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Abstract

Relic gravitational waves (GWs) can be produced by primordial magnetic fields. However, not much is known
about the resulting GW amplitudes and their dependence on the details of the generation mechanism. Here we treat
magnetic field generation through the chiral magnetic effect (CME) as a generic mechanism and explore its
dependence on the speed of generation (the product of magnetic diffusivity and characteristic wavenumber) and the
speed characterizing the maximum magnetic field strength expected from the CME. When the latter exceeds the
former (regime I), which is the regime applicable to the early universe, we obtain an inverse cascade with moderate
GW energy that scales with the third power of the magnetic energy. When the generation speed exceeds the CME
limit (regime II), the GW energy continues to increase without a corresponding increase of magnetic energy. In the
early kinematic phase, the GW energy spectrum (per linear wavenumber interval) has opposite slopes in both
regimes and is characterized by an inertial range spectrum in regime I and a white noise spectrum in regime II. The
occurrence of these two slopes is shown to be a generic consequence of a nearly monochromatic exponential
growth of the magnetic field. The resulting GW energy is found to be proportional to the fifth power of the limiting
CME speed and the first power of the generation speed.

Unified Astronomy Thesaurus concepts: Cosmology (343)

1. Introduction

The chiral magnetic effect (CME) describes an electric
current along a magnetic field carried by electrically charged
chiral fermions (Vilenkin 1980). This effect has been discussed
as one of several possible mechanisms for significantly
amplifying primordial magnetic fields in the early universe
(Boyarsky et al. 2012, 2015). It works as a dynamo effect that
destabilizes the state of a vanishing magnetic field and causes
an arbitrarily weak seed field to grow exponentially for a
limited time (Joyce & Shaposhnikov 1997). Excitation sets in
when the fermion chiral asymmetry is large enough. However,
owing to the existence of a conservation law for the sum of
magnetic helicity and chiral asymmetry, the CME becomes
continuously depleted until nearly all the initial chiral
asymmetry turns into magnetic helicity (Boyarsky et al.
2012, 2015). Thus, the initial chiral asymmetry determines
the final value of the product of the mean-squared magnetic
field Brms

2 and the magnetic correlation length ξM, forming a
proxy for magnetic helicity in case of a fully helical field. For
realistic parameters describing our universe, xBrms

2
M is expected

to be of the order of or below -10 G Mpc18 2( ) (Brandenburg
et al. 2017b). This value is below the lower limit of

x > -B 10 G Mpcrms
2

M
16 2( ) , which is inferred from the non-

observations of GeV-energy halos around TeV blazars
(Aharonian et al. 2006; Neronov & Vovk 2010; Taylor et al.
2011). Yet the question can be raised, whether the resulting
magnetic stress could still be large enough to produce
measurable gravitational waves (GWs).

Another severe problem are the very small length scales
associated with the CME. An upper bound for the wavenumber
associated with the chiral asymmetry in comoving units is

k*≡ kBT/ÿc= 12 cm−1, where kB is the Boltzmann constant, ÿ
is the reduced Planck constant, c is the speed of light, and
T= 2.7 K is the present-day temperature. Assuming a field
strength of 1 μG, the value of k* is compatible with the upper
bound on the magnetic helicity of -10 G Mpc18 2( ) (Brandenburg
et al. 2017b). This value of k* corresponds to very small length
scales because the CME is a microphysical effect involving just
ÿ, c, and kB as relevant natural constants, but not Newtonʼs
constant or the Planck mass; see also Brandenburg et al. (2017a).
The Hubble radius, by contrast, does involve Newtonʼs constant
and is much bigger (1.8× 1015 cm). In units of the inverse
Hubble radius, the characteristic scale of the CME corresponds
to a wavenumber of about 2× 1016 (see Equation (1) of
Kahniashvili et al. 2013) and is associated with a very high GW
frequency of 4× 1011 Hz; see Equation (51) of Kosowsky et al.
(2002). On the other hand, at the time of the electroweak phase
transition, the Hubble scale corresponds to a frequency in the
millihertz range, which is the range accessible to the Laser
Interferometer Space Antenna. Larger length scales have been
argued to be possible by invoking a strongly out-of-equilibrium
magnetic field generation during preheating (Díaz-Gil et al.
2008a, 2008b) or during inflation (Sharma et al. 2020; Okano &
Fujita 2021). In addition, the actual GW frequency could be
several orders of magnitude smaller owing to the inverse
cascade associated with the CME. By the time the magnetic
field has reached its maximum, its typical length scale can
therefore be significantly larger than the scale at which the field
was originally produced. After that time, the magnetic length
scales continue to increase as the magnetic energy decreases.
However, Roper Pol et al. (2020b) found that the resulting GW
energy is determined by just the maximum field strength.
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It is therefore unclear whether the late phase of magnetic decay
is still relevant to GW production.

Although the CME may not open a viable pathway for
explaining the primordial magnetic field, it has the advantage
of providing a self-consistent mechanism for explaining not
just a certain field strength and length scale, but also a certain
time dependence of its generation, independent of any
additional assumptions. Thus, it may serve as a proxy for
other generation mechanisms. It is then interesting to
investigate GWs produced by the CME as a mechanism that
is likely to contain qualitatively valid aspects of primordial
magnetic field generation; see the recent work by Anand et al.
(2019) for analytic approaches addressing GW production from
the CME at energies much above the electroweak scale, or the
approaches of Sharma et al. (2020) and Okano & Fujita (2021)
addressing GW production from helical magnetogenesis during
inflation. These works provide more optimistic prospects for
the resulting magnetic field generation than Brandenburg et al.
(2017b) did. Therefore, in the present study our aim is to
understand the detailed relationship between the strengths of
the magnetic field and GWs, as well as their typical time and
length scales.

In the past, theoretical GW energy spectra have been
calculated mostly using analytical approaches; see Deryagin
et al. (1987) for an early pioneering investigation and Caprini
et al. (2019) for a recent review. Numerical approaches have
recently been applied to GWs, driven by acoustic turbulence
from first order phase transitions (Hindmarsh et al. 2015). A
general uncertainty in simulating relic GWs from primordial
turbulent sources is due to our ignorance about suitable initial
conditions or generation mechanisms. When a turbulent state is
invoked as an initial condition, the GW amplitude is determined
almost entirely by the fact that then the GW source, i.e., the
turbulent stress, jumps instantaneously from zero to a finite value
(Roper Pol et al. 2020a). By contrast, when driving turbulence
gradually by applying some forcing in the magnetohydro-
dynamic (MHD) equations, the resulting GW amplitude depends
on the details of how the turbulence develops and later declines;
see Kahniashvili et al. (2021) for a more systematic invest-
igation. These problems motivate our present study of GWs
from the CME, too.

A number of interesting aspects of turbulence from the CME
are already known. In particular, depending on the relative rates
of magnetic field generation, on the one hand, and depletion of
the CME, on the other, different regimes of turbulence can be
distinguished (Brandenburg et al. 2017b). If the depletion is
low, the maximum magnetic field strength is high and a
turbulent spectrum with an inertial range emerges before the
turbulence starts to decay in a self-similar fashion. If the
depletion is high, on the other hand, no turbulent inertial range
develops. How the resulting GW amplitude depends on the
governing parameters of the CME-driven field generation is
unclear and illuminating this is the main purpose of this paper.
Although the process is physically motivated, we choose
parameters that are motivated by our attempt to understand the
relationship between magnetic field generation and the
resulting GWs in any conceivable regime. Our parameters are
therefore not those relevant to the early universe, nor are they
necessarily physically realizable. Nevertheless, the present
work may prove to be important for guiding our intuition about
GW production from primordial turbulent sources.

2. The Model

2.1. Basic Equations

The MHD equations for an ultrarelativistic quark-gluon
plasma in a flat expanding universe in the radiation-dominated
era after the electroweak phase transition can be written in
terms of conformal time and comoving coordinates such that
the expansion no longer appears explicitly (Brandenburg et al.
1996, 2017a; Durrer & Neronov 2013), except for the GW
equation; see below. The bulk motions are assumed to be
subrelativistic.
We quantify the chiral asymmetry through the imbalance

between the number densities nL and nR of left- and right-
handed fermions, respectively, as

m a= - n n c k T24 , 15 em L R B
2( ) ( ) ( )

employing the normalization used by Rogachevskii et al.
(2017). Here, αem is the fine structure constant. The index 5 is
commonly chosen in this context and reminiscent of the fifth
Dirac matrix γ5, central in defining particle chirality. We
should point out that our μ5 has a unit of inverse length and is
related to the chiral chemical potential (with units of energy)
through an extra ÿc/4αem factor; see Schober et al. (2020).
We follow here the normalization of Roper Pol et al.

