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ABSTRACT

The generation of a large-scale magnetic field in the kinematic regime in the absence of an α-effect is
investigated by following two different approaches: the test-field method and the multiscale stability theory relying
on the homogenization technique. Our computations of the magnetic eddy diffusivity tensor of the parity-invariant
flow IV of G. O. Roberts and the modified Taylor–Green flow confirm the findings of previous studies
and also explain some of their apparent contradictions. The two flows have large symmetry groups; this is
used to considerably simplify the eddy diffusivity tensor. Finally, a new analytic result is presented: upon
expressing the eddy diffusivity tensor in terms of solutions to auxiliary problems for the adjoint operator, we derive
relations between the magnetic eddy diffusivity tensors that arise for mutually reverse small-scale flows v x( )
and -v x( ).
Key words: dynamo – magnetic fields – magnetohydrodynamics (MHD) – turbulence

1. INTRODUCTION

It is wellknown that at sufficiently high Reynolds number
turbulence is characterized by a hierarchy of fluctuations
interacting on a wide range of spatial and temporal scales.
When this happens in a flow of conducting fluid, magnetic field
generation commences if the magnetic Reynolds number is
sufficiently high (Moffatt 1978). As predicted by the magnetic
induction equation governing the process of generation, small
scales also develop in the generated magnetic field. The
interaction of fine structures of flow and magnetic field usually
influences the evolution of their large-scale parts. In particular,
by Parkerʼs hypothesis, such an interaction may give rise to a
mean electromotive force (emf), parallel to the large-scale
magnetic field.

In astrophysics, when the generation of the geomagnetic or
solar magnetic field is under investigation, fine structures are
generally of lesser interest than global ones. With present-day
computers, it is impossible to resolve structures over the whole
range of interacting scales; by choosing the domain of
integration of the equations of MHD, we can only focus on
the large or small scales. However, in simulations of the global
picture it is desirable to take into account the integral influence
of physical processes at small scales.

Since the 1960s, German scientists (Steenbeck et al. 1966;
see also Krause & Rädler 1980) have been developing the
theory of mean-field electrodynamics (MFE), a first attempt
supposed to advise how to do this. Perhapsthe best introduc-
tion to the ideas on which this theory is built is by one of its
founders (Rädler 2007). The three-dimensional magnetic and
flow velocity fields, b and v, are decomposed into “mean” (b
and v) and “fluctuating” ( ¢b and ¢v ) fields:

= + ¢ = + ¢b b b v v v, .

Any averaging procedure is deemed acceptable provided that it
satisfies the Reynolds rules (see Rädler 2007), e.g., planar
averaging over any pair of Cartesian variables, one-

dimensional averaging along any given direction, or ensemble
averaging for turbulent flows. The equations for mean magnetic
field and fluctuations take the form
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Here ¢ º -f f f denotes the fluctuating part of a vector field
f . The problem then reduces to the use of Equation(2) for
expressing the mean emf ¢ ´ ¢v b in terms of b and v. For
simplicity, we henceforth assume that =v 0 and ¢v is steady. In
MFE, for homogeneous stationary turbulence, the mean emfis
usually expressed in terms of the mean magnetic field as
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when averaging is planar (a and h do not depend on the
spatial variables over which the emfis averaged on the l.h.s.)—
in general, h should be defined as a rank 3 tensor acting on
b . Our task is to determine the kernels. In Fourier space,
Equation (3) implies
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In the limit k 0 and w  0,a and h describe the (magnetic5)
α-effect and eddy diffusivity correction6 tensors, respectively.

The test-field method7 (TFM) for computing a and h was
developed within the MFE paradigm. To the best of our
knowledge, it was first proposed by Schrinner et al.
(2005, 2007). Perhapsthe most detailed description of the
TFM procedure applied by Devlen et al. (2013) is found in
Brandenburg et al. (2008a). The recipe is to solve Equation (2)
for zero-mean magnetic perturbation ¢b , where b is a test field.
The initial condition for ¢b can be any solenoidal small-scale
zero-mean field (for instance, 0). For space-periodic magnetic
fields, the test fields

