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Abstract. Numerical aspects of dynamos in periodic domains are discussed. Modifications of
the solutions by numerically motivated alterations of the equations are being reviewed using
the examples of magnetic hyperdiffusion and artificial diffusion when advancing the magnetic
field in its Euler potential representation. The importance of using integral kernel formulations
in mean-field dynamo theory is emphasized in cases where the dynamo growth rate becomes
comparable with the inverse turnover time. Finally, the significance of microscopic magnetic
Prandtl number in controlling the conversion from kinetic to magnetic energy is highlighted.
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1. Introduction
There are two important aspects connected with astrophysical dynamos compared with

dynamos on a bicycle. Firstly, they are self-excited and do not require any permanent
magnets. Secondly, they are homogeneous in the sense that the medium is conducting
everywhere in the dynamo proper and there are no wires or insulators inside. Self-excited
dynamos were invented by the Danish inventor Søren Hjorth, who received the patent
for this discovery in 1854, some 12 years before Samuel Alfred Varley, Ernst Werner
von Siemens and Charles Wheatstone announced such an invention independently of
each other. Von Siemens is known for having recognized its industrial importance in
producing the most powerful generators at the time, for which he, in turn, received a
patent in 1877.

The idea that homogeneous dynamos might work in the Sun, was first proposed by
Larmor (1919) in a one-page paper. However, some 14 years later, Cowling (1933) showed
that axisymmetric dynamos cannot work in a body like the Sun. At the time it was
not clear whether this failure was genuine, or whether it was critically connected with
Cowling’s assumption of axisymmetry. The suspicion that the third dimension might be
critical was not particularly emphasized when Larmor (1934) tried to defend his early
suggestion with the words “the self-exciting dynamo analogy is still, so far as I know,
the only foundation on which a gaseous body such as the Sun could possess a magnetic
field: so that if it is demolished there could be no explanation of the Sun’s magnetic field
even remotely in sight.”

The essential idea about the operation of the solar dynamo came from Parker (1955),
who developed the notion that cyclonic events would tilt a toroidal field systematically
in the poloidal direction, closing thereby a critical step in the dynamo cycle. While this
concept is still valid today, it still required the existence proof by Herzenberg (1958) that
began to convince critics that Cowling’s antidynamo theorem does not extend to the
general case of three dimensions.

Nevertheless, subsequent progress in modeling the solar dynamo appears to have been
suspended until the foundations of a mean-field treatment of the induction equation were
developed by Steenbeck et al., (1966). In the following years, a large number of mod-
els were computed covering mostly aspects of the solar dynamo (Steenbeck & Krause,
1969a; Parker, 1970a; Parker, 1970b; Parker, 1970c; Parker, 1971b; Parker, 1971d; Parker,
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1971f), but in some cases also terrestrial dynamos (Steenbeck & Krause, 1969b; Parker,
1971c) and the galactic dynamo (Parker, 1971a; Parker, 1971e; Vainshtein & Ruzmaikin,
1971; Vainshtein & Ruzmaikin, 1972). These developments provided a major boost to dy-
namo theory given that until then work on the galactic dynamo, for example, focussed on
aspects concerning the small-scale magnetic field (Parker, 1969), but not the global large-
scale fields on the scale of the entire galaxy. In fact, also regarding small-scale dynamos,
there were important developments made by Kazantsev (1968), but they remained mostly
unnoticed in the West, even when the first direct simulations by Meneguzzi et al. (1981)
demonstrated the operation of such a dynamo in some detail. In fact, in some of these
dynamos, the driving of the flow involved helicity, but its role in helping the dynamo re-
mained unconvincing, because no large-scale field was produced. We now understand that
this was mainly because there was not enough scale separation between the scale of the
domain and the forcing scale, and that one needs at least a ratio of 3 (Haugen et al., 2004).