(2020a, 2020b), where the Heaviside–Lorentz system of units
is used for the magnetic field and the scale factor a(t) is set to
unity at the time t* of the electroweak phase transition (denoted
by an asterisk). The Hubble parameter H at t* is = -H t 1

* *
. All

quantities are made nondimensional by normalizing the time by
t*, velocities by the speed of light c, and the density ρ by the
critical density ρcrit for a flat universe. Spatial coordinates are
then normalized by the Hubble scale c/H*. Consequently, μ5 is
normalized by H*/c. To obtain the comoving magnetic field in
gauss, one has to multiply it by pr c4 crit .
The governing equations for the magnetic field B and μ5 can

then be written as (Rogachevskii et al. 2017; Schober et al.
2018)

h m ¶
¶

= ´ ´ + - = ´
B

u B B J J B
t

, , 25[ ( )] ( )

m
l h m m m= - - +  - GB J B

D

Dt
D , 35

5 5
2

5 f 5( ) · ( )

where D/Dt≡∂/∂t+ u ·∇ is the advective derivative, η is the
magnetic diffusivity, λ characterizes the depletion of μ5 as the
magnetic field increases, D5 is a chiral diffusion coefficient,
and Γf is the flipping rate; see Boyarsky et al. (2021), for a
recent calculation. These equations have been derived under
the assumption η→ 0; see Rogachevskii et al. (2017) for
details. Brandenburg et al. (2017b) found that for kBT=
100 GeV and if μ50 is produced thermally, relevant to the time
of the electroweak phase transition, hmG » -10f 5

2 7, that is, the
time 1/Γf is much longer than the e-folding time of the fastest
growing magnetic mode; see Section 2.2. Hence, we put Γf= 0
from now on. The plasma velocity u and the density ρ (which
includes the rest mass density) obey the momentum and energy
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where Sij= (ui,j+ uj,i)/2− δij∇ · u/3 are the components of
the rate-of-strain tensor with commas denoting partial deriva-
tives, ν is the kinematic viscosity, and the ultrarelativistic
equation of state p= ρ/3 has been employed. In the following,
we assume uniform ν, η, and D5 and vary them such that
ν= η=D5.

The GW equation in the radiation era for the scaled strain
tensor h with = aij ij

physh h is written in Fourier space as (Roper
Pol et al. 2020a, 2020b)

¶
¶

+ =+ ´ + ´ + ´k k k
t

h t k h t
t

T t, ,
6

, , 5
2

2
2˜ ( ) ˜ ( ) ˜ ( ) ( )

where = -+ ´
+ ´ kh t½ ,ij il jm ij lm lme P P P P h˜ ( ) ˜ ( ) are the Fourier-

transformed + and × modes of h, with = -+ k e e e eij i j i j
1 1 2 2e ( )

and = +´ k e e e eij i j i j
1 2 2 1e ( ) being the linear polarization basis, e1

and e2 are unit vectors perpendicular to k and perpendicular to
each other, and Pij(k)= δij− kikj is the projection operator. + ´T̃
are defined analogously and normalized by the critical density.
The stress is composed of magnetic and kinetic contributions,

g r= - +u u B B ...ij i j i j
4

3 Lor
2T , where g = - -u1Lor

2 1 2( ) is
the Lorentz factor, and the ellipsis denotes terms proportional to
δij, not contributing to + ´T̃ . Since we use the nonrelativistic
equations, we put γLor= 1, except for one case shown in the
Appendix, where γLor≠ 1. Our equations apply to the time after
the electroweak phase transition t*, so our normalized time obeys
t� 1. Furthermore, to compute the relic observable GW energy at
the present time, we have to multiply GW

sat by the square of the
ratio of the Hubble parameters and the fourth power of the ratio of
scale factors between the moment of the electroweak phase
transition and today, which is 1.64× 10−5; see Roper Pol et al.
(2020a, 2020b) for details.

As already alluded to above, the system of Equations (2), (3)
describing the CME must be regarded as partly phenomen-
ological and subject to extensions and modifications. A purely
helical magnetic field with wavenumber m= =k const5 , for
example, can never decay if Γf= 0, and yet it would lead to
ohmic heating. However, those effects are not critical to the
dynamics that we are concerned with in this paper and will
therefore be ignored. Likewise, an extra− μ5∇ · u term on the
right-hand side of Equation (3) is necessary for a proper
conservation equation. However, this would not make a
noticeable difference because ∇ · u is always small; see the
Appendix for a demonstration. It should also be noted that, in
comparison with earlier work, this is the first time that the CME
has been solved together with Equations (4), which contain
additional 4/3 factors. We refer to Appendix A of Brandenburg
et al. (2017a) for the differences to standard MHD.

2.2. Basic Phenomenology of the Chiral Magnetic Effect

The CME introduces two important characteristic quantities
into the system: λ and the initial value of μ5, μ50= μ5(t= 1),
both assumed uniform. Different evolutionary scenarios can be
envisaged depending on their values. Following Brandenburg
et al. (2017b), we use the fact that λ−1 has the dimension of
energy per unit length and μ50 has the dimension of inverse
length, and identify two characteristic velocities:

m l m h= =l mv v, . 650
1 2

50 ( )

We recall that here we have used dimensionless quantities. We
can identify two regimes of interest:

h < <m lk v v regime I , 71 ( ) ( )

h < <l mk v v regime II , 81 ( ) ( )

where k1 is the smallest wavenumber in the domain and ηk1< vμ
is necessary for magnetic field excitation. The case of vλ< ηk1 is
highly diffusive and was not considered. In regime I, if the ratio

h l=l m
-v v 1 2 1[ ] is large, the λ term is unimportant, and μ5

will only change slowly as the magnetic field grows. Once the
magnetic field exceeds a critical value of around vμ, it becomes
turbulent; see Brandenburg et al. (2017b). In that paper, both vμ
and vλ were assumed to be less than the speed of sound, but this
is not a physically imposed constraint and will be relaxed in the
present work. Brandenburg et al. (2017b) also found that the
crossover between the regimes occurs when vλ/vμ≈ 8. Regard-
ing the resulting GW production, however, we shall find
evidence for a crossover at vλ/vμ≈ 1. One should also
remember that vμ and vλ do not correspond to physically
realizable speeds and are therefore not constrained to be below
unity. Let us mention at this point that, using the calculation of
Arnold et al. (2000) for the value of η and the expression
l a= c k T3 8 em B

2( ) from Rogachevskii et al. (2017),
Brandenburg et al. (2017b) estimated that vμ≈ 2× 10−5 and
vλ≈ 0.05 for μ50= 2 × 1016.
If μ50≠ 0, the CME determines primarily the magnetic

helicity that can subsequently be generated. This is a direct
consequence of the conservation law for the (weighted) sum of
mean magnetic helicity density and mean μ5, i.e., the total
chirality (Rogachevskii et al. 2017),

l má ñ + á ñ =A B½ const, 95· ( )

where A with B=∇×A is the magnetic vector potential, and
the brackets denote averaging over a closed or periodic volume;
see the Appendix for a discussion of the accuracy of
Equation (9). If the initial magnetic helicity is arbitrarily small,
the constant in Equation (9) can be set to μ50. Neglecting the
influence of the turbulent flow u and inhomogeneities of μ5,
the generated magnetic field is fully helical (Beltrami), and
its helicity can be characterized by its wavenumber kM and
the mean magnetic energy density 〈B2〉/2 through 〈A ·B〉≈
〈B2〉/kM. Therefore, once all the initial μ5 is used up, we have

m lá ñ »B k 2 . 102
M 50 ( )

Interestingly, the value of η does not enter this estimate. It does,
however, determine the initial growth rate γ(k) of the magnetic

3
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field, which adopts its maximum, g hmº 40 50
2 , at the

wavenumber kμ≡ μ50/2. Using kM≈ kμ, we expect

m lá ñ º lB v , 112
50
2 2 ( )

so large magnetic fields are expected for large values of μ50 and
small values of λ. The fact that vλ characterizes the maximum
magnetic field strength justifies the term “limiting CME speed.”
On the other hand, as one can express vμ by the maximum
growth rate and the corresponding wavenumber as 2γ0/kμ, we
may call it “generation speed” in analogy to “phase speed” for
a wave.

2.3. Magnetic Energy Spectrum from the CME

To estimate the amount of magnetic energy production from
the CME, we adopt the semiempirical model of Brandenburg
et al. (2017b), who proposed constructing the magnetic energy
spectrum such that it had the k−2 slope that is characteristic of
magnetically dominated turbulence, with energy injection
predominantly at the wavenumber kμ. For an intermediate
time interval around the magnetic energy maximum, they then
proposed the following form for the magnetic energy spectrum
EM(k) (with normalization ò = á ñ º BE k dk 2M

2
M( ) ) as a

function of wavenumber k and the parameters η, μ50, and λ that
govern the CME:

m h= l m
-  E k C k k k k , 12M 5 50

3 2 2( ) ( ) ( )

where C5≈ 16 is a Kolmogorov-type constant,

l m h m hl= »l lk C C 4 135 50 50
1 2 ( )

is the wavenumber corresponding to the outer scale of the k−2

subrange, and Cλ≈ 1 is another empirical constant (Brandenburg
et al. 2017b). Of course, Equation (12) can only hold if kλ� kμ. In
regime I, kλ is the typical wavenumber of the magnetic field when
it has reached maximum strength.