= =b k x e b k x ecos and sin 6n n( · ) ( · ) ( )

are chosen. By using sufficiently many independent test fields,
we obtain a linear system of equations that relates ¢ ´ ¢v b
through the unknown coefficients ofa and h to b . This system
can be solved to obtain a and h. Similarly, the temporal
dependence of the kernels in Equation (3) can be “probed” in
Fourier space by considering the test fields

= =w w- -b k x e b k x ee ecos and sin . 7i t
n

i t
n( · ) ( · ) ( )

In kinematic dynamo problems, where the evolution of a
weak magnetic field is studied (so that its influence on the flow
via the Lorentz force can be neglected), the flow velocity, v, is
known a priori. It can be a stationary field, often supposed to
have a vanishing average ( =v 0), as have the flows that we
consider in this paper. Alternatively, it can be a time-dependent
flow, for instance, supplied by an independent hydrodynamic
simulation. The kinematic dynamo problem is an instance of
the full MHD stability problem that focuses on the stability of
nonmagnetic states; the flow and magnetic field perturbations
then decouple since the Lorentz force is quadratic in the
magnetic field. In a general setup, one considers the stability of
an MHD regime featuring a nonvanishing magnetic field that
affects the flow, and therefore perturbations involve both the
flow and magnetic field that cannot be disentangled.

MHD perturbations involving much larger spatial and
temporal scales than those of the perturbed MHD regimes
(which, e.g., can be periodic or quasi-periodic in space, and
steady or periodic in time) can also be explored by an approach
known as the multiscale stability theory (MST). It originates
from the studies of hydrodynamic stability (Dubrulle &
Frisch 1991) and kinematic dynamo (Lanotte et al. 1999) and
relies on mathematically precise asymptotic methods for
homogenization of elliptic operators. An introduction to MST
can be found in Zheligovsky (2011); the linear MHD stability
problem for large-scale perturbations was considered by

Zheligovsky (2003) (see also Chapter 6 of Zheligovsky 2011).
Here we will only consider the kinematic dynamo problemand
focus on the generation of a magnetic field involving large
scales by a small-scale fluid flow. For a steady flow, the
dynamo problem can be reduced to the eigenvalue problem for
the magnetic induction operator:

h l + ´ ´ =b v b b 82 ( ) ( )

(here η denotes the magnetic molecular diffusivity and λ is the
eigenvalue).
We assume that a large-scale magnetic mode b X x,( )

depends on fast, x, and slow, e=X x, spatial variables, the
flow depends only on x, and the scale ratio ε is small. We
proceed by expanding a mode b X x,( ) and the associated
eigenvalue λ (its real part is the growth rate of the mode) in
power series in ε,
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and deriving a hierarchy of equations that the eigenvalue
equation yields in successive orders en. As it turns out, we can
find each term of the expansions by solving successively
equations from this hierarchy. For parity-invariant flows, which
we will mostly consider, the series for the eigenvalue involves
only even powers of ε (see Section 3.5 of Zheligovsky 2011).
The first equation in the hierarchy shows that the leading

terms b0 and l0 in the expansion (9) are, respectively, a small-
scale eigenfunction and the associated eigenvalue of the
operator of magnetic induction. The asymptotic expansion
can be developed for any eigenvalue l0. For small scale ratios
ε, the growth rate may exceed Re(l0) owing to the interaction
of the fluctuating components of the magnetic field and of the
small-scale flow, but the corrections are at best linear in the
small parameter ε and hence small. We are mostly interested in
the case where no small-scale magnetic field is generated and
l = 00 , since then the presence of large spatial scales can, in
principle, result in the onset of magnetic field generation, i.e.,
in a qualitative change in the behavior of the MHD system.
(The case of an oscillatory small-scale kinematic dynamo
occurring for imaginary l0 was considered in Section 3.8 of
Zheligovsky 2011; it is, actually, algebraically much simpler.)
For l = 00 , the first term b0 is a linear combination of neutral
small-scale magnetic modes with coefficients depending on the
slow variable. These coefficients, called amplitudes, are
determined from the solvability conditions for the higher-order
small-scale equations from the hierarchy. When the problem is
considered in a three-dimensional periodic domain, the kernel
of the magnetic induction operator comprises three neutral
magnetic modes whose averages are the unit Cartesian
coordinate vectors (generically, the kernel is three-dimen-
sional). The amplitudes of these modes can clearly be
interpreted as the Cartesian components of the mean magnetic
field. Furthermore, by the theorem on the Fredholm alternative
(see, e.g., Stone & Goldbart 2009), the solvability condition
consists of the orthogonality of the inhomogeneous term to the
kernel of the operator adjoint to the operator of magnetic
induction. Generically, this amounts to vanishing of the integral
of the inhomogeneous term over the periodicity box. As a
result, when l = 00 , equations for the amplitudes can be
interpreted as mean-field equations, where the respective terms
describe the α-effect or the eddy diffusivity effect.