Simulations in spherical geometry were much more readily able to demonstrate the
production of large-scale magnetic fields (Gilman, 1983; Glatzmaier, 1985), but even
today these simulations produce magnetic fields that propagate toward the poles (Käpylä
et al., 2010) and not toward the equator, as in the Sun. We can only speculate about
possible shortcomings of efforts such as these that must ultimately be able to reproduce
the solar cycle.

Several important developments happened in the 1980s. Firstly, it became broadly
accepted that the magnetic field inside the Sun might be in a fibril state (Parker, 1982),
i.e. the filling factor is small and most of the field is concentrated into thin flux tubes,
as manifested by the magnetic field appearance in the form of sunspots at the surface.
However, such tubes would be magnetically buoyant, and are expected to rise to the
surface on a time scale of some 50 days (Moreno-Insertis, 1983; Moreno-Insertis, 1986).
This time is short compared with the cycle time and might lead to excessive magnetic
flux losses, which then led to the proposal that the magnetic field would instead be
generated in the overshoot layer beneath the convection zone. This idea is still the basic
picture today, although simulations of convection generally produce magnetic fields that
are distributed over the entire convection zone.

Yet another important development in the 1980s was the proposal that the α effect
might actually be the sum of a kinetic and a magnetic part and that the magnetic part
can be estimated by solving an evolution equation for the magnetic helicity density. The
importance of this development was obscured by the excitement that the two evolution
equations for poloidal and toroidal field, supplemented by a third equation for the mag-
netic helicity density, could produce chaos (Ruzmaikin, 1981). The connection to what
was to come some 10–20 years later was not yet understood at that point. Simulations
of helical MHD turbulence in a periodic domain demonstrated that in a periodic domain
the α effect might be quenched in an ReM -dependent fashion like

α =
α0

1 + ReM B
2
/B2

eq

. (1.1)

If this were also true of astrophysical dynamos, α would be negligibly small and would not
be relevant for explaining the magnetic field in these bodies. Such quenching is therefore
nowadays referred to as catastrophic quenching. However, there is now mounting evidence
that this type of α quenching is a special case of a more general formula (Brandenburg,
2008)
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which comes from magnetic helicity conservation. Note that in this equation there are
3 new terms that all scale with ReM and are therefore important. Even in a closed
or periodic domain, the first and third terms in squared brackets contribute, the most
promising way out of catastrophic quenching is through magnetic helicity fluxes (Black-
man & Field, 2000; Kleeorin et al., 2000). These developments are still ongoing and we
refer here to some recent papers by (Shukurov et al., 2006; Brandenburg et al., 2009;
Candelaresi et al., 2010).

2. Simulating dynamos
2.1. Roberts flow

Much of the theoretical understanding of dynamos is being helped by numerical simu-
lations. In fact, nowadays one of the simplest dynamos to simulate is the Roberts flow
dynamo. A kinematic dynamo can be simulated by adopting a velocity field of the form

U = ∇ × ψz + kfψz, (2.1)

where ψ = (U0/k0) cos k0x cos k0y. In order to give some idea about the ease at which
reasonably accurate solutions can be obtained we give in Table 1 the numerically obtained
critical values of the magnetic Reynolds number, ReM = urms/ηkf , for a given resolution.

Table 1. Critical values of ReM for the Roberts flow dynamo at low resolution (from 83 to 323

mesh points) and different spatial order of the numerical scheme.

——— ReM c ———
Resolution 2nd order 6th order 8th order

83 5.23 5.15 5.16
163 5.517 5.514 5.518
323 5.522 5.522 5.521

Even turbulent dynamos are nowadays easy to simulate and meaningful results have
been obtained already at relatively low resolution, provided the flow is helical (Branden-
burg, 2001). However, there are also examples where numerical aspects can have a major
effect on the outcome of such simulations. In the following we discuss two examples:
magnetic hyperdiffusion and the use of Euler potential with artificial magnetic diffusion.

