, increases with distance from the centre, until it decays outside
of the granule’s radius andwithin the inter-granular lane, which ranges from0.8 to 1.04Mm
distance from the centre. An example of amainly radial velocity field can be seen near x=6
and y = 8Mm in figure 3.

We randomly fill the simulation domain with granules, until there is no more available
space for new granules. No new granule is allowed to emerge within the inner radius of
0.64Mm around any other granule’s centre. A granule ceases to exist, when its velocity

Figure 3. Granulation driver velocity field (grayscale, saturated black is 8 km/s) with overplotted veloc-
ity vectors (red). One grayscale square represents one simulation pixel with a side length of 230 km
(colour online).
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amplitude v(t) drops below the threshold of vmin = 0.78 v0; see equation (2). The former
granule’s area then becomes immediately available for new granules.

To avoid that all granules emerge and decay always at the same time, we vary the average
granular lifetime with normally distributed random values within ±10% and define this
individual lifetime as T = Tgran ± 10%. We also alter the typical granular velocity ampli-
tude in the same way for each granule as vmax = v0 ± 15%. Accordingly, we change the
timewhen themaximum velocity amplitude shall be reached (tmax) to be earlier for shorter
lifetimes and later for longer lifetimes T as

tmax = T
√

| log(vmin/vmax)|. (1)

For a smooth emergence and decay of a granule, we multiply its velocity amplitude with
a life-cycle function that depends on the simulation time t and the time when the granule
was created t0:

v(t) = vmax · exp
[
−
(
t − t0 − tmax

T

)2]
. (2)

Now that we have filled our FOV with granules, in particular with overlapping areas
that have non-radial velocities, we may amplify the purely stochastic vorticity in our
two-dimensional horizontal-velocity field vgran(r, t) at the position vector r. For that, we
Fourier-transform the velocity field, extract its rotational part v̂rot, and filter out large
wavenumbers with an exponential weighting factor

v̂′
rot(k, t) = v̂rot(k, t) · exp [− (2|k|/kN)4

]
, (3)

where k is the in-plane wave vector and kN is the Nyquist frequency. We transform
v̂′
rot(k, t) back to real space v′

rot(r, t), amplify it with a factor of frot, and add it back to
the initial granular field. We choose frot = 5 so that the resulting velocity field will have
flows along the inter-granular lanes that reach realistic horizontal speeds of about 8 km/s,
which is similar to the observed inter-granular velocities; see saturated black colour in
figure 3.

Finally, we correct the new velocity field with enhanced vorticity vvor so that its root-
mean-squared velocity becomes identical to one of the initial granulation field:

vvor = vgran + frot v′
rot,

v∗
gran = vvor ·

√〈
vgran2

〉/〈
vvor2

〉
. (4)

We obtain a velocity field with radial outflows that turn into tangential velocities. The
tangential flows of neighbouring granules may interfere and form inter-granular lanes
with larger velocities than the average speeds inside the granules; see around x=3 and
y = 4Mm in figure 3 for an example.

For consistency with external velocity fields, like the LCT velocities derived from a
magnetogram time series, all granule centreswill be propagated in accordancewith the pre-
existing velocity vector at each granule’s centre. If no other velocity field has been activated
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during the generation of the granular driving motions, the granule centres remain where
they emerge.

A common problem in massive-parallel simulations are boundary conditions that
involve only few processors (see section 5.1 for another example) because the boundary
processors then cause inactive delays on the non-boundary processors. The granulation
driver code in the Pencil Code is not scalable. Therefore, we improve the scalability of
our coronal model with a two-step scheme: First, we create the granulation in a 2D sim-
ulation of the photosphere and write the generated velocity field to an external file. This
step requires only few processors and may run with a substantially larger timestep than
the full coronal model because we need only one granulation snapshot about every 10 s
and some timestep-critical methods (like the Spitzer heat conduction) are not relevant
here. Second, in the 3D coronal model we read the previously generated velocity field,
distribute this data to each of the photospheric boundary processors, and then interpo-
late between the granulation snapshots in time. Because the timestep in the 3D model
is substantially lower than 10 s, we save many iterations of the granulation driver code,
because the changes therein are minimal. In addition, the time-interpolation between two
granulation snapshots can be scaled to all involved boundary processors, because each pro-
cessor already has all necessary data. Finally, a time-interpolation consists of much less
computations than one granulation driver iteration. This scheme reduces the waiting time
of non-boundary processors to a minimum and hence makes the coronal model better
scalable.1

The photospheric velocity driver is of course not switched on immediately. If we would
do that, we would cause an instantaneous force acting on an equilibirum state. This is
equivalent to a very strong impulse that creates a shock front (see figure 3 of Bour-
din 2014b). To avoid this switch-on effect, we smoothly ramp up the targeted velocity
field linearly within the first minute of the simulation. In addition, the horizontal bulk
velocity uhor|j at the photospheric boundary and in the three ghost layers below (j ∈
{0,−1,−2,−3}) is never directly imposed. We smoothly push the velocity to its target
value by an exponential decay that we implement by an additional term in the equation
of motion (shortened by “··· ”):