A detailed sketch illustrating the different spectral subranges
is Figure 1 of Brandenburg et al. (2017b), who also confirmed
the form of Equation (12) through simulations. The present
simulations also support the existence of the different subranges.

2.4. GW Energy Scaling

The work of Roper Pol et al. (2020b) has shown that the GW
energy is not just proportional to the square of the magnetic
energy, but also proportional to the square of the dominating
length scale (or inverse wavenumber) of B. For example, their
runs ini2 and ini3 have the same magnetic energy, but in ini3,
the spectral peak was at a 10 times smaller wavenumber,
corresponding to just 10 turbulent eddies per Hubble horizon.
The resulting GW energy was then about 100 times larger. To
leading order, the GW energy, normalized by the critical
energy of the universe, is given by = á + ñ+ ´ h h 6;GW

2 2  see
Roper Pol et al. (2020a) for details regarding the 1/6 factor and
additional correction terms. Roper Pol et al. (2020b) studied
different types of turbulence and confirmed the quadratic
relationship between the maximum magnetic energy,  ,M

max and
the saturation value of the GW energy,  ,GW

sat in the form

» q k , 14GW
sat

M
max

peak
2( ) ( )

where kpeak is the wavenumber of the peak of the spectrum
(kpeak= 600 in most of their cases, and 60 in the case where a

100 times larger GW
sat was found, suggesting an inverse

quadratic relationship), and q is an empirical efficiency
parameter that is about 0.9 for their cases with a turbulent
initial MHD state (but no forcing), 1.8 in their simulations with
forced MHD turbulence, and 11 in their simulations of forced
acoustic turbulence, where M

max has to be replaced by the
maximum kinetic energy. Larger values of q correspond to
more efficient conversion of magnetic or kinetic energy into
GW energy. The reason why acoustic turbulence is more
efficient is unclear, but may be speculated to lie in its more
vigorous time dependence.

2.5. Numerical Aspects

We solve Equations (2)–(5) using the PENCIL CODE (Pencil
Code Collaboration et al. 2021), which is a finite difference
code that is third order in time and sixth order in space, except
that Equation (5) is solved exactly between subsequent time
instants; see Roper Pol et al. (2020a) for details. For most of
our simulations, we use 5123 mesh points, which turned out to
be sufficient for the present investigations. The lowest
wavenumber in our computational domain, k1, is chosen to
be 100 for many of our runs. The side length of the cubical
computational domain is then 2π/k1, which is chosen to be
large enough so that the governing dynamics is well captured
by the simulations, but small enough to resolve the smallest
length scales. In many cases, we verified that the results are
independent of the choice of k1.
Throughout his work, we present spectra of various

quantities. We denote this operation as Sp( · ), which is
performed as integration over concentric shells in wavenumber
space. For a scalar quantity f, it reads as =xfSp( ( ))
ò Wkk f d k

2 2∣ ˜ ( )∣ , where Ωk is the solid angle in k space, while
for the tensor h we put Sp(h)= Sp(h+)+ Sp(h×), and likewise
for h and T. Thus, the GW energy spectrum is given
by ºE k Sp 6GW h( ) ( ) and the magnetic one by EM(k)≡
[Sp(Bx)+ Sp(By)+ Sp(Bz)]/2.

8

3. Results

We have performed a range of simulations where we vary η,
λ, and μ50, studying the influence of these parameters in turn.

3.1. Comparison with Earlier GW Energy Scaling

To put our new simulations into context, it is convenient to
compare our values of GW

sat for a given M
max with those

obtained by Roper Pol et al. (2020b). We show in Figure 1 a
plot similar to their Figure 7, depicting our simulations with
μ50= 104, grouped into four series with λ1/2 in the range of
5× 104 to 5× 103. In each of those series, we vary η. The
resulting values of M

max and GW
sat are summarized in Table 1,

along with the four input parameters η, λ1/2, μ50, and k1, as
well as several derived quantities: ηk1, vμ, vλ, hm50

2 , and kλ
(provided kλ� μ50/2). In the last column, we also give
according to Equation (14)

=  q k , 15peak GW
sat

M
max ( )

8 Let us note in this connection that one commonly denotes the GW energy
spectrum per logarithmic wavenumber interval by  kGW( ), which is
distinguished from GW by the argument k. It is related to EGW(k)
through = k kE kGW GW( ) ( ).

4
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where we estimate = m m lk k v vmin 1,peak ( ). This means that
kpeak= kμ when vμ> vλ (regime II) and kpeak= kλ/4 when
vμ< vλ (regime I); see also Equation (13).

In view of any type of driven or decaying MHD turbulence,
the dependence of GW

sat on η does not seem very intuitive as we
find it to increase with increasing η, although one would have
expected that a smaller η would cause a more vigorous time
dependence. However, the increase of GW

sat with η is plausible
due to the fact that the maximum growth rate of B is
proportional to η, a specific of the CME.

In all of our simulations of series A–D, the parameter q is
even lower than in the least efficient simulations of Roper Pol
et al. (2020b). This is rather surprising and might indicate that
the turbulence from the CME has a much less vigorous time
dependence than the cases considered there. For understanding
the reason behind this, it is necessary to study the present
results in more detail by inspecting the magnetic and GW
energy spectra. We begin by analyzing their mutual relation at
late times when the magnetic energy has already reached a
maximum and the GW energy has achieved a steady state.

3.2. Late-time GW Spectra from the CME

We consider the case of η= 10−6, λ= 4× 108, and
μ50= 104, which corresponds to Run B1. This means that
vμ= 0.01 and vλ= 0.5, so vλ/vμ= 50, and we are clearly in
regime I.

The CME leads to exponential magnetic field generation,
followed by subsequent turbulent decay. At the time of the
magnetic maximum, an approximate k−2 magnetic energy
spectrum with a short inertial range develops (Brandenburg
et al. 2017b). We then expect a k−4 spectrum for the GW
energy and a k−6 spectrum for h; see Roper Pol et al. (2020b).
There is a trend for this to happen also in the present case,
although  kGW( ) does not have clear power-law subranges; see
Figure 2. This is because the turbulence is not steady and both
energy spectra look very different even just shortly before the
magnetic field saturates, as will be shown below.

For runs in regime II, however, we find an approximate k−0.5

profile for EGW(k); see Figure 3. This is closer to the case of
stationary turbulence; see Table 2 for a comparison of some
characteristic properties. EM(k) shows an approximate k5

subinertial range. This is steeper than the k4 spectrum expected

based on causality arguments (Durrer & Caprini 2003).
However, as we will see more clearly later, at early times
and close to k= kμ, the magnetic energy spectra show a dent,
explaining therefore the apparent steeper spectrum at early
times; a k4 subinertial range can still be identified at other
times. In particular, for fully helical magnetic fields, a k4

spectrum always emerges, regardless of the initial slope; see
Figure 3(a) of Brandenburg & Kahniashvili (2017).

3.3. GW Spectra during the Early Growth Phase

At early times, as discussed above,  tM( ) grows exponen-
tially at a rate of g hm=2 20 50

2 and  tGW( ) grows at a rate of
4γ0. Across the different runs, this rate varies by three orders of
magnitude. To compare the evolution of the GW and magnetic
energies for the different runs, it is thus convenient to plot both
quantities versus 4γ0t. The result is shown in Figure 4 for the
runs of series B. One can clearly see a slow final saturation
phase of  tGW( ) for all runs in regime II (Runs B7–B10), while
 tM( ) and 〈μ5〉(t) are almost unchanged across different runs.

Figure 1. GW
sat vs. M

max for runs with μ50 = 104, grouped into four series with
λ1/2 = 5 × 104 (series A), 2 × 104 (series B), 104 (series C), and 5 × 103

(series D). In each series we vary η. Closed (open) circles refer to cases where
vμ/vλ < 1 ( > 1), corresponding to regime I (II). For orientation, the data of
Roper Pol et al. (2020b) are shown in gray; “ac” acoustic, “hel” helically forced
MHD, and “ini” turbulent initial MHD state (no forcing).