2.2. Magnetic hyperdiffusion in helicity-driven dynamos
Dynamos work by maintaining the magnetic field against Ohmic decay via magnetic
induction. It is then not surprising that the result can be sensitive to the numerical
treatment of magnetic diffusion. One example is the consideration of magnetic hyperdif-
fusion of the form

ηJ → (−1)n−1νn∇la2n−2J (2.2)
instead of the regular ηJ term. In helical dynamos in closed or periodic domains the
saturation time is given by ηk2

1∆t = 1, but with hyperdiffusion this condition becomes
ηnk2n

1 ∆t = 1; see Figure 1. This is exactly what one expects from a scheme like hy-
perdiffusion that enhances the effective magnetic Reynolds number. However, another
important modification is that the saturation amplitude increases from Brandenburg &
Sarson, 2002

B
2

B2
eq

≈ kf

k1
to

B
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. (2.3)
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Figure 1. Evolution of large-scale magnetic field (dashed lines) for runs with regular mag-
netic diffusion (n = 1, left, urm s/ηk1 = 45) and magnetic hyperdiffusion (n = 3, right,
urm s/η3k1 = 3200), at 163 resolution and kf /k1 = 3, compared with the prediction (solid lines)
of Brandenburg & Sarson, 2002, where ts is the saturation time of the small-scale field.

This is a caveat that is important to keep in mind when employing magnetic hyperdiffu-
sion for astrophysical simulations. This has a major effect on the saturation of large-scale
magnetic fields that is at first glance surprising. However, once one realizes that the sat-
uration in a periodic domain is governed by the magnetic helicity equation applied to
the steady state, i.e. by

d
dt

< A · B >= −2η < J · B >, (2.4)

where we split the right-hand side into contributions from large- and small-scale fields,
i.e. B = B + b and J = J + j, so that < J · B >=< J · B > + < j · b >, we have for
fully helical large- and small-scale fields in the steady state,

0 = −2η < J · B > −2η < j · b >≈ ±2η
(
k1 < B

2
> −kf < b2 >

)
, (2.5)

with < b2 >≈ B2
eq , it becomes clear that the use of magnetic hyperdiffusion picks up

the k1 and kf factors at correspondingly higher powers, leading thus to Equation 2.3.
The upper and lower signs of the term on the right-hand side of Equation 2.5 apply to
small-scale forcings with positive and negative helicity, respectively.

2.3. MHD with Euler potentials
Until recently, the use of Euler potentials (EP) has been a popular choice for solving the
MHD equations numerically using Lagrangian methods (Price & Bate, 2007; Rosswog &
Price, 2007).

The representation of B in terms of EP, α and β, as

B = ∇α × ∇β (2.6)

is a nonlinear one, which solves the induction equation in the case η = 0, ∂B/∂t =
∇ × (U × B), provided Dα/Dt = Dβ/Dt = 0. The problem is that the magnetic field
tends to develop sharp structures that will not be properly resolved by the numerical
scheme. The hope has been that the overall properties of the magnetic field at larger
scales would then still be approximately correct. However, this turns out not to be the
case. And, more importantly, as one increases the resolution, the solution converges, but
it is simply the wrong solution. This has been demonstrated in detail in a separate paper
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Figure 2. Left: Comparison of the evolution of Brm s for the modified Galloway–Proctor flow
with point-wise zero helicity for methods A and EP using 2563 meshpoints and ReM = 104 .
Note the power law scaling for the EP method and the exponential scaling for the A method.
Right: ReM dependence of the exponents λ and σ characterizing the evolution of Brm s ∼ eλ t

for the A method and Brm s ∼ tσ for the EP method for the modified Galloway–Proctor flow
with point-wise zero helicity for methods A and EP using 2563 meshpoints. Adapted from
Brandenburg (2010).