∂uhor/∂t
∣∣
j = · · · − τu

(
uhor

∣∣
j − v∗

gran

)
(5)

with the inverse decay half-time τu = 0.5 s−1.
Figure 4 shows a direct comparison of LCT and granulation driver velocity histograms,

where we see that the LCT velocities have a peak below 0.1 km/s and hence smaller ampli-
tudes than the granulation driver that peaks around 2 km/s. We checked that most of the
driving power (Poynting flux) stems from the granulation driver. The granular velocities
vary onmuch smaller spatial scales than the LCT velocities from the horizontal movement
of magnetic patches, as also becomes clear from a direct comparison of the axes in figures 1
and 3.

1 The relatedparameters in thesolar_coronamodule are the logical flaglgranulation to activate the granulation
driver, lwrite_driver to write the generated velocity field to an external file, tau_inv as the inverse time scale
for velodity-field nudging, vorticity_factor as the factor to increase the vorticity, and dt_gran as the update
interval for the granules. The logical flags luse_vel_field and luse_mag_vel_field activate the reading of
external velocity fields.
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Figure 4. Histograms of LCT (blue) and granulation driver (red) velocities (colour online).

2.4. Magnetic-field extrapolation

We use the vector potential A for our computation and the magnetic field B is then only a
derived quantity that is always divergence free and is unique for any given gauge Φ0:

B = ∇ × (A + Φ0). (6)

To prescribe the vertical magnetic field Bz in the photosphere, while using the vector
potential A within our simulation, we need to set the two components Ax and Ay because

Bz = ∂Ay

∂x
− ∂Ax

∂y
. (7)

Az may then be set according to a self-chosen gauge, here the Weyl gauge with Φ0 = 0.
In order tomimic the increase in atmospheric andmagnetic pressure in the solar interior

below the photosphere, we use an inverted potential-field extrapolation that concentrates
any magnetic flux bundles with depth, which leads to a reduction of the diameter and an
increase of the amplitude of those flux bundles. Typically, the pressure scale height below
the photosphere is about 300 km. As we use three ghost layers below the lower boundary
with a grid distance of about�z = 100 km, wewould have to double the contrasts from the
surface magnetograms observed at z(0) = 0Mm. This is not possible without introducing
artifacts like wiggles and checker-board patterns in the ghost cells. Therefore, we reduce
the contrast increase in the lower ghost cells by a constant factor, here to one fifth, as if the
pressure scale height would be about 1.5Mm (see also Bourdin et al. 2018, for amoremath-
ematical description). Of course, this reduction introduces a slight error in the horizontal
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Figure 5. In-plane magnetic field lines (red) in a vertical cut through a strong flux concentration in the
lower part of the model. The gray scale indicates the logarithmic density. The blue dashed line is the
actual physical boundary of the simulation domain at z = 0Mm (colour online).

field components below the surface. But this error seems acceptable, because significant
magnetic structures in the photosphere typically have a horizontal diameter of well above
1Mm and the field therein is anyway mainly vertical for strong flux concentrations that
finally may reach our model corona; see figure 5.

In principle, one could say that this description of the lower magnetic field boundary
is similar to a strictly vertical field boundary condition. We like to note this is not the
case, because we still allow for any amount of horizontal field at the boundary and hence
very small near-surface closed field lines may form; see red lines near x=10 and 120Mm
in figure 5, where at the latter position a field line even gets horizontal below the actual
boundary. Such cases are rare, which supports our argument that the error is small when
enlarging the pressure scale height as described above, but this shows we do not enforce a
vertical field in the photosphere and below.

Different and less complex boundary conditions for the magnetic field may of course
exist. For example, we could enforce a vertical field at the lower boundary. But when we
do that, many field lines in the physical domain that are not strictly vertical, would have a
stronger kink near the boundary as with a more flexible boundary condition. An enforced
vertical field at the bottomwill generate larger derivatives and hence artificial currents near
the photosphere for amulti-polar AR case. In comparison, the vertical-field boundary con-
dition has about twice the current density, twice themaximummagnetic Reynolds number,
and about 40% larger Lorenz forces thanwe findwith themore flexible schemewe use here
at the bottom of the domain. This would then require us to double ourmagnetic diffusivity
η in order to keep the magnetic Reynolds number under control. As a consequence, the
larger diffusivity leads to more slippage of the field lines when we advect them with our
observational driving—whichmeans the driving looses much of its effect. Therefore, cur-
rents at the bottom boundary are unwanted and we like to keep the magnetic diffusivity
minimal to get the model more realistic.
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Previously, the Pencil Code had also a regular potential-field extrapolation that relaxes
the fields to a force-free state outside the physical domain. This would mean to smear out
constrasts in themagnetic field below the photosphere. For the top boundary this is accept-
able, because the field is already quite force free, there. But below the photosphere, the
pressure increases andmagnetic structures are not force free. If wewould apply the original
potential-field extrapolation, we again generate strong currents because the field will relax
to a force-free state. This is a permanent process, because we constantly keep on driving
the field away from that state. Therefore, our method with increasing magnetic contrasts
in the ghost cells below the bottom boundary is closer to reality than using the regular
potential-field extrapolation.