5 This paper is devoted to the study of magnetic α-effect and magnetic eddy
diffusivity exclusively—as opposed to the hydrodynamic α-effect known as
the AKAeffect (see Frisch et al. 1987; Dubrulle & Frisch 1991), or combined
α-effect and eddy diffusivity emerging in large-scale perturbations of MHD
regimes (see Chapters 6–9 in Zheligovsky 2011). Note that the expression
“magnetic α-effect” is sometimes used with a different meaning, designating a
term proportional to current helicity that quenches against the kinetic α-effect.
With this disclaimer in mind, we omit the attribute “magnetic” from now on
when referring to the α-effect and eddy diffusivity.
6 We use here the terminology of the multiscale stability theory. In fact, the
“corrections” can be much larger than the molecular diffusivity that they
“correct”—the turbulent diffusivity can be by orders of magnitude larger than
the molecular diffusivity.
7 Not to be confused with Kraichnan’s “test-field model” of turbulence
(Kraichnan 1971), used by Sulem et al. (1975) as a method for closure of the
hierarchy of moment equations.
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The MST analysis reveals the nonuniversal character of
Equation(3). This asymptotic equality can be rigorously
derived for a multiscale kinematic dynamo and volume
averaging in the generic case, when the kernel of the magnetic
induction operator comprises three magnetic modes with
nonvanishing linearly independent averages. However, Equa-
tion (3) does not necessarily hold for other types of averaging,
or when the dimension of the kernel is higher—in the latter
case, amplitudes of all neutral modes are involved in Equation
(3), as this happens, e.g., for translation-invariant convective
dynamos (see, e.g., Chertovskih & Zheligovsky 2015). For
MHD turbulence, Equation (3) is likely to stem, for various
averaging procedures, from the ergodic properties of the
respective MHD dynamical system, but, to the best of our
knowledge, this equality was never fully demonstrated in the
context of MFE at the mathematical level of rigor; it remains a
phenomenological property of turbulence (such as, for instance,
the Kolmogorov law).

The standard α-effect and eddy diffusivity, arising in the
limits k 0 and w  0, are an idealization in which
nonlinear terms, higher spatial derivatives, and temporal
derivatives of the magnetic field are omitted in expression (3)
for the emf. This is justified if the mean fields vary sufficiently
slowly in space and time, i.e., on scales much larger and longer
than those of the fluctuations. While this simplification may be
permissible in some cases, e.g., for forced turbulence with
sufficient scale separation, for certain flows, such as the
Roberts and Otani flows, it is not (Hubbard & Branden-
burg 2009). A particularly striking example are flows II and III
of Roberts (1972); for describing the nature of the dynamo in
those flows, it is crucial to retain the convolution in time in the
integral operators in Equation (3) (Rheinhardt et al. 2014).
Then the emfat a given time depends on the magnetic field
also at earlier times, so the system can be said to possess
memory. It is important to realize that the memory effect does
occur even for steady flows such as those considered here.
Excluding the memory effect from consideration more often
results in quantitative distortions, such as too high an estimate
for the critical dynamo number (Rheinhardt & Branden-
burg 2012), rather than in qualitative changes.

We note in passing that instead of implementing an integral
transform in both space and time, which is cumbersome, it is
convenient to solve an evolution equation for the emf ¢ ´ ¢v b .
Such an equation was first derived by Blackman & Field (2002)
using the τ approximation, which captures temporal nonlo-
cality, i.e., the memory effect (Hubbard & Brandenburg 2009).
This was then extended by Rheinhardt & Brandenburg (2012)
to capture also spatial nonlocality. Usually this also yields a
satisfactory (at least qualitatively) description of the unusual
phenomena related to the memory effect, such as the ones
encountered in flows II and III of G. O. Roberts (Rheinhardt
et al. 2014). These ideas will turn out to be important in
Section 5.4, when we compare the magnetic field for the
modified Taylor–Green flow (mTG) obtained from direct
numerical simulations (DNS) with that found by TFM.