(Brandenburg, 2010) where, among other cases, solutions of the Galloway–Proctor fast
dynamo flow were considered. In Figure 2 we show that the solution of the induction
equation using EP leads to algebraically decaying solutions of the form

Brms ∼ tσ (EP method), (2.7)

where, with increasing resolution, σ converges toward a value around −3, while with
the usual vector potential method (A method) one solves ∂A/∂t = U × B − ηJ with
B = ∇ × A and J = ∇ × B, and finds instead

Brms ∼ eλt (A method), (2.8)

where λ also converges, and its value is about 0.22 for ReM = 104; see Figure 2.
It is quite remarkable that by changing the properties of the solution at small scales

only slightly, one can produce rather dramatic effects. This includes cases of magnetic
hyperdiffusivity, where the large-scale field amplitude can be quite different, albeit in
agreement with the theory applied to the hyperdiffusive case (Brandenburg & Sarson,
2002). Another example is that of artificial diffusion in solutions for the EP, where the
obtained results bear no resemblance with those obtained using the A method.

2.4. Quantitative comparison between simulations and mean-field theory

Mean-field theory has the potential of being a quantitatively accurate and hence predic-
tive theory. In order to establish this in particular cases, it is important to consider as
many contact points between theory and simulations as possible. One thing we can do is
to determine α effect, turbulent diffusion, and other effects from simulations, and to com-
pare the thus calibrated mean-field model with simulations. This provides an important
resource for ideas of what one might have been missing in various contexts. Here we just
mention the case of the Roberts flow, for which αij and ηij have been determined using
the test-field methods (Schrinner et al., 2007). One might then expect that the growth
rate obtained from the underlying dissipation rate,

λ = αk − (ηt + η)k2 (2.9)
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Figure 3. Left: ReM dependence of the growth rate for the Roberts flow as obtained
from a direct calculation (λgrow th ) compared with the result of the dispersion relation,
λdisp = αkz − (η + ηt )k2

z , using a cubic domain of size L3 , where k1 = 2π/L and kf =
√

2k1 . For
this range of ReM , the most unstable mode is the largest one that fits in the box (kz = k1 ). The
two horizontal lines in gray mark the values of λgrow th and λdisp at ReM = 30, denoted by (i) and
(ii), respectively. Right: Laplace-transformed effective growth rate, λ̃(s) = α̃(s)k− [η + η̃t (s)]k2 ,
for the Roberts flow with ReM = 10 and 50. Note the different signs of the slope at the inter-
section with the diagonal (denoted by circles). Adapted from Hubbard & Brandenburg (2009).

should agree with the value obtained from the direct calculation. This is however only
the case for λ = 0, but not for λ �= 0. However, it would be a mistake to assume that
there is something wrong with the test-field methods. Instead, what is wrong here is just
the assumption of homogeneity and stationarity. Obviously, when λ �= 0, the solution is
exponentially growing or decaying like eλt , so it is clearly not steady!

When the assumption of steadiness is no longer satisfied, one has to return to the
underlying integral relation between α and the mean field, i.e. α(z, t)B(z, t) has to be
replaced by a convolution, so

α(z, t)B(z, t) →
∫

α(z − z′, t − t′)B(z′, t′) dz′ dt′, (2.10)

and similarly for the magnetic diffusivity. One way of dealing with this complication is to
note that the convolution in real space corresponds to a multiplication in Fourier space.
In other words, we can write

Ẽ(k, ω) = α̃(k, ω)B̃(k, ω), (2.11)

where Ẽ(k, ω) =
∫

E(z, t) e−i(kz−ωt) dz dt is the Fourier-transformation of E(z, t) (and
likewise for the other fields). Of course, the value of ω that is of interest is ω = iλ, where
λ is the then self-consistently obtained growth rate. This has been described in detail
by Hubbard & Brandenburg (2009), who motivated their study using the example of the
Roberts flow, where the discrepancy between the numerical solution and that obtained
for λ = 0 is shown. A reasonable fit to their data is α(k, ω) = 1/(1 − iωτ) for k → 0.