Figure 2. Magnetic and GW energy spectra for Run B1 with μ50 = 104,
λ = 4 × 108, and η = 10−6, which is in regime I with (vμ = 0.01) < (vλ =
0.5). EM(k) (red lines) is shown at the time of magnetic maximum (solid line,
t = 1.92), the time when the k−2 spectrum is most clear (t = 3, dashed line),
and at selected other times (dotted lines, t = 1.71, 1.77, 1.83, 1.89, 1.94, 2.00,
2.15, 2.32, 2.52, 2.74, and 3.00, while EGW(k) (solid blue line) is from the
simulationʼs end time (t = 14), when it can be approximated by k2Sp(h)/6
(dashed–dotted blue line). The black horizontal dashed–dotted line marks the
saturation limit of Equation (10), μ50/λ, and the vertical dashed line marks the
position of kμ.

Figure 3. Similar to Figure 2, but for Run B10 with η = 10−3, which is in
regime II with (vμ = 10) > (vλ = 0.5). EM(k) (solid red line) is at the time when
the magnetic energy has attained its maximum (t = 1.001); the red-dotted lines
show EM(k) at t = 1.0008, 1.003, 1.008, 1.024, and 1.075, while EGW(k) is
from the simulationʼs end time (t = 1.075), when EGW(k) ≈ k2Sp(h)/6.
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Table 1
Summary of Runs from Series A–G

Run η λ1/2 μ50 ηk1 vμ vλ hm50
2 k1 kλ M

max GW
sat q

A1 1 × 10−6 5 × 104 104 1 × 10−4 0.01 0.2 100 100 2000 4.6 × 10−3 8.9 × 10−14 0.032
A2 2 × 10−6 5 × 104 104 2 × 10−4 0.02 0.2 200 100 4000 6.4 × 10−3 4.3 × 10−13 0.10
A3 5 × 10−6 5 × 104 104 5 × 10−4 0.05 0.2 500 100 10,000 8.5 × 10−3 1.1 × 10−12 0.31
A4 1 × 10−5 5 × 104 104 1 × 10−3 0.1 0.2 1000 100 K 9.2 × 10−3 1.7 × 10−12 0.71
A5 2 × 10−5 5 × 104 104 2 × 10−3 0.2 0.2 2000 100 K 9.5 × 10−3 2.5 × 10−12 1.7
A6 5 × 10−5 5 × 104 104 5 × 10−3 0.5 0.2 5000 100 K 9.6 × 10−3 4.9 × 10−12 2.3
A7 1 × 10−4 5 × 104 104 1 × 10−2 1 0.2 10,000 100 K 9.7 × 10−3 1.0 × 10−11 3.3
A8 2 × 10−4 5 × 104 104 2 × 10−2 2 0.2 20,000 100 K 9.7 × 10−3 2.4 × 10−11 5.1
A9 5 × 10−4 5 × 104 104 5 × 10−2 5 0.2 50,000 100 K 9.7 × 10−3 6.6 × 10−11 8.4
A10 1 × 10−3 5 × 104 104 5 × 10−2 10 0.2 1 × 105 50 K 9.2 × 10−3 1.4 × 10−10 12
A11 2 × 10−3 5 × 104 104 1 × 10−1 20 0.2 2 × 105 50 K 9.2 × 10−3 2.2 × 10−10 15
A12 5 × 10−3 5 × 104 104 2 × 10−1 50 0.2 5 × 105 50 K 9.2 × 10−3 3.0 × 10−10 18

B1 1 × 10−6 2 × 104 104 1 × 10−4 0.01 0.5 100 100 800 1.6 × 10−2 4.7 × 10−12 0.027
B2 2 × 10−6 2 × 104 104 2 × 10−4 0.02 0.5 200 100 1600 2.5 × 10−2 3.0 × 10−11 0.087
B3 5 × 10−6 2 × 104 104 5 × 10−4 0.05 0.5 500 100 4000 4.0 × 10−2 1.6 × 10−10 0.31
B4 1 × 10−5 2 × 104 104 1 × 10−3 0.1 0.5 1000 100 8000 5.1 × 10−2 3.0 × 10−10 0.68
B5 2 × 10−5 2 × 104 104 2 × 10−3 0.2 0.5 2000 100 K 5.7 × 10−2 4.1 × 10−10 1.4
B6 5 × 10−5 2 × 104 104 5 × 10−3 0.5 0.5 5000 100 K 6.0 × 10−2 4.8 × 10−10 3.7
B7 1 × 10−4 2 × 104 104 1 × 10−2 1 0.5 10,000 100 K 6.0 × 10−2 5.6 × 10−10 3.9
B8 2 × 10−4 2 × 104 104 2 × 10−2 2 0.5 20,000 100 K 6.0 × 10−2 9.4 × 10−10 5.1
B9 5 × 10−4 2 × 104 104 5 × 10−2 5 0.5 50,000 100 K 6.0 × 10−2 2.6 × 10−9 8.4
B10 1 × 10−3 2 × 104 104 1 × 10−1 10 0.5 1 × 105 100 K 6.0 × 10−2 6.0 × 10−9 12

C1 5 × 10−6 104 104 5 × 10−4 0.05 1 500 100 2000 1.1 × 10−1 5.6 × 10−9 0.33
C2 1 × 10−5 104 104 1 × 10−3 0.1 1 1000 100 4000 1.6 × 10−1 9.9 × 10−9 0.64
C3 2 × 10−5 104 104 2 × 10−3 0.2 1 2000 100 8000 2.0 × 10−1 1.6 × 10−8 1.3
C4 5 × 10−5 104 104 5 × 10−3 0.5 1 5000 100 K 2.3 × 10−1 1.8 × 10−8 3.0
C5 1 × 10−4 104 104 1 × 10−2 1 1 10,000 100 K 2.3 × 10−1 2.1 × 10−8 6.2
C6 2 × 10−4 104 104 2 × 10−2 2 1 20,000 100 K 2.4 × 10−1 2.4 × 10−8 6.6
C7 5 × 10−4 104 104 5 × 10−2 5 1 50,000 100 K 2.4 × 10−1 4.8 × 10−8 9.1
C8 1 × 10−3 104 104 5 × 10−2 10 1 1 × 105 50 K 2.3 × 10−1 9.0 × 10−8 13
C9 2 × 10−3 104 104 1 × 10−1 20 1 2 × 105 50 K 2.3 × 10−1 1.4 × 10−7 16
C10 5 × 10−3 104 104 2 × 10−1 50 1 5 × 105 50 K 2.3 × 10−1 1.8 × 10−7 18

D1 1 × 10−5 5 × 103 104 2 × 10−3 0.1 2 1000 200 2000 4.5 × 10−1 2.3 × 10−7 0.54
D2 2 × 10−5 5 × 103 104 2 × 10−3 0.2 2 2000 100 4000 6.3 × 10−1 5.5 × 10−7 1.2
D3 5 × 10−5 5 × 103 104 5 × 10−3 0.5 2 5000 100 10,000 8.5 × 10−1 7.2 × 10−7 2.5
D4 1 × 10−4 5 × 103 104 1 × 10−2 1 2 10,000 100 K 9.3 × 10−1 7.7 × 10−7 4.7
D5 2 × 10−4 5 × 103 104 4 × 10−2 2 2 20,000 200 K 9.6 × 10−1 7.0 × 10−7 8.7
D6 5 × 10−4 5 × 103 104 1 × 10−1 5 2 50,000 200 K 9.7 × 10−1 1.0 × 10−6 10
D7 1 × 10−3 5 × 103 104 2 × 10−1 10 2 1 × 105 200 K 9.7 × 10−1 1.6 × 10−6 12
D8 2 × 10−3 5 × 103 104 4 × 10−1 20 2 2 × 105 200 K 9.7 × 10−1 1.9 × 10−6 14

E1 5 × 10−6 104 2 × 104 1 × 10−3 0.1 2 2000 200 4000 4.4 × 10−1 8.6 × 10−8 0.67
E2 1 × 10−5 104 2 × 104 2 × 10−3 0.2 2 4000 200 8000 6.3 × 10−1 1.5 × 10−7 1.2
E3 2 × 10−5 104 2 × 104 4 × 10−3 0.4 2 8000 200 16,000 8.1 × 10−1 1.9 × 10−7 2.2
E4 5 × 10−5 104 2 × 104 1 × 10−2 1 2 20,000 200 K 9.3 × 10−1 2.0 × 10−7 4.9
E5 1 × 10−4 104 2 × 104 2 × 10−2 2 2 40,000 200 K 9.6 × 10−1 2.1 × 10−7 9.6
E6 2 × 10−4 104 2 × 104 4 × 10−2 4 2 80,000 200 K 9.7 × 10−1 2.6 × 10−7 10
E7 5 × 10−4 104 2 × 104 1 × 10−1 10 2 2 × 105 200 K 9.7 × 10−1 4.6 × 10−7 13
E8 1 × 10−3 104 2 × 104 2 × 10−1 20 2 4 × 105 200 K 9.7 × 10−1 6.2 × 10−7 16