At the top boundary, wemay use the regular potential-field extrapolation with contrasts
that get smeared out exponentially with height, which is fairly realistic in the outer corona.2

2.5. Atmospheric boundary condition

At the lower boundary and below (in the ghost layers) we prescribe the density accord-
ing to a smoothly combined profile of the stellar interior and the solar atmosphere (as
given in Bourdin 2014b). We use a globally constant diffusivity of Dρ = 8 · 106 m2/s in
the mass density ρ, which is needed for the numerical stability in all independent MHD
variables. This results in a very small mass transport into the simulation box through
the lower boundary because the diffusion acts along the gradient that points upwards.
Implicitly, the thermal pressure increases in the upper layers. This pressure increase gets
exactly compensated by a hydrodynamic flow equilibrium that requires a downwards bulk
plasma motion. Consequently, the photospheric density at the physical boundary layer
may vary slightly from the preset value. The closed z-boundary condition sets the ver-
tical bulk velocity uz = 0 at the lower physical boundary z(0). Hence, a mass inflow would
then accumulate. To compensate for continuous density changes due to the diffusion, we
have to constantly overwrite the density to its initial profile at and below the photosphere.
The layers above the photosphere undergo the regular hydrodynamic settlement of the
atmospheric stratification due to the gas pressure, mass flows, and gravity.

We set the temperature boundary condition so that a consistent hydrostatic equilibrium
is reached at the lower boundary. To achieve this, we recursively set the temperature T|j in
the three lower ghost layers j ∈ {−1,−2,−3} at the grid positions z(j) as:3

T|j = T|j+1
ρ|j+1

ρ|j
exp

[
− �z|j

cv
cp

g
∣∣
j+1

T|j+1

]
, (8)

where we use the identity cv = γ /(γ − 1) for an ideal gas and �z|j = z(j + 1) − z(j) >

0 for the bottom boundary. ρ|j is the density and g
∣∣
j is the gravity constant at the grid

positions z(j).
An alternative, without prescribing the density to its initial value, is to maintain a zero

first derivative of the temperature by a symmetric boundary condition and then adapt the

2 In the start.in configuration file we set bcz to ’pfe’ for the first magnetic field component. At the same compo-
nent’s positionwe also setfbcz_bot only for the bottomboundary to0.2 in order to limit the extrapolation below the
photosphere to one fifth of the pressure scale height.

3 In the start.in configuration file we set bcz to ’fg’ for the density and to ’hse’ for the temperature.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 13

density according to a hydrostatic equilibrium. This has the advantages that, first, there
is no heat flow into or out of the simulation domain, and second, that the density may
deviate from its initial value and maintain a hydrostatic equilibrium at the boundary; see
section 4.1 for details.

3. Chromospheric nudging

Radiative losses act as an energy sink in the solar atmosphere (Cook et al. 1989). The
Spitzer heat conduction transports energy along the temperature gradient (Spitzer and
Härm 1953) and therefore provides an energy source in the chromosphere. Both together
may destabilise the chromosphere because once the heat conduction provides less energy,
the radiative losses cool the plasma that hence becomes denser. Denser plasma is a stronger
source of radiation that cools the plasma further. This may form a run-away effect, because
there is no radiative source term in our model that would heat optically thicker plasma
through absorption.

Another run-away effect exists for an excess heat input that leads to an adiabatic expan-
sion of some plasma which then looses its ability to radiate an excess of internal energy,
because the radiative losses decrease for lower densities. Therefore, we need to stabilise
our model chromosphere with a so-called Newtonian cooling method, which resembles
the stabilising effects of chromospheric radiative transfer at low computational costs.

3.1. Newtonian cooling

Temperature fluctuations in the lower solar atmosphere get smoothened out through the
radiative transfer that efficiently heats denser and optical thicker plasma, while it also
cools less dense plasma through reduced absorption and the continuous emission of pho-
tons (Spiegel 1957). Both stabilising effects of a proper radiative transfer treatment in
the chromosphere can be achieved through a novel combined Newtonian cooling and
chromospheric nudging approach.