We have thus two independent theories: MFE, physical in
spirit, especially when making simplifying assumptions
regarding the kernel in the integral Equation (3) for MHD
turbulence, and MST, which yields a mathematically rigorous
derivation of equations for similar quantities from first
principles. MST has a narrower scope, being applicable to
treat only linear and weakly nonlinear MHD stability problems.

While MST applies specifically to the limit k 0 and w  0,
TFM can be applied to noninfinitesimal k∣ ∣ and ω. It can
therefore be used to assemble the kernels a and h. In other
words, MST strives to describe an influence of the flow,
characterized by certain temporal and spatial scales, on
magnetic fields involving much larger scales; TFM is more
ambitious in trying to assess the influence of both larger and
smaller hydrodynamic scales on magnetic field of a given scale.
Although the limits k 0 and w  0 can be numerically
expensive for TFM, a comparison with MST is possible.
Recently Devlen et al. (2013) applied TFM to compute the

magnetic eddy diffusivity in flows previously employed in the
studies of Lanotte et al. (1999) and Roberts (1972) with the use
of MST and a similar approach. Dubrulle et al. (2007) observed
in simulations the beginning of magnetic field generation by
mTG when increasing the magnetic Reynolds number starting
from small values, which the authors cautiously attributed to
the onset of the action of negative magnetic eddy diffusivity
investigated by Lanotte et al. (1999). Devlen et al. (2013)
found, in agreement with Roberts (1972), that the so-called
flow IV of G. O. Roberts (further referred to as R-IV) does
yield negative magnetic eddy diffusivity, but they failed to
reproduce the results of Lanotte et al. (1999) on the presence of
negative magnetic eddy diffusivity in mTG. We resolve this
controversy in the present paper and show that in a suitable
parameter range eddy diffusivity is negative;however, the
relevant TFM averaging is not over the horizontal plane (which
is applicable for R-IV), but one along the vertical direction, or a
planar one over any of the other two Cartesian coordinate
planes such that the average still depends on one of the two
horizontal directions.
The need for the cross-examination stems from the fact that

some applications of the MFE ideas can fail to conform with the
mathematical structure of problems under consideration. For
instance, the mean emfcomputed as “an average over the lower
half-volume, the upper half-volume, or, better still, one half of the
difference of these two” was used in the studies of Cattaneo &
Hughes (2006, 2008) of the α-effect in convective dynamo in a
layer. How could these procedures possibly help to track the
evolution of the mean magnetic field? Such an averaging does
not obey the Reynolds rules, namely, because averaging and
taking the spatial gradient do not commute, and turns the
midplane into an artificial boundary. In each half-cell the mean
field depends only on the horizontal variables. The opposite α-
effect values in two adjacent half-cells force us to assume
opposite mean fields over and below the midplane, in order to
avoid singularities in the α-effect operator at the midplane. This
inevitably implies the existence of a boundary layer at the
midplane. However, nothing resembling a boundary-layer kind of
behavior of magnetic field in the numerical solutions was
reported in Cattaneo & Hughes (2006, 2008), clearly showing
that averaging over a half-cell is unnatural and incompatible with
the physics of the problemand is also inappropriate from the
mean-field electrodynamics perspective. The α-effect operator
must be calculated by averaging over the entire periodicity cell;
the observed “antisymmetry of α about the midplane” (Cattaneo
& Hughes 2006) simply implies that in these dynamos the
relevant α-effect is zero (i.e., the α-effect operator is not involved
in the equations for the evolution of the mean field), and the
essential eddy effect is eddy diffusivity. Furthermore, the
convective dynamos considered in Cattaneo & Hughes
(2006, 2008) are translation-invariant, and hence some
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amplitudes, essential in the description of the large-scale
modulation of the generated instability modes, cannot be
interpreted as mean fields8 (see Chapters 8 and 9 in Zheli-
govsky 2011); neglecting these modes is also likely to affect the
results of Cattaneo & Hughes (2006, 2008). As a result, no sound
conclusions concerning the α-effect, intended for astrophysical or
general MHD applications, can be drawn from the findings of
those two papers.