F1 5 × 10−6 103 2 × 103 2 × 10−4 0.01 2 20 50 40 9.4 × 10−2 7.2 × 10−11 0.00091
F2 1 × 10−5 103 2 × 103 5 × 10−4 0.02 2 40 50 80 1.4 × 10−1 6.7 × 10−9 0.012
F3 2 × 10−5 103 2 × 103 1 × 10−3 0.04 2 80 50 160 2.5 × 10−1 1.7 × 10−7 0.067
F4 5 × 10−5 103 2 × 103 1 × 10−3 0.1 2 200 25 400 4.5 × 10−1 3.3 × 10−6 0.41
F5 1 × 10−4 103 2 × 103 2 × 10−3 0.2 2 400 25 800 6.3 × 10−1 8.2 × 10−6 0.91
F6 2 × 10−4 103 2 × 103 5 × 10−3 0.4 2 800 25 1600 8.1 × 10−1 1.3 × 10−5 1.8
F7 5 × 10−4 103 2 × 103 1 × 10−2 1 2 2000 25 K 9.3 × 10−1 1.6 × 10−5 4.3
F8 1 × 10−3 103 2 × 103 2 × 10−2 2 2 4000 25 K 9.6 × 10−1 1.8 × 10−5 8.9

G1 1 × 10−5 5 × 102 103 2 × 10−4 0.01 2 10 25 20 9.8 × 10−2 1.1 × 10−10 0.00054
G2 2 × 10−5 5 × 102 103 5 × 10−4 0.02 2 20 25 40 1.5 × 10−1 7.5 × 10−9 0.0060
G3 5 × 10−5 5 × 102 103 1 × 10−3 0.05 2 50 25 100 2.9 × 10−1 6.0 × 10−7 0.066
G4 1 × 10−4 5 × 102 103 2 × 10−3 0.1 2 100 25 200 4.5 × 10−1 4.8 × 10−6 0.24
G5 2 × 10−4 5 × 102 103 5 × 10−3 0.2 2 200 25 400 6.3 × 10−1 1.6 × 10−5 0.63
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During the exponential growth phase, μ5 is close to its initial
value, μ50= 104. It drops fastest in regime I, where η is small
(Runs B1–B5). However, in contrast to Figure 1, where we saw
a marked qualitative change as we move from regime I to
regime II, no such change is seen in Figure 4 between regime I
(Runs B1–B5) and regime II (Runs B7–B10).
In the case of stationary GW spectra (see, e.g., Kahniashvili

et al. 2021), and also in the previous section, we always have
» » -k kSp Sp Sp2 2h h T( ) ( ) ( ) , but this is not so in the early

exponential growth phase. Nevertheless, in both regimes, we find
Sp(T)∝ k2. This is a consequence of the almost monochromatic
magnetic field generation in a narrow range around k= kμ, which
implies that the spectral slope of EM(k) for k< kμ is always
steeper than that of white noise (∝k2), so we call it “blue noise.”
However, the square of a field with a blue noise spectrum always
has a white noise spectrum (Brandenburg & Boldyrev 2020). This
explains why Sp(T)∝ k2.
To see how the transition from a k−2 profile for small k

toward a k2 profile for large k occurs in EGW(k), we plot it in
Figure 5 during the kinematic growth phase. The times have
been arranged such that all spectra coincide at k= k1≡ 100.
We clearly see the emergence of a breakpoint from a k2

spectrum at low k toward a k−2 spectrum at larger k. The
breakpoint shifts toward larger wavenumbers as we go from
regime I to regime II, although it can no longer be identified for
Runs B7–B10.
Furthermore, in both regimes I and II, we find µSp Sph h( ) ( )

during the early growth phase, but their slopes are different in the
two regimes. In Figures 6 and 7, we compare the spectra for
Run B1 (regime I) and Run B10 (regime II), including magnetic
and GW energy spectra along with the spectra of stress and strain.
We clearly see that at early times, Sp(h) and =  kSp 6 GWh( ) ( )

Table 1
(Continued)

Run η λ1/2 μ50 ηk1 vμ vλ hm50
2 k1 kλ M

max GW
sat q

G6 5 × 10−4 5 × 102 103 1 × 10−2 0.5 2 500 25 1000 8.6 × 10−1 3.9 × 10−5 1.8
G7 1 × 10−3 5 × 102 103 1 × 10−2 1 2 1000 10 K 9.3 × 10−1 5.4 × 10−5 4.0
G8 2 × 10−3 5 × 102 103 2 × 10−2 2 2 2000 10 K 9.6 × 10−1 6.2 × 10−5 8.2

Note. The ellipses mean that kλ exceeds μ.

Table 2
GW Spectra in Regimes I, II, and in Stationary Turbulence

Spectral Property Run B1 Run B10
Regime I Regime II Station. Turb.a

Sp Sph h( ) ( ) g0.89 2 0
2( ) g0.96 2 0

2( ) k0.30 f
2

Sp SpT h( ) ( ) g m1.1 2 0 50
2( ) g0.98 2 0

2( ) k0.10 f
2

Sp(h), kinematic k−2 k2 K
Sp(h), saturated k−2 k−0.5 k0

Note.
a Run K0 of Kahniashvili et al. (2021), kf = 600; the ellipsis means no growth.

Figure 4. Evolution of M, GW, and 〈μ5〉 for Runs B1–B10. The light and
dark gray bars on the right of each panel indicate regimes I and II, respectively.
Note the occurrence of a slow final saturation phase of GW for all runs in
regime II (Runs B7–B10). Run 8 (red dashed–dotted line), Run 9 (red-dashed
line), and Run 10 (upper black-dotted line) overlap in M and 〈μ5〉, but are well
separated in GW.

Figure 5. Comparison of the GW energy spectra during the kinematic growth
stage for runs in regime I (Runs B1–B5) and regime II (Runs B7–B10). Note
the change of slope at a certain wavenumber that increases as we go from
regime I to regime II.
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all have the same slope proportional to k−2 and k2 in regimes I
and II, respectively. Specifically, at k= kμ, we find for the ratio

g»Sp Sp 2 0
2h h( ) ( ) ( ) in both regimes. It is important to

emphasize that, even though γ(k) depends on k, the stress
spectrum grows at the maximum rate γ0 at all k. For k� kμ, this
can simply be understood as a consequence of the result of
Brandenburg & Boldyrev (2020) that the square of a field with a
blue noise spectrum always has a white noise spectrum.

For k> μ50, the magnetic energy spectrum always drops
rapidly. Based again on the results of Brandenburg & Boldyrev
(2020), since the spectrum here is a red one, the magnetic stress
spectrum also drops rapidly with the same slope. Following
Brandenburg & Boldyrev (2020), in the range of kμ< k< μ50,
the spectrum is slightly shallower than k2 and it peaks at
approximately k= μ50.

In Table 2, we summarize the spectral properties during the
early kinematic growth phase and contrast it with the saturated
phase. In regime I, we also find g»Sp Sp 2 0

2T h( ) ( ) ( ) , but in
regime II, there is an extra m50

2 factor (see Table 2), which is a
consequence of the different slopes of both curves. The reason
for the change in the slopes in regimes I and II is explained in
the next section.

3.4. Difference in the Slopes between Regimes I and II

To understand the change in the spectral slopes between
regimes I and II during the kinematic growth stage it is
convenient to restrict our attention to the case of a purely
monochromatic exponential growth of B at the wavenumber kμ
with the rate g hm= 40 50

2 . As explained in Section 3.3, the
magnetic stress then increases at all k at the rate 2γ0; see also
Figures 6 and 7 for a direct confirmation of this property.