First, we gently push back the chromospheric temperature to its initial stratification
T0(z) through an exponential decay. Second, we implement a cooling term that slowly
pushes the temperature to a target value T′(ρ(r, t)) at the position r = (x, y, z) that we
take from the initial temperature stratification T0(z′) at the height z′ where the actual den-
sity ρ(r, t) is equal to the initial density stratification ρ0(z′) = ρ(r, t). We finally obtain the
target temperature T∗ for the nudging as

T∗(r, t) =
√
T0(z)T′(ρ(r, t)). (9)

Of course, we like to apply the Newtonian cooling only in the chromosphere, where
our model needs it, and not beyond. This we achieve by a cutoff mechanism with four
components: (1) we use a density-dependent cutoff that sets in when the density becomes
eight orders of natural-logarithmic magnitude smaller than the photospheric value, (2) we
smooth out this sharp cutoff boundary with a sine function over the last two orders in this
natural-logarithmic magnitude, (3) we enforce another cutoff that sets in above a height
of 3Mm, and (4) we apply another smooth sine transition over the upper 0.3Mm on this
height-dependant cutoff.
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Figure 6. Logarithmic temperature (colour code) in the lower atmosphere for a vertical cut through a
strong flux concentration together with the in-planemagnetic field lines (white) at the same location as
in figure 5. The red-dashed line indicates the location of the photosphere.

We now add the nudging term to the energy balance (shortened by “··· ”):4

∂T/∂t = · · · + T exp
[
−τt

(
1 − T∗

T

)
cρcz

]
(10)

with the inverse decay half-time τt = 0.5 s−1, cρ as the smooth density-dependent cutoff
function, and cz as the smooth height-dependent cutoff.

3.2. Compressible atmospheric column

The effect of the Newtonian cooling becomes visible in figure 6, where we see a rela-
tively constant chromospheric temperature is maintained during the simulation run and
remains similar to the initial condition below 3Mm (black dotted). We indicate locations
with down arrows, where we find that the atmospheric column gets compressed and hence
the temperature follows a similarly compressed stratification. With time, this atmospheric
column compression will relax towards the initial state due to our combined Newtonian
nudging method; see section 3.1. This allows our model chromosphere to adapt to, e.g.
downflows from the corona and eventually relax back to the initial stratification after these
downflows end.

At some locationswe find the atmospheric column rises quickly to coronal temperatures
above 3Mm; see leftmost and rightmost down arrows in figure 6. In other regions, the
lower-coronal plasma remains relatively cool, typically above regions withmore horizontal
field; see at Solar-X from 60 to 95Mm.

4 The related parameters in the solar_corona module are the logical flag lnc_density_depend to acti-
vate the density-dependent Newtonian cooling, nc_tau as the inverse time scale necessary for the nudging
by an exponential decay, nc_lnrho_num_magn as the number of natural-logarithmic magnitudes in density,
nc_lnrho_trans_width defining the smooth transition of the density-dependent cutoff, nc_z_max as the max-
imum height to apply the Newtonian cooling, and nc_z_trans_width to define the smooth transition for the
height-dependent cutoff.
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In the photosphere, we see that temperaturesmay be higher and lower, where the density
is lower and higher, respectively. This anti-correlating behaviour of temperature and den-
sity could be due to some compressional heating from the granular horizontal advecting
motions; see the lower boundaries in figures 5 and 6 at z = 0Mm (dashed lines). Also these
local changes in temperature will eventually relax to the initial photospheric temperature
due to the limited lifetime of granules and the Newtonian cooling.

We find also that the height of the photospheric temperature minimum varies between
about 250 to 350 km due to our compressible atmospheric column at the lower boundary
of our simulation domain; see wavy black layer in the lower part of figure 6.

4. Upper coronal boundaries

On the upper end of the simulation domain, we prefer not to allow heat or plasma inflows
or outflows. The reason is that any inflow would be of undefined velocity, temperature
and density. We would anyway not expect heat outflows, because the temperature gradient
usually leads only to inflows of heat. At the same time, such inflows are unwanted, because
we like to learn about the intrinsic heating of the corona, independent of any boundary
condition.

If we allow for plasma outflows, this may lead to an unrealistic mass loss, because in
reality this outflowing plasmamay well fall back to the Sun, later, due to gravity. Therefore,
we prefer to make the simulation domain large enough to capture all relevant plasma flows
and to simply close the upper simulation boundary for any plasma and heat flows.

For the magnetic field, though, we like to allow for “open” field lines instead of for-
mulating a boundary condition that either enforces vertical or horizontal fields at the top
boundary; as we describe in section 4.2.

4.1. Closed atmospheric boundary

Above the upper boundary at 156Mmthe coronal temperature in standard 1Datmospheric
stratifications would still rise (Bourdin 2014b). If we simply prescribe the temperature in
the upper ghost layers from such a stratification, we would impose an unwanted ther-
mal energy inflow downwards into the physical box due to heat conduction along the
temperature gradient. Therefore, and in contrast to the lower atmospheric boundary in
the photosphere, we need to employ a different boundary condition at the upper coronal
boundary (in grid cell nz) that assures there is no heat inflow. We achieve this by forc-
ing the temperature gradient to be zero at the upper physical boundary (z|nz = 156Mm)
with a symmetric boundary condition for the three upper ghost cells j ∈ {1, 2, 3} at the grid
positions z|nz+j as:

T|nz+j = T|nz−j . (11)

Since the temperature near the boundary is almost uniform, also inclined field lines see a
symmetric temperature stratification.