Our paper is organized as follows. In Section 2 we remind
the reader of the MST formalism for the large-scale kinematic
dynamo. In Section 3 we calculate, in the MST framework, the
operator of magnetic eddy diffusivity for R-IV using its many
symmetriesand state results of the computation of its two
coefficients. In Section 4 we discuss how the symmetries of
mTG reduce the number of auxiliary problems involved in
MST computations of eddy diffusivityand present numerical
results. Despite using algorithms that differ drastically from
those used by Lanotte et al. (1999), we reproduce the results of
this paper with four significant digits. In Section 4.2 we explain
why no large-scale dynamo was found for mTG by Devlen
et al. (2013)and show that eddy diffusivities obtained by TFM
with an alternative planar averaging qualitatively agree with the
MST values. In Section 4.3 we show that the growth rates of
large-scale dynamo modes have the symmetry properties
implied by the structure of the eddy diffusivity operator. In
Section 5 we demonstrate that the TFM procedure with the
spatial averaging reproduces the MST α-effect and eddy
diffusivity tensors, and we consider analytically and numeri-
cally the difference of the two approaches for a planar
averaging using mTG as an example. Concluding remarks
end the paper.

2. THE MATHEMATICAL THEORY OF GENERATION OF
LARGE-SCALE MAGNETIC FIELD

We review here the results of application of MST for the
investigation of large-scale magnetic field generation by small-
scale steady flow of electrically conducting incompressible
fluid (Lanotte et al. 1999; Zheligovsky et al. 2001; Zheli-
govsky 2011). We consider the kinematic dynamo problem as a
problem of determination of the spectrum of the magnetic
induction operator, which enables us to find growing large-
scale modes even when a small-scale dynamo also operates.
For the sake of simplicity, both the large-scale magnetic mode
b X x,( ) and the flow v x( ) are assumed to be 2π-periodic in
each fast spatial variable xi. The mode is solenoidal and
satisfies the eigenvalue Equation (8) for the magnetic induction
operator.

1. Magnetic α-effect. Generically, the average of the leading
term in the expansion (9) of a magnetic mode, B X( ) =
á ñb X x,0 ( ) , and the leading term in the expansion of the
associated eigenvalue, lL = 1, are a solution to the eigenvalue

problem for the α-effect operator,

 ´ = LAB B, 10X ( )

in the subspace of solenoidal fields,  =B 0X · . Here the
tensor of magnetic α-effect, A, is the 3 × 3 matrix whose nth
column is á ´ ñv Sn , á ñ· denotes the average over the periodicity
cell  p= 0,23 3[ ] of the fast variables,

òpá ñ = -f X f X x xd2 , ,3
3

( ) ( ) ( )

vector fields S xn ( ) are zero-mean solutions to auxiliary
problems of type I,

= -
¶
¶

LS
v
x

11n
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b b v b
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12x x
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2
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( ) ( )

is the small-scale magnetic induction operator, and en are unit
vectors of the Cartesian coordinate system. S xn ( ) are
solenoidal.
Let B X( ) be a solenoidal space-periodic solution to the

eigenvalue problem (10) whose associated eigenvalue is Λ.
Then mB X( ) is also a solenoidal solution to problem (10)
whose associated eigenvalue is mL; for any integer μ, positive
or negative, this mode possesses the spatial periodicity of the
original mode B X( ). Thus, a mean field, which is initially an
infinite sum of modes defined by (10), grows in general
superexponentially; consequently, the large-scale magnetic
field grows and destabilizes the MHD system on timescales
that are intermediate between the fast time t and the slow time

e=T t (unless all modes defined by (10) are associated with
imaginary eigenvalues Λ).
2. Magnetic eddy diffusivity. A field f is parity-invariantif

- = -f x f x , 13( ) ( ) ( )

and parity-anti-invariantif

- =f x f x .( ) ( )

For parity-invariant flows v, parity-invariant and parity-anti-
invariant vector fields constitute invariant subspaces of the
magnetic induction operator L. Hence, vector fields S xn ( ) are
parity-anti-invariant, and the α-effect is absent: =A 0. The
magnetic field (9) is then