Let us now assume that kT t,˜( ), representing the Fourier
transform of one of the two polarization modes of the stress, T+

and T×, is given by

q= - g -kT t t T k e, 1 , 16t
0

2 10˜( ) ( ) ˜ ( ) ( )( )

where θ(t) is the Heaviside step function, and T k0̃ ( ) is assumed
to depend just on k= |k|.
Using = =h k h k, 1 , 1 0˜( ) ˜ ( ) as initial conditions, we can

solve Equation (5) during the early growth phase in closed
form as

g
t

g
t=

+
- -g t

t= -
h k t

T k

k
e k

k
k,

6

4
cos

2
sin ,

17
t

0

0
2 2

2 0

1

0⎡
⎣

⎤
⎦

˜( )
˜ ( )

( )

where h̃ stands for either +h̃ or ´h̃ . In practice, we are always
interested in the case where the exponential term dominates over
the cosine and sine terms. When k= 2γ0, Sp(h) and hSp( ) are
proportional to Sp(T0). In particular, when T k0̃ ( ) is a white noise
spectrum, we have µ µh k T k kSp 2

0
2 2( ) ∣ ˜ ( )∣ . However, when

k? 2γ0, we find µ µ µ -h h k T k k kSp Sp 2
0

2 2 2( ) ( ) ∣ ˜ ( ) ∣ , with
the breakpoint being at k0= 2γ0.
To compare with the results of our simulations, let us try to

numerically determine the breakpoint k= kGW as

ò ò=- -k k E k dk E k dk. 18GW
1 1

GW GW( ) ( ) ( )

We have calculated it for the models of series B and D and find
that our analytic prediction k0= 2γ0 matches the numerical
results rather well; see Figure 8. Representing hSp( ) according
to Equation (17) by

µ
+

m-E
k

k k
e , 19k

GW
model

0
2 2

2

50
4⎡

⎣⎢
⎤
⎦⎥

( )( )

Figure 6. Time-evolving magnetic and GW energy spectra along with the spectra of stress T and strain h for Run B1 (regime I) at t − 1 = 0.2, 0.25, 0.3, 0.35, 0.4
denoted by black lines, 0.45, 0.5, 0.55, 0.6, 0.65 denoted by blue lines, 0.7, 0.75, 0.8, 0.9, 1.4 denoted by red lines, and the time of maximum M at 1.9, again denoted
by black lines. In panel (a), the horizontal dotted line marks the level of C5μ50η

2, and the horizontal dashed–dotted line the level of Cλμ50/λ. Vertical dotted and
dashed lines mark the positions of 2kμ = μ50 and kμ, respectively. The red-filled symbol denotes the peak of EM(k) at the time of the magnetic maximum.
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where the exponential factor is intended to model the cutoff
near k= μ50, we find kGW= (π/2) k0, which is why we have
compensated kGW in Figure 8 by this value. The reason why
there are departures for small and large values of hm50

2 is that
the wavenumber range used for the integration is limited. In
addition to estimating k0 as kGW from Equation (18), we
compute a fit to the model spectrum of Equation (19). We do
this by minimizing the mean-squared difference between the
actual spectrum and the model spectrum. Those results are also
shown in Figure 8 (open symbols).

In Figure 9, we show a comparison of one of the GW energy
spectra of Figure 5 with Equation (19). While it provides an

excellent description of EGW(k) in the bulk of the k range, the
exponential factor is not sharp enough to model the simulation
data near the cutoff.

3.5. Change of Slope toward Late Times

We can see in Figure 4(b) that for all runs in regime I, GW
saturates quickly after M reaches its maximum, while for runs
in regime II, GW continues to display a slow saturation
behavior. To understand this unusual behavior, we must look
again at Figure 7, showing the evolution of the spectra in
Run B10, which is in regime II. We see that, at the time when
M reaches its maximum, the peak of EM(k) is still at k≈ μ50.
After that, M decays such that = k constM M , so based on the
earlier results of Roper Pol et al. (2020b), we would expect
GW to stay constant. Looking at the evolution of EGW(k) for
Run B10 near equilibration in Figure 7(c), we observe a change
in slope. This could be responsible for the occurrence of a slow

Figure 7. Similar to Figure 6, but for Run B10 with η = 10−3, which is in regime II with (vμ = 10) > (vλ = 0.5), at t − 1 = 2, 3, 4, 5, 6 × 10−4 denoted by black
lines, 6.5, 7, 7.5, 8, 9 × 10−4 denoted by blue lines, and 0.001 (maximum M), 0.002, 0.007, and 0.0075 denoted by red lines.  tM( ) reaches a maximum at
t − 1 = 1.1 × 10−3 and  tGW( ) at t − 1 = 0.02. The upward arrow in panel (c) emphasizes the change in slope.

Figure 8. Dependence of kGW from Equation (18), normalized by k0π/2, on
hm50

2 for runs of series B (red-filled symbols) and D (blue-filled symbols).
Run B5 is highlighted in boldface (see Figure 9). The dashed–dotted line gives
an approximate fit through the data points near their plateau, and the solid line
goes through unity, the theoretically expected value. The red open symbols
denote the values of k0 obtained by fitting the spectra of Figure 5 to the model
spectrum of Equation (19), similar to what is done in Figure 9.

Figure 9. Comparison of the GW energy spectrum for Run B5 and the model
spectrum of Equation (19).
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final saturation phase of GW for the runs in regime II, and
especially for Run B10, seen in Figure 4.

To discuss this possibility quantitatively, let us assume a
simplified spectrum of the form

m m= < =mE k t k k k, 3 if 2 20GW bef 0
2

50
3

50( ) ( )

for the time tbef before the slope changes. For k> 2kμ we assume
a sharp falloff and therefore ignore that contribution. This k2

spectrum is normalized such that ò = E k t dk,GW bef 0( ) . The
spectrum is then assumed to change to a new power law∝ k s,
with an exponent s, of the form

m= +E k t k, 3 21s s
GW aft 0 50

1( ) ( )

for the time taft after the slope has changed. Employing the
same 0 in Equations (20) and (21) accounts for the fact that

m m= E 3GW 50 0 50( ) is no longer changing in time; see
Figure 7(c). For s>−1, the resulting GW energy is

+ s3 10 ( ). In Figure 3, we found that s=−0.5, so the
resulting GW energy is then » 6 0, which is compatible with
the late-time excess of GW in Run B10 relative to Run B6. It
should be noted, however, that the change in slope occurs at a
time when the magnetic field is about to reach the scale of the
domain. It is therefore conceivable that s=−0.5 could be an
artifact of the finite domain size. In particular, s= 0 is what has

previously been found based on numerical simulations (Roper
Pol et al. 2020b) including larger domains.

3.6. Dependence on η for Given λ and μ50

We have already seen that, while increasing η, we gradually
move from regime I to regime II. Let us now also determine the
functional dependence of both M

max and GW
sat on η. This is

shown in Figure 10 for the runs of series A–G.
In Figure 10(c), we see the dotted line describing a cubic

dependence, » ´ - 1.7 10GW
sat 6

M
max 3( ) . A similar scaling has

also been suggested by Neronov et al. (2021) based on the
consideration of characteristic time and length scales. Using
Equation (15), this implies a square root dependence of the
efficiency parameter: » q 13 M

max 1 2( ) .
As expected from Equation (11), smaller values of λ lead to

an increase in M
max . Values close to unity become not only

more unrealistic because of big bang nucleosynthesis con-
straints (Grasso & Rubinstein 2001), but they also can more
easily lead to numerical problems.
In all cases, we see that there is a change in slope and that

M
max reaches a plateau when vμ/vλ= ηλ1/2 approaches a

critical value of around one half. Interestingly, GW
sat still

continues to increase approximately linearly with η, so this
cannot be explained by an increase in M

max . However, we have
seen in Section 3.5 that there is a change in the slope of

Figure 10. Dependence of M
max and GW

sat on η, and their mutual parametric dependence for runs of series A–D with μ50 = 104 and λ1/2 = 5 × 104, 2 × 104, 104,
5 × 103, respectively, series E with μ50 = 2 × 104, λ1/2 = 104, series F with μ50 = 2000, λ1/2 = 1000, and series G with μ50 = 1000, λ1/2 = 100. Filled (open)
symbols denote the runs in regime I (II). The dotted line in panel (c) is for = q 13 M

max 1 2( ) .

Figure 11. Dependence of M
max and GW

sat on λ, and their mutual parametric dependence for runs of series K–N. Filled (open) symbols denote runs in regime I (II). The
dotted line in panel (c) is for = q 7 M

max .
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EGW(k), which results in larger GW energy when the slope
changes from k2 to k0 or even k−0.5; see Equation (21).

3.7. Dependence on λ for Given η and μ50

As expected, M
max scales inversely proportional to λ. This

can be seen in the first panel of Figure 11, where we plot the
runs of series K–N; see also Table 3 for a summary. In the other
panels, we also show the dependence of GW

sat on λ and the
mutual parametric dependence of GW

sat on M
max . We see that the

dependence of GW
sat on λ is steeper than λ−2, approximately

like∝ λ−5/2, according to Figure 11(b). The dependence of
GW

sat on M
max is therefore also steeper than quadratic, namely,

approximately cubic; see Figure 11(c).
It is instructive to see how well the dependence of GW

sat on η,
λ, and μ50 can be expressed just in terms of vλ and vμ. The
approximately linear dependence of GW

sat on η seen in
Figure 10(b) for regime II would then also suggest its linear
dependence on vμ. Furthermore, the approximate scaling

lµ -GW
sat 5 2 seen in Figure 11(b) would suggest µ l vGW

sat 5.
The combined dependence would then be

µ l m v v , 22GW
sat 5 ( )

implying mµGW
sat

50
6 . In Section 3.9 we see that this suggestion

agrees reasonably well with our data.