We then need to set the density ρ|nz+j again consistent with a hydrostatic equilibrium:

∂p
∂z

∣∣∣∣
nz+j

= ρ|nz+j g
∣∣
nz+j . (12)
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This leads us to an upper boundary condition for the density that would require a constant
temperature, constant gravity, and symmetric grid distances at the top:5

=⇒ ρ|nz+j = ρ|nz−j exp

[
− 1

γ

(
z|nz+j − z|nz−j

) g
∣∣
nz

T|nz

]
. (13)

For a non-constant temperature, non-constant gravity, and arbitrary grid distances at
the boundary, the density in the ghost layers can be formulated in a recursive way as

=⇒ ρ|nz+j = ρ|nz+j−1 exp

[
− 1
2γ

(
�′z

∣∣
nz+j−1

g
∣∣
nz+j−1

T|nz+j−1
+ �′z

∣∣
nz+j

g
∣∣
nz+j

T|nz+j

)]
,

(14)
where �′z

∣∣
j denotes the vertical extent of the grid cell at z(j). If the grid spacing is close to

being equidistant near the boundary, we may simplify equation (14) to6

=⇒ ρ|nz+j = ρ|nz+j−1 exp

[
− 1

γ

(
z|nz+j − z|nz+j−1

) g
∣∣
nz+j + g

∣∣
nz+j−1

T|nz+j + T|nz+j−1

]
. (15)

4.2. Potential-field extrapolation

When the simulation domain is large enough, the magnetic field near the top boundary
should have reached a nearly potential state.Wemay then use a purely potential field in the
three ghost layers above the domain as boundary condition for the magnetic field. Because
the field vectors above and below the upper boundary are not perfectly rotation free, we still
obtain some currents at the physical boundary, which represent the relaxation fromanearly
to a fully potential state. If these currents are strong, they might artificially heat the corona.
To counter this effect, we employ an additional magnetic diffusivity below the boundary
to smoothen the transition to the potential state and reduce these artificial currents, as we
describe in section 4.3.1 below.

For the potential-field extrapolation into the ghost layers, we Fourier-transform the
magnetic vector potentialA, extrapolate it by smoothing out contrasts, and then transform
it back:

Â(kx, ky, t)
∣∣
nz =

∫
A(x, y, t)

∣∣
nze

ik·r d2r, (16)

where the vector r = (x, y) lies in the horizontal plane and k = (kx, ky) denotes the hori-
zontal wave vector. We extrapolate from the location of the physical boundary z(nz) to the
coordinates z(nz + j) of the three ghost layers j ∈ {1, 2, 3} with7

Â(kx, ky, t)
∣∣
nz+j = Â(kx, ky, t)

∣∣
nz exp

[
−|k| �′′z

∣∣
nz+j

]
. (17)

We denote here the distance between the physical boundary and the extrapolated layer as
�′′z

∣∣
nz+j = z(nz + j) − z(nz) > 0. The normalised Fourier back transform of Â finally

5 In the run.in configuration file we set bcz to ’hs’ for the density and to ’s’ for the temperature.
6 For non-constant gravity in the file run.inwe set bcz to ’hse’ for the density and to ’s’ for the temperature.
7 In the run.in configuration file we set bcz to ’pfe’ for the first magnetic field component, which also sets the other
two components accordingly.
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gives us the vector potentialA in the upper three ghost layers. Because �′′z
∣∣
nz+j is positive

on the upper boundary, we smear out any contrasts in A with increasing height.

4.3. Diffusive swamp region

The potential-field extrapolation relaxes the magnetic field very quickly into a force-free
state and hence strong currents may emerge at the upper physical boundary. Also a strong
heat transport towards the upper simulation domainmay become problematic, because the
upper boundary is closed for heat flows and we may accumulate very high temperatures
that become numerically demanding in the low-density plasma of the outer corona, where
this plasma cannot radiate an excess of internal energy. To circumvent both problems, we
use an additional diffusivity for the magnetic field and for the heat conduction below the
physical boundary by implementing a so-called swamp region.

The swamp diffusivities act only in the upper part of the simulation domain to reduce
the artificial effects on the upper boundary. We achieve a smooth transition by a height-
dependentweighting functionw(z) that smoothly goes from0 below to 1within the swamp
region. For this transition we use a cubic step function that starts at height zs and ends at
zt . The swamp region is fully active above zt so thatw(z ≤ zs) = 0 andw(z ≥ zt) = 1 with
zero first derivatives at the edges of the transition function w(z).8

4.3.1. Magnetic diffusivity
To diffuse out currents near the upper end of the simulation domain, we implement an
additional isotropic magnetic diffusivity within the swamp region. This swamp diffusivity
is of course omitted in the energy balance in order not to heat the corona artificially. We
multiply the weighting function w(z) to the constant swamp diffusivity ηs and obtain the
height-dependent magnetic swamp diffusivity ηs(z) = ηs w(z). Now we add the magnetic
swamp diffusion term to the induction equation (shortened by “··· ”):9

∂A
∂t

= · · · + ηs(z)�A + ez
∂ηs(z)

∂z
∇ · A. (18)

In the case of Bourdin et al. (2013) the simulation domain was large enough, so that cur-
rents at the top boundary were not problematic and hence no magnetic swamp diffusivity
was used there.