å

åe e
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+
¶
¶
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where vector fields G xmn ( ) are zero-mean solutions to auxiliary
problems of type II:

h= -
¶
¶

- ´ ´ +LG
S

e v S e
x

2 . 15mn
n

m
m n n( )( ) ( )

G xmn ( ) are parity-invariant.
The solenoidal mean part of the leading term in the

expansion (9) of the modeand the leading term in the
expansion of the associated eigenvalue, lL = 2, are a solution
to the eigenvalue problem for the operator of magnetic eddy

8 We will see in Section 2 that a large-scale magnetic mode has the structure
b =å e+X S xB O

n

N n
n( ) ( ) ( ), where = LN dim ker is the number of

independent small-scale neutral magnetic modes S xn ( ). By normalizing the
small-scale modes, we can impose the conditions


 =

+
 ⎧⎨⎩S

e n K
K n N

for ,
0 for 1 .n

n

We then find b =å X eB
n

K n
n( ) ; thus, for n K the amplitudes XBn ( ) have

the sense of the mean components of the mean field b ; for  +n K 1 no such
or similar interpretation is possible.

4

The Astrophysical Journal, 811:135 (24pp), 2015 October 1 Andrievsky et al.



diffusivity:

ååh  + ´
¶
¶

= L
= =
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. 16X X

n m
mn
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3
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HereD is the tensor of eddy diffusivity correction,

= ´D v G . 17mn mn ( )
We assume that the mean fields reside and are bounded in

the entire space 3. Hence, solutions to the eigenvalue problem
(16) are Fourier harmonics9

= =~ ~
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~
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of the mean magnetic mode) and
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(this is equivalent to decomposing the mode into toroidal and
poloidal components). Substituting (20) into (19) and scalar
multiplying by T and P, we recast (19) into an equivalent
eigenvalue problem in the coefficients bt and bp:
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Taking into account the symmetries of the generating flow can
considerably simplify the eigenvalue problem (22)–(23) (see
Sections 3 and 4).

Eigenvalues Λ depend on the wavevector q of the large-scale
amplitude modulation: L = L q( ). If the real part of L q( ) is the
maximum of Re(L q( )) over unit wavevectors q, then heddy =
-L q( ) is called the minimum magnetic eddy diffusivity. When
Re h > 0eddy( ) , generation of large-scale magnetic field by the
mechanism of negative eddy diffusivity is possible. From a
physicist’s point of view, this mechanism is important only if
the flow v does not generate small-scale magnetic fields (i.e.,
fields of the same spatial periodicity, as that of the flow),
because otherwise small-scale magnetic fields grow and
destabilize the MHD system on timescales of the order of
unity, which is faster than the growth of the large-scale field in
the slow time e=T t2 . This can also be interpreted as follows:
when only the small-scale dynamo is acting, the magnetic field
can involve Fourier harmonics of arbitrarily large wavelengths
(compatible with the boundary conditions, i.e., not exceeding
the size of the periodicity box when periodicity conditions in
space are considered), but they decay and are unimportant for
generation. By contrast, when the small-scale dynamo is

inactive, the presence of large scales in the field becomes a key
ingredient, without which the mechanism of negative eddy
diffusivity cannot make a dynamo work. It can also happen that
the small- and large-scale mechanisms coexist and are acting
simultaneously.
3. Computation of the eddy diffusivity tensor. The load of

computation of the tensor of eddy diffusivity correction is
halved, if instead of computing the fields Gmn one solves
auxiliary problems for the adjoint operator (Zheli-
govsky 2011):

* = ´L Z v e , 24l l ( )

for zero-mean fields Zl,  l1 3, the adjoint operator being

* h º  - ´ ´L z z v z ,x x
2 ( )

since, as it is easy to see from Equations (17), (15), and (24),

h=
¶
¶

+ ´ ´ +D
⎛
⎝⎜

⎞
⎠⎟Z

S
e v S e

x
2 . 25mn

l
l

n

m
m n n( )( )· ( )

4. Relations between tensors of magnetic eddy diffusivity
correction for mutually opposite flows. The average (25) can be
expressed in terms of solutions to the auxiliary problems for the
adjoint operator. We label by the superscript “minus” the
quantities pertinent to the reverse flow -v:

h º  - ´ ´-L b b v b ,x x
2 ( )