3.8. Dependence on μ50 for Given η and λ

Let us finally determine the dependence of M
max and GW

sat on
μ50, keeping η and λ unchanged. The results are shown in
Figure 12. We clearly see the expected quadratic dependence of
M

max on μ50. The dependence of GW
sat on μ50 is much steeper

and shows a break at μ50≈ 500 for runs of series U and 5000
for runs of series V and W. However, all those runs are in
regime I; see Table 4. We have therefore added the runs of
series X, which are in regime II. Nevertheless, the basic slopes
are unchanged.
In Figure 12(c), we have plotted GW

sat versus m kM
max . This

allows us to estimate an upper bound for the empirical
parameter q in Equation (14) if kpeak is replaced by kμ. We
find q< 10.
In view of Equation (14), using the dependence of kpeak on

vμ and vλ, as given below Equation (15), we have µ m lq v v 1 2( ) /
in regime II and µ m lq v v3 1 2( )/ / in regime I. This has also been
verified using our numerical data.

3.9. Combined Dependence

Equation (22) has the advantage that one can now
summarize all of the numerical data in one plot. The result is
shown in Figure 13. In its inset, we also show GW

sat for the set
of parameters given by Brandenburg et al. (2017b) for the early
universe, vμ= 2× 10−5 and vλ= 0.05, corresponding to

Table 3
Summary of Runs from Series K–N

Run η λ1/2 μ50 ηk1 vμ vλ hm50
2 k1 kλ M

max GW
sat q

K1 2 × 10−5 5 × 104 104 2 × 10−3 0.2 0.2 2000 100 K 9.5 × 10−3 2.5 × 10−12 1.7
K2 2 × 10−5 2 × 104 104 2 × 10−3 0.2 0.5 2000 100 K 5.7 × 10−2 4.1 × 10−10 1.4
K3 2 × 10−5 1 × 104 104 2 × 10−3 0.2 1 2000 100 8000 2.0 × 10−1 1.6 × 10−8 1.3
K4 2 × 10−5 5 × 103 104 2 × 10−3 0.2 2 2000 100 4000 6.3 × 10−1 5.5 × 10−7 1.2

L1 5 × 10−5 5 × 104 104 5 × 10−3 0.5 0.2 5000 100 K 9.6 × 10−3 4.9 × 10−12 2.3
L2 5 × 10−5 2 × 104 104 5 × 10−3 0.5 0.5 5000 100 K 6.0 × 10−2 4.8 × 10−10 3.7
L3 5 × 10−5 1 × 104 104 5 × 10−3 0.5 1 5000 100 K 2.3 × 10−1 1.8 × 10−8 3.0
L4 5 × 10−5 5 × 103 104 5 × 10−3 0.5 2 5000 100 10,000 8.5 × 10−1 7.2 × 10−7 2.5

M1 1 × 10−6 5 × 104 104 1 × 10−4 0.01 0.2 100 100 2000 4.6 × 10−3 8.9 × 10−14 0.032
M2 1 × 10−6 2 × 104 104 1 × 10−4 0.01 0.5 100 100 800 1.6 × 10−2 4.7 × 10−12 0.027

N1 5 × 10−6 5 × 104 104 5 × 10−4 0.05 0.2 500 100 10,000 8.5 × 10−3 1.1 × 10−12 0.31
N2 5 × 10−6 2 × 104 104 5 × 10−4 0.05 0.5 500 100 4000 4.0 × 10−2 1.6 × 10−10 0.31
N3 5 × 10−6 1 × 104 104 5 × 10−4 0.05 1 500 100 2000 1.1 × 10−1 5.6 × 10−9 0.33

Figure 12. Dependence of M
max and GW

sat on μ50, and their mutual parametric dependence for runs of series U–X. Filled (open) symbols denote runs in regime I (II).
The dashed line in panel (c) is for q = 10.
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= ´l m
-v v 6 105 12. It should be noted, however, that those

values are rather uncertain because both are proportional to μ50,
for which only uncertain upper bounds can be proposed.

Looking at Figure 13, we see that a few runs fall outside the
linear trend. This applies especially to the runs of series F and
G (red-dotted and blue-dotted lines, respectively). Also the runs
of series U and X (black-dashed and orange-dashed lines,
respectively) show major departures. However, it is not
immediately obvious what is special about them.

Looking at Figure 13, we see that data points from one series
are identical with data points from another. This is because
those data points are from the same runs, but have alternative
names. Examples of such equivalences include Runs K1–K4
(=A5, B5, C3, D2), Runs L1–L4 (=A6, B6, C4, D3),
Runs M1, M2 (=A1, B1), Runs N1–N3 (=A3, B3, C1), as
well as Runs U6, V6, W6, X3 (=G4, C1, C3, B10).

3.10. Numerical Limitations

Because of certain numerical constraints, the parameters of
our simulations have to stay within specific empirical limits.
The purpose of this section is to discuss the nature of those
constraints and to see how they depend on the choice of the
parameters. Let us begin with η, which we were able to vary by
more than four orders of magnitude. For smaller values of η,
we go deeper into regime I, provided ηλ1/2< 1. The main
limitation here is the large separation of dynamical and
diffusive time scales. These time scales are proportional to
m-

50
1 and hm -

50
2 1( ) , respectively. This separation of time scales

results in long run times that make the simulations more
computationally costly. In addition, there is a large separation
in spatial scales between m-

50
1 and η, which corresponds to large

magnetic Reynolds numbers, requiring a large number of mesh

points. And as we have now seen, for decreasing η, the
magnetic and GW energies become very small. For larger η, on
the other hand, we go deeper into regime II, provided
ηλ1/2> 1. The main limitation here is the shortness of the
numerical time step, which depends on the mesh spacing δ

as∼ δ2/η.
Next, let us discuss the value of μ50, which we have been

able to vary by a little over two orders of magnitude. Clearly,
for the dynamo instability to exist, the mesh spacing cannot be
too coarse, and μ50 must not exceed the largest resolved
wavenumber in the domain π/δ= k1N/2. Therefore, for a

Table 4
Summary of Runs from Series U–X

Run η λ1/2 μ50 ηk1 vμ vλ hm50
2 k1 kλ M

max GW
sat q

U1 1 × 10−4 5 × 102 2 × 102 1 × 10−3 0.020 0.4 4 10 40 1.8 × 10−2 1.5 × 10−12 0.00068
U2 1 × 10−4 5 × 102 3 × 102 1 × 10−3 0.030 0.6 9 10 60 4.2 × 10−2 3.0 × 10−10 0.0062
U3 1 × 10−4 5 × 102 4 × 102 1 × 10−3 0.040 0.8 16 10 80 7.4 × 10−2 9.2 × 10−9 0.026
U4 1 × 10−4 5 × 102 5 × 102 1 × 10−3 0.050 1 25 10 100 1.1 × 10−1 7.1 × 10−8 0.058
U5 1 × 10−4 5 × 102 7 × 102 1 × 10−3 0.070 1 49 10 140 2.2 × 10−1 8.0 × 10−7 0.14
U6 1 × 10−4 5 × 102 1 × 103 1 × 10−3 0.10 2 100 10 200 4.4 × 10−1 7.9 × 10−6 0.32

V1 5 × 10−6 104 2 × 103 5 × 10−4 0.010 0.2 20 100 400 4.5 × 10−3 3.2 × 10−15 0.0012
V2 5 × 10−6 104 3 × 103 5 × 10−4 0.015 0.3 45 100 600 1.0 × 10−2 4.6 × 10−13 0.010
V3 5 × 10−6 104 4 × 103 5 × 10−4 0.020 0.4 80 100 800 1.8 × 10−2 1.4 × 10−11 0.041
V4 5 × 10−6 104 5 × 103 5 × 10−4 0.025 0.5 125 100 1000 2.9 × 10−2 7.1 × 10−11 0.074
V5 5 × 10−6 104 7 × 103 5 × 10−4 0.035 0.7 245 100 1400 5.6 × 10−2 8.4 × 10−10 0.18
V6 5 × 10−6 104 1 × 104 5 × 10−4 0.050 1 500 100 2000 1.1 × 10−1 5.6 × 10−9 0.33
V7 5 × 10−6 104 2 × 104 1 × 10−3 0.10 2 2000 200 4000 4.4 × 10−1 8.6 × 10−8 0.67

W1 2 × 10−5 104 2 × 103 2 × 10−3 0.040 0.2 80 100 1600 8.0 × 10−3 1.2 × 10−13 0.017
W2 2 × 10−5 104 3 × 103 2 × 10−3 0.060 0.3 180 100 2400 1.8 × 10−2 2.2 × 10−11 0.16
W3 2 × 10−5 104 4 × 103 2 × 10−3 0.080 0.4 320 100 3200 3.2 × 10−2 1.8 × 10−10 0.34
W4 2 × 10−5 104 5 × 103 2 × 10−3 0.10 0.5 500 100 4000 5.0 × 10−2 8.0 × 10−10 0.57
W5 2 × 10−5 104 7 × 103 2 × 10−3 0.14 0.7 980 100 5600 9.7 × 10−2 3.4 × 10−9 0.84
W6 2 × 10−5 104 1 × 104 2 × 10−3 0.20 1 2000 100 8000 2.0 × 10−1 1.6 × 10−8 1.3
W7 2 × 10−5 104 2 × 104 2 × 10−3 0.40 2 8000 100 16,000 7.8 × 10−1 1.9 × 10−7 2.2