3. Low magnetic Prandtl number and application to accretion discs
In many astrophysical bodies the magnetic Prandtl number, PrM = ν/η, is either large

or small, but not around unity. Again, from a numerical point of view, it is surprising
that the ratio ν/η is important even though

ν → 0, η → 0. (3.1)
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In many numerical treatments it is implicitly assumed that the exact values of ν and η
do not explicitly matter, because it should not matter how long each of the two turbulent
cascades is. This should indeed be true provided the dynamics we are interested in takes
place entirely on the large scales. But for helical large-scale dynamos, this is evidently
not the case, because in the kinematic regime, the magnetic energy spectrum follows
the Kazantsev k3/2 spectrum and reaches a peak at the resistive scale, corresponding to
the wavenumber kη = (Jrms/η). However, this applies first of all only to the kinematic
regime and, seemingly, it is relevant only for the small-scale dynamo regime. This has
been discussed recently in connection with the contrasting case of large-scale dynamos,
where the excitation conditions are not affected by the value of PrM (Brandenburg, 2009;
Brandenburg, 2011). Nevertheless, even in this case the dissipation rates of kinetic and
magnetic energies, εK and εM, respectively, do depend on the value of PrM . Although it
seems fairly clear that the ratio εK/εM increases with PrM in power law fashion propor-
tional to Prn

M , the exponent n is not well constrained. Earlier work covering the range
10−3 � PrM � 1 at 5123 resolution suggested n = 1/2, although additional data covering
also the range 1 < PrM � 103 given an exponent closer to n = 0.6 or even n = 2/3.
There is at present no theory for the value of the exponent n.

Applying these findings to accretion discs, we should first recall that the work of Lesur
& Longaretti (2007) suggested that the onset of the magneto-rotational instability shows
a strong dependence on PrM . However, one should expect that when large-scale dynamo
action is possible, this condition may change and the onset would then be independent of
PrM . This is indeed what Käpylä & Korpi (2010) find. The question is of course what is
the relevant large-scale dynamo mechanism in this case. One proposal is the incoherent
α–shear dynamo, which works through constructive amplification of the mean field in the
direction of mean shear. Yet another possible mechanism is the shear–current dynamo
(Rogachevskii & Kleeorin, 2003), although this result has not yet been confirmed.

4. Conclusions
Simulating simple dynamos on the computer is nowadays quite simple. Nevertheless, we

have seen here examples that illustrate that things can also go quite “wrong”. In the case
of magnetic hyperdiffusion, it is clear what happens (Brandenburg & Sarson, 2002), so
that magnetic hyperdiffusion can also be used to ones advantage, as was demonstrated
in Brandenburg et al. (2002). However, in the case of Euler potentials it is not clear
what happens and whether this method can be used to simulate even the ideal MHD
equations, given that each numerical scheme will introduce some type of diffusion. In this
short review, we have also attempted to clarify why numerical calculations of α effect and
turbulent diffusion using the standard test-field method (Schrinner et al., 2007) would
yield values that can only reproduce a correct growth rate in the case of vanishing growth.
In all other case, a representation in terms of integral kernels has to be used. Finally, we
have discussed some effects of using magnetic Prandtl numbers that are different from
unity. It turns out that in the steady state, the rate of transfer from kinetic to magnetic
energy depends on the value of PrM . This is somewhat unexpected, because the onset
condition for dynamo action does not depend on PrM Brandenburg, 2009, and yet the
actual efficiency of the dynamo, as characterized by the work done against the Lorentz
force, − < U · (J × B) >, does depend on PrM and is proportional to Pr−n

M (with n
between 1/2 and 2/3) for large values of PrM .

Understanding the limits of numerical simulations is just as important as appreciating
its powers. As the example with the problem with mean-field and simulated growth
rates shows, understanding the initial mismatch can be the key to a more advanced and



Simulations of astrophysical dynamos 409

more accurate theory that will ultimately be needed when describing some of the yet
unexplained properties of astrophysical dynamos.
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