*+ = + =- - - -L LS e Z e0, 0.n n l l( ) ( ) ( )
Clearly, Equation (24) implies

 ´ + =-L Z e 0, 26x l l( ) ( )

and hence for all l,

h ´ =  =  ´ +- - - -Z S Z v S e , 27x xl l l l l
1 2( )( ) ( )

where -
x

2 denotes the inverse Laplacian in the fast variables.
Using the analogs of these relations for the flow v to eliminate
Sn in Equation(25), we obtain

h = ´
¶
¶

- ´ 
-

-D
⎛
⎝⎜

⎞
⎠⎟Z

Z
e Z

x
2 . 28x xmn

l
l

n

m
m n

2· ( )

Applying standard vector analysis transformations, we can
express this average as an integral of the scalar product of -Zn

and a field resulting from the action of a differential operator on
Zl. By self-adjointness of the Laplacian and the curl, and
antisymmetry of the triple product with respect to permutation
of its factors, we find

= - -DD . 29mn
l

ml

n( ) ( )

When small-scale magnetic fields are not generated (i.e., all
eigenvalues of the small-scale magnetic induction operator
have nonpositive real parts), the auxiliary problems can be
solved numerically by computing +S en n and  ´ +Z ex l l as
small-scale dominant eigenmodes of the magnetic induction
operatorsL and -L , respectively(see Equations (12) and (26)),
in the subspace of solenoidal vector fields whose average can
be nonzero. The same small-scale eigenvalue code is applied to
solve all six of these eigenproblems, the flow being reversed,
 -v v, when computing  ´ Zx l.

9 The vector eq is analogous to the wavevector k referred to in the exposition
of TFM in the Introduction.
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3. GENERATION OF LARGE-SCALE MAGNETIC FIELD
BY R-IV

Roberts (1972) studied how simple flows depending on two
spatial variables x1 and x2 (deemed horizontal), such as
Equation (30) (see below), generate magnetic fields, whose
dependence on x3 enters via the factor eei x3. Hereε is a small
parameter; thus,this work is clearly in the multiscale spirit,
although he did not present the complete multiscale formalism,
nor did hederivethe operator of eddy diffusivity. His flow IV
(labeled here R-IV) lacks the α-effect; it is the first known
example of a dynamo exploiting the mechanism of negative
eddy diffusivity, as was suggested previously on general
grounds (Zheligovsky et al. 2001). To the best of our
knowledge, Devlen et al. (2013) were the first to identify and
study in detail this mechanism for R-IV. It should be
emphasized that flows II and III are also nonhelical dynamos,
thus indicative of a negative eddy diffusivity effect; however,
later those flows turned out to have positive eddy diffusivity,
and their dynamo action was identified as being due to
turbulent pumping with a time delay (Rheinhardt et al. 2014).

We follow Devlen et al. (2013) in investigating large-scale
generation by R-IV. In the spatial variables introduced by
Tilgner (2004) (rotated by 45° about the vertical axis with
respect to the variables used by Roberts 1972), its Cartesian
components are

=

=-
=

v x x

v x x
v x

2 sin cos ,

2 cos sin ,
sin . 30

1 1 2

2 1 2

3 1 ( )

It is clearly incompressible and parity-invariant (see Equation
(13)), thus lacking an α-effect.

3.1. The Effect of Symmetries

The symmetries of the flow control the structure of the tensor
of eddy diffusivity correction D.

1. Translation anti-invariance with respect to the shift by
half a period in x1 of R-IV:

p= - +v vx x x x x x, , , , .1 2 3 1 2 3( ) ( )

(Note that the nonlinearity in the Navier–Stokes equation is not
invariant for the antisymmetry of this type, making this choice
of flow somewhat academic.) Hence, applying the operation of
shift by half a period in the direction x1, which we denote by ,̂

pº +f fx x x x x x, , , , ,1 2 3 1 2 3( ) ( )

to the eigenvalue problem (26), we find

=- Z Z . 31n n ( )

Substituting this into Equation (28), using the self-adjointness
of the Laplacian, the curl, and operator ,̂ and integrating by
parts in xm the first term in Equation (28), we obtain

= -D D , 32mn
l

ml
n ( )

and =D 0mn
n for any flow possessing translation anti-

invariance with respect to the shift by half a period in one of
the spatial variables.