X1 1 × 10−3 2 × 104 2 × 103 1 × 10−1 2.0 0.1 4000 100 K 2.4 × 10−3 2.1 × 10−11 3.8
X2 1 × 10−3 2 × 104 5 × 103 1 × 10−1 5.0 0.2 25,000 100 K 1.5 × 10−2 5.5 × 10−10 7.7
X3 1 × 10−3 2 × 104 1 × 104 1 × 10−1 10 0.5 1 × 105 100 K 6.0 × 10−2 6.0 × 10−9 12
X4 1 × 10−3 2 × 104 2 × 104 1 × 10−1 20 1 4 × 105 100 K 2.3 × 10−1 3.5 × 10−8 16
X5 1 × 10−3 2 × 104 5 × 104 5 × 10−1 50 2 2 × 106 500 K 1.5 × 100 3.1 × 10−7 18

Figure 13. Dependence of GW
sat on l mv v5 for all runs of series A–G with the

same colors as in Figure 10 (dashed lines with open circles), series K–N with
the same colors as in Figure 11 (solid lines with filled symbols), and series U–
X with the same colors as in Figure 12 (dotted lines with diamonds). The
dashed–dotted line has slope unity. The inset shows the same plot, extended
down to = ´l m

-v v 6 105 12, corresponding to the CME estimate for the early
universe, and denoted by a big red triangle in the lower left corner of the inset.
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given number of mesh points N, k1 cannot be too small. It
cannot be too large either because then we would no longer be
able to capture the largest length scales in the system. In
particular, if k1 is too large, it could lead to artifacts resulting
from the finiteness of the domain, as already discussed in
Section 3.5. As we see from Table 1, we have varied k1 by a
factor of 20. It should be noted that it is not a physical
parameter, since the intention is to simulate an infinitely
extended domain. Therefore, the final results should be
independent of k1. An example can be seen by inspecting
Figure 1 for the runs of series A, where the three uppermost
open black symbols show a small shift to the left. This is
because here k1 has been decreased from 100 to 50. The
problem can be even more pronounced in regime I. In Figure 2,
for example, k1 is not small enough to capture the maximum
GW energy properly.

Finally, the parameter λ determines the limiting CME speed
vλ. We have varied λ1/2 by over two orders of magnitude. For
the smallest values in Table 1, we also needed to decrease the
value of μ50 to prevent the magnetic energy from exceeding the
critical density, which corresponds to a value of unity. This
could lead to the production of shocks which, in turn, requires
more mesh points, larger viscosity, or both. Furthermore,
neglecting special relativistic effects could no longer be
justified.

4. Conclusions

The present work has revealed a scaling relation for the GW
energy from the CME: GW

sat µ l mv v5 . Based on earlier
dimensional arguments and numerical findings for the resulting
magnetic field energy (Brandenburg et al. 2017b), it was
already anticipated that, within the framework of the standard
description of the CME, including its dependence on temper-
ature and the effective number of degrees of freedom, the
resulting GWs would be too weak to be detectable. This is
indeed confirmed by our present work. Furthermore, we have
also shown that the conversion from magnetic to GW energy is
generally less efficient than for forced and decaying turbulence;
see Figure 1. Here, we have been able to estimate the efficiency
parameter q in Equation (14) as being roughly µ m lv v 1 2( ) / in
regime II, but µ m lv v3 1 2( )/ / in regime I. It should also be
emphasized that, even though q can reach values of the order of
10 (see Tables 1, 3, and 4), which is similar to the value for
acoustic turbulence, the final GW energy production is still
poor owing to the small length scales associated with the CME.

Magnetic field generation by the CME can occur in the two
different regimes, I and II, depending on the relation of
magnetic field generation and limiting CME speeds, vμ and vλ,
respectively. In the present work, we have regarded the CME
as a generic mechanism that allows us to study how GW energy
production can be related to the strengths of generation and
depletion. Whether or not other magnetogenesis mechanisms
can really be described in similar ways remains to be seen. It is
interesting to note, however, that our finding regarding the
proportionality of the GW energy to the fifth power of vλ is
reminiscent of the earlier results of Gogoberidze et al. (2007)
who found the GW energy to be proportional to the fifth power
of the turbulent velocity; see their Equation (40). It should be
noted, however, that the additional dependence on vμ cannot be
neglected and results in the increase of GW with increasing
values of η; see Figure 10(b).

Our work has also revealed new unexpected GW energy
spectra. In regime I, the spectra were not of clean power-law
form, and the spectral energy was falling off with wavenumber
faster than in any earlier simulations. This means that the GW
energy ò= E k dkGW GW ( ) depends significantly on its lower
integration bound k1, so that it will be important to include even
smaller wavenumbers in future simulations. This could restore
a quadratic scaling for Runs A1–A4 and Runs B1–B5 in
Figures 1 and 10(c). In regime II, on the other hand, we have
seen that large GW energies can be generated. This was rather
surprising and counterintuitive because this regime implies a
lack of a turbulent cascade in EM(k) with just a spectral bump
traveling toward lower wavenumbers. This traveling, on the
other hand, happened rather rapidly, which contributed to the
large GW energies in that case. The physical reality of this
regime is however questionable.
Software and Data Availability. The source code used for the

simulations of this study, the PENCIL CODE (Pencil Code
Collaboration et al. 2021), is freely available on https://github.
com/pencil-code/. The doi of the code is 10.5281/zenodo.
2315093 (Brandenburg 2018). The simulation setup and the
corresponding data are freely available from doi:10.5281/
zenodo.4448211, see also http://www.nordita.org/~brandenb/
projects/GWfromCME/ for easier access.
Support through grants from the Swedish Research Council

(2019-04234), the Shota Rustaveli National Science Foundation
of Georgia (FR18-1462), and the European Research Council
(694896 and 818665) are gratefully acknowledged. We acknowl-
edge the allocation of computing resources provided by the
Swedish National Allocations Committee at the Center for
Parallel Computers at the Royal Institute of Technology in
Stockholm. J.S. acknowledges the funding from the Swiss
National Science Foundation under grant No. 185863. The
computations and data handling were enabled by resources
provided by the Swedish National Infrastructure for Computing
(SNIC) at the Center for Parallel Computers at the Royal Institute
of Technology in Stockholm, partially funded by the Swedish
Research Council through grant agreement No. 2018-05973.

Appendix
The Compression Term in Equation (2)

At the end of Section 2.1, we noted that for ∇ · u≠ 0, the
conservation of the total chirality requires an extra term,
− μ5∇ · u, on the right-hand side of Equation (3). For Γf= 0,
this equation can then also be written as

m
m l h m m

¶
¶

= - - - + u B J B
t

D , A15
5 5 5

2
5· ( ) ( ) · ( )

expressing the conservation of μ5 for B= 0. To illustrate the
effect of the μ5∇ · u term, we consider here a simple one-
dimensional example with a prescribed (kinematic) velocity
field =u u kxsin , 0, 00( ) and periodic boundary conditions.
This is obviously an artificial way of demonstrating the
consequences for the generation of B. To have an effect on
the conservation of μ5, we also consider an initial profile of the
form m m=x kx, 0 cos5 50( ) , so 〈μ5(x, 0)〉= 0. In Figure 14, we
show By(x) and μ5(x) at t= 10 for k= 1, μ50= 100, λ= 100,
η= 10−3, and u0= 10−2. We used a weak seed magnetic field
with zero helicity as the initial condition.
When conservation of the total chirality is invoked by

including the μ5∇ · u term, there is a small enhancement of By
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around kx=±0.7 and a small decrease at ±2.3. This is caused
by compression at kx= 0 and expansion at kx=±π. In this
example, when the μ5∇ · u term is absent, the total chirality
becomes negative and reaches about 6% of its initial rms value.
Finally, we show in Figure 15 the evolution of  tGW( ) for
Run D8, where the magnetic field is one of the largest and the
effect of the μ5∇ · u term is expected to be strong. We compare
the case where γLor≠ 1 and the μ5∇ · u term is included with a
case where it is omitted, and a case where γLor= 1 and the
μ5∇ · u term is included. The effect of the latter is here
extremely small. We also see that the inclusion of the γLor term
affects the detailed time evolution of  tGW( ), but not the final
overall saturation level.
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Figure 15. Comparison of  tGW( ) for the cases where γLor ≠ 1 and the μ5∇ · u
term is included (black solid line) and where it is omitted (red-dashed line) with
a case where γLor = 1 and the μ5∇ · u term is included (blue-dotted line).
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