4.3.2. Heat conduction
Similar to the magnetic swamp diffusivity (see above), we implement also a diffusivity that
acts on the temperature as a constant, uniform, and isotropic heat conduction. For that, we
add another term to the energy balance (shortened by “··· ”) and use χs as the swamp heat
diffusivity constant:10

∂T
∂t

= · · · + χs w(z)�T. (19)

8 In the run.in configuration file the parameters swamp_fade_start and swamp_fade_end define the height
of the smooth transition to the swamp region.

9 In the run.in configuration file one may activate the magnetic swamp diffusivity by setting swamp_eta to a value
larger than zero and similar to the parameter eta.

10 In the run.in configuration file we set the parameter swamp_chi larger than zero to activate the heat swamp
diffusion.
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Again, the height-dependent function w(z) provides a smooth transition between the
physical regime and the swamp region.

We like note that χs acts either on the temperature T, the natural-logarithmic tempera-
ture lnT, or the entropy ε, depending on which quantity is active in the simulation setup.
Therefore, the physical unit of χs is not identical across these cases and may be different
from the units of χ used for the regular global isotropic heat conduction χ�T.

4.3.3. Mass diffusion
Similar as for the heat conduction, we implement another swamp region that acts on the
density with a diffusive term added to the continuity equation (shortened by “··· ”):11

Dρ

Dt
= · · · + χρ w(z)�ρ. (20)

Like for equation (19) we use the same diffusivity parameter χρ with different physical
units for either the density or the natural-logarithmic density, depending on what quantity
is used for the simulation.

5. Massive-parallel methods

For high-performance computing applications it is crucial to reduce all computations that
are serialised or restricted to few processors. The parallelisation of such computations
therefore helps to scale an application efficiently to substantially more processors. In the
following sections we describe some massive-parallel methods introduced to the Pencil
Code in the years from 2009 to 2013.

One bottleneck in massive parallelisation for simulation runs like described in Bourdin
et al. (2013) is the potential-field boundary condition that uses a Fast Fourier Transform
(FFT), as well as the massive-parallel file input and output described in section 5.2.

5.1. Fast Fourier transform

Some boundary conditions, like a potential-field extrapolation, need to compute the FFT
along both horizontal directions. This requires to collect once all data along x and then
once along y. Less parallelised FFT routines collect all data on one processor, perform the
FFT, and then distribute the transformed data back to all processors. During the computa-
tionally expensive communication and computation, a large number of processors are idle
and their potential resources remain unused.

A more efficient method is to collect all data along the one direction which the FFT
actually needs and to split the domain along the other direction; see the remapping scheme
presented in figure 7. As a result, all processors in one (x, y)-layer may contribute in paral-
lel to the computation of the FFT along one direction. Furthermore, the remapping of the
data can be done in a parallel way, so that all communication finishes after only two com-
munication cycles: one send and one receive operation. The trick is to let one half of the
processors send first and then receive, while the other half first receive and then send their
local data portion. This is actually faster than to collect all data on one processor, because

11 We activate the density swamp region via the swamp_diffrho parameter in the run.in configuration file.
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Figure 7. Data remapping strategy for the parallel FFTs in the module ‘‘fourier_fftpack’’
(colour online).

this can only be done in a sequential way and requires significantly more communication
cycles for a large number of processors. The same holds true for the remapping back to the
original subdomains.

The required transpose operation of the remapped data during a two-dimensional FFT
needs more communication cycles, namely as many as the number of subdomains along
the x-direction. Still, this number is typically less than the number of processors in one
(x, y)-layer and the transpose can be parallelised between the processors in the y-direction.

Due to the participation of many processors in the FFT, the whole computation, includ-
ing the multiple data remappings, is faster than the original scheme of the FFT for only
one processor. When the domain is not split into subdomains along x, both schemes are
of course similar, but this is usually not the case for large simulation runs with many
processors.

5.2. Input/output

One challenge for large-scale simulation runs is the input and output (IO) of data snap-
shots, as well as their storage requirements. With clever IO strategies one cannot only
perform IO operations faster, but also save significant amounts of storage space.

Traditionally, the Pencil Code stores data snapshots in a “distributed” manner, where
each processor writes one file with its local subdomain portion of the data, like imple-
mented in the ‘‘io_dist’’ module. This strategy has the advantage that the writing
can be done fully in parallel, but at the cost of writing all inner ghost layers between any
neighbouring processors, which contains overlapping and identical data. The smaller the
subdomains get and the more processors we like to use in order to boost the computation
speed, the larger is the amount of unneeded data that this distributed method requires to
store. Also a fully distributed IO method will cause problems on any file system, because
these are not made for thousands or more simultaneous IO requests.

In a first step, one might try to collect all data on one processor and write it out into
one monolithic snapshot file. This strategy we call “collective” and it is implemented in
the ‘‘io_collect’’ module. It turns out this method is not optimal regarding the
IO speed, because one processor alone can only access a data snapshot in a sequential way.
Nonetheless, wemay omit to store all inner ghost cells; see the scheme displayed in figure 8.

The next step of improving the IO lies in combining the distributed with the collec-
tive strategy. This we implement as the ‘‘io_collect_xy’’ module, where all data
is firstly collected in along (x, y)-layers by the leading processor in this layer and secondly
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Figure 8. Reduction of required data space for monolithic files in an extreme case, where the needed
outer ghosts are coloured in green and the physical domain is blue. The redundant inner ghost cells (see
numbers) being savedwith thedistributed‘‘io_dist’’ IOmodule in thePencil Codearehighlighted
in red. Black lines depict the data boundaries for each file. There number of ghost layers is 2 for this
example (colour online).

Figure 9. Collective IO strategy of the module ‘‘collect_xy’’, where data is collected in subdo-
main layers along (x, y) and is written to multiple files by the collecting (here rightmost) processors in
each (x, y)-plane. The vertical separation of the layers depicts the z-direction in the simulation domain
(colour online).

written by all (x, y)-leading processors in parallel; see figure 9. The reading access works
in the same way: the (x, y)-leading processors read in parallel and then distribute the data
within their layer. For this improvement one has to take the disadvantage of storing the
inner ghost cells between all (x, y)-layers, which is still significantly less than storing all
inner ghost cells. Still, this advanced method has substantial potential to accelerate the IO
by some parallelisation.

Most modern IO methods usually use an intermediate software layers to optimise
the number of parallel IO requests and to write out monolithic files that do not need
to store any inner ghost cells at all. Such file formats therefore have the potential to
save a substantial amount of storage space. In the Pencil Code we now provide two IO
modules: ‘‘io_mpi2’’ that relies on the MPI-2 standard and ‘‘io_hdf5’’ that
uses the parallel HDF5 software library for IO operations. Both use monolithic file for-
mats and hence are optimal regarding the data storage requirements. In the same time,
their IO routines are also optimised for scalability and speed; see comparison in table 1,
section 6.
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Table 1. Properties of the different IO strategies in Pencil Code for writing a
full data snapshot.

module time storage notes

distributed 2 s +31% not scalable above 256 CPUs
collect 70 s min. one IO node collects globally
collect_xy 10 s +16% one IO node per (x,y)-layer
mpi2 8 s min. binary IO hidden in MPI2
hdf5 9 s min. portable, extendable structure

5.3. HDF5 file format

The Pencil Code is now capable of storing monolithic data snapshots with minimal stor-
age requirements in theHDF5 format. Snapshot files (that were previously in a raw binary
format) are now stored in the self-explanatoryHDF5 format with an extendable data struc-
ture. All HDF5 files carry the filename suffix ‘‘.h5’’ instead of the binary ‘‘.dat’’
file extension.

Once a user switches to theHDF5 file format, the build process (pc_build or make)
tries to automatically find theHDF5 libaray and uses the location where the Fortran com-
piler wrapper is present.12 For that, the ‘‘$PATH’’ environment variable must point to
one of those compiler wrappers (h5pfc or h5fc). Otherwise, no configuration by the
user is required. In a computing centre, this usually requires to load an environment mod-
ule with the command ‘‘module load . . .hdf5 . . .’’, where all available modules
can be listed with ‘‘module avail’’.

The classical snapshot files like var.h5 do now contain the grid positions, dimen-
sions of the setup, as well as some basic simulation settings in a separate data structure.
This additional information can be suppressed to save storage space when a large num-
ber of small data snapshots is generated; set lomit_add_data=T within the section
run_pars inside the run.in configuration file. Themain simulation data is written out
in components, likeux,uy,uz,lnrho orrho, etc. Unused components are of course not
written. Inner ghost layers are cut for all quantities that are defined on grid cells. TheHDF5
snapshots are hence always monolithic and are stored in the directory data/allprocs.

A typical example of the content of a var.h5 snapshot can be visualised with
the tool ‘‘hdfview’’; see figure 10. The datasets (like ux) are listed in groups
(like data or settings) that can be opened and closed by a double mouseclick.
Some fundamental parameters of the simulation can be contained in snapshot files, e.g.
settings/precison holds either an ‘‘S’’ for single or a ‘‘D’’ for double pre-
cision. The time of the snapshot is stored as a separate scalar double-precision dataset
named time. Datasets can also be multi-dimensional arrays and the order of these arrays
is in the canonical Fortran way, which means the first dimension of the array is along
the z-direction. This implies that one has to transpose multi-dimensional data arrays for
post-processing with languages like C or Julia/Python, while the datasets are naturally
aligned for languages like Fortran or IDL.

12 We switch to the HDF5 format by setting IO = io_hdf5 and HDF5_IO = hdf5_io_parallel in
src/Makefile.local. On a standard ubuntu 18.04 LTS system, one needs to install the package
‘‘libhdf5-openmpi-dev’’. The packages ‘‘hdf5-tools’’ and ‘‘hdfview’’ contain optional tools
for inspecting and modifying HDF5 files.
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Figure 10. Example content of a ‘‘var.h5’’ file, here from the corona sample. The conversion
factor from code units to physical units is 10−8 for the density. This sample stores the logarithmic
density lnrho as three-dimensional data array, together with the logarithmic temperature lnTT,
and all components of the vector potential and velocity field. The time of the snapshot is given as
a scalar. The settings and grid are optional and are stored in each snapshot by default (colour
online).

The so-called persistent data (that is usually associated per processor) is written to
global arrays of the size (nprocx,nprocy,nprocz), where nprocx means the num-
ber of processors along the x-direction. Particle data gets collected from all processors and
is stored in global arrays together with the information of the mapping of particles to the
processors.

In addition to the snapshots, the module ‘‘io_hdf5’’ generates also a grid file
data/grid.h5 that contains the global grid data, as well as some fundamental parame-
ters, like the size of the simulation domain, the number of grid points, grid distances, etc.;
see figure 11.

For inspecting HDF5 files from a text-based command line, one can use the
‘‘h5dump’’ command. The optional parameter ‘‘-H’’ allows to see the file structure
(groups and datasets) without printing the actual data.

In table 1 we compare the advantages and disadvantages of each IO method available
in the Pencil Code for a setup with 1024 × 1024 × 256 grid cells distributed on 8 × 16 ×
8 = 1024 processors. One monolithic snapshot has a size of 17 GB and the timings were
obtained on the JuRoPA supercomputer with the Lustre filesystem in a version from 2012.
Bold-face entries in table 1 highlight the disadvantages. Please note these timings are hardly
comparable with nowadays supercomputers, because the JuRoPA hardware and storage
system are outdated and had beed decomissioned several years ago.
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Figure 11. Content of the file ‘‘grid.h5’’ from the corona sample, where we use a non-
equidistant grid in the z-direction. The unit length is 107 in SI units and we use double precision for
floating-point numbers. The arraydz_1 contains the inverse grid spacing along thez-direction and the
scalar dz gives the average grid spacing (colour online).

6. Conclusions

We use small-scale granulation and large-scale magnetic patches to drive a corona model
by magnetic observations of an active region. The combination of both horizontal-velocity
fields extends the spectrum of driving velocities to cover a large range in amplitues and in
spatial length scales; see figure 4. An adaptice atmospheric boundary condition together
with an adaptive chromospheric Newton cooling allows to formulate a flexible lower-
boundary condition for the coronal part of the model. The varying magnetic pressure
around strong polarities or the granulation driver may increase the plasma density in the
intergranular lanes. This changes the density in the lower atmosphere and requires amatch-
ing response in fromNewton cooling term. The newNewton cooling scheme implemented
in the Pencil Code allows for expanding and shrinking atmospheric columns at the lower
boundary, so that the temperature stratification is now adaptive.

For the upper boundary we have developed several mechanisms to diffuse away per-
turbations in the density and temperature. A new swamp-diffusion region can be used to
relax non-force-freemagnetic fields in order to reduce strong currents at the upper physical
boundary, where “open” magnetic fields are desired but are in a force-free state.
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Figure 12. Comparison of the hard scaling before (triangles) and after (circles) the implementation of
a massive-parallel FFT in the Pencil Code versus the theoretical scaling limit (dashed red line) (colour
online).

The IO strategy is crucial for large-scale models in nowadays science where large
amounts of data are generated. We find that only the modules ‘‘io_mpi2’’ and
‘‘io_hdf5’’ are optimal regarding storage requirements and scalability. Of these two,
only ‘‘io_hdf5’’ offers a transparent, portable, and extendable data structure that
allows to change the file formatswithout loosing backwards compatibility for themain code
and for any data analysis scripts. Furthermore, almost all modern data analysis languages
provide at least reading routines for the HDF5 file format.

Boundary conditions that make use of a FFT, like a potential-field extrapolation, benefit
from massive-parallel FFT implementation, like the routine ‘‘fft_xy_parallel’’
provided in the ‘‘fourier_fftpack’’ module. The scalability of such bound-
ary conditions is significantly improved as compared to the original ‘‘fourier_
transform’’ set of routines.

Altogether, the scalability of the Pencil Code could be improved substantially with
massive-parallel methods that we implemented for the IO modules and for the FFT used
by the potential-field boundary condition ’pfe’. We show a comparison plot for the
total runtime in figure 12 that we obtained with a constant global number of grid cells
but for an increasing number of processors, which is usually called a “hard scaling”
test.

The advantages of the HDF5 file format become clear from the comparison in table 1.
We recommend to concentrate future developments of IO routines on the‘‘io_hdf5’’
module and to fade out support for older IO modules during the next years.
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