2. Symmetry in x2 of R-IV:

- =

- =-

- =

v x x x v x x x

v x x x v x x x

v x x x v x x x

, , , , ,

, , , , ,

, , , , ; 33

1
1 2 3

1
1 2 3

2
1 2 3

2
1 2 3

3
1 2 3

3
1 2 3

( ) ( )
( ) ( )
( ) ( ) ( )

antisymmetry in x2is defined by changing here the signs on the
r.h.s. to the opposite ones. Clearly, the curl or vector
multiplication by R-IV maps fieldssymmetric in x2to
fieldsantisymmetric in x2, and vice versa. Consequently, fields
symmetric and antisymmetric in x2 constitute invariant
subspaces of the operators of magnetic induction L and -L .
It follows from Equation (11) that Sn are symmetric in x2 for
odd n and antisymmetric in x2 for n = 2; Equation (24) implies
that Zl are antisymmetric in x2 for odd l and symmetric in x2
for l = 2.
Vector multiplication by em also maps fields symmetric in

x2to antisymmetric ones and vice versa for odd m, and it does
not change the symmetry and antisymmetry of a field in x2 for
m = 2. Therefore, Equation (25) implies

= + +D l m n0, if is odd. 34mn
l ( )

3. Wavevector parity. We call “even” a three-dimensional
vector field depending on two spatial variables x1 and x2, when
it is a linear combination of harmonics

~
B eq

q xi · such that

=B 03 if +q q1 2 is even and = = B B 01 2 if +q q1 2 is odd;
we call a field “odd” when it is a linear combination of
harmonics

~
B eq

q xi · such that =B 03 if +q q1 2 is odd and

= = B B 01 2 if +q q1 2 is even. Clearly, in this terminology
R-IV (30) is even.
Taking the curl or calculating the vector product with R-IV

transforms an even field into an odd one, and vice versa. Thus,
even and odd fields constitute invariant subspaces of the
magnetic induction operators L and -L . By virtue of
Equations(11) and (24), Sn are even for n = 1, 2 and odd
for n = 3, while Zl are odd for l = 1, 2 and even for l = 3.
Vector multiplication by em maps odd fields into even ones and
vice versa for m = 1, 2, and it does not change this type of
“parity” for m = 3. Using this, it is easy to show that

= =D D 0. 3511
2

32
3 ( )

4. Swapping of the horizontal coordinates «x x1 2. Since the
flow and solutions S1 and S2 to auxiliary problems of type I are
independent of the vertical coordinate, equations for horizontal
components of S1 and S2 involve the vertical components
neither of the flownor of the respective Sn. We establish by
inspection that the field p p+ +S x x S x x, , ,2

2
2 1 2

1
2 1( ( ) ( ))

satisfies the same equation as x xS S,1
1

1
2( ( ) ( )), and hence

p

p

= +

= +

S x x S x x

S x x S x x

, , ,

, , . 36
1
1

1 2 2
2

2 1

1
2

1 2 2
1

2 1

( ) ( )
( ) ( ) ( )

We use the second of these relations to show that

=D D . 3721
3

13
2 ( )

Denote y = x x2 sin sin1 2; clearly,

y= ´ ev v, , 0 .x
1 2

3( ) ( )
Since the flow is independent of x3, for n = 3 the source term
on the r.h.s. of Equation (11) vanishes, and hence =-S 03 .
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Thus, Equation(27) for l = 3 implies Z3 = h y-2 x
1( ) . Since

gradients are orthogonal to solenoidal fields in the Lebesgue
space, in expression (25) for D21

3 the term involving the
derivative ¶ ¶S x1 2 is zero. Hence, on the one hand,

h y

h y

h y h

y





= ´ ´ +

= ´ ´ +

=- 

=

-

-

-

D e v S e

e v S e

e S

S

2

2

2

.

x

x

x

21
3 1

2 1 1

1
2 1 1

1
2

2
1

1
2

( )
( )

( ) ( )
( )

( ) ·

( ) ·

( ) ·

We have used here the self-adjointness of the curl, Equation
(12) for n = 1 and the self-adjointness of the Laplacian. On the
other hand, by the self-adjointness of the curl and by virtue of
Equations (25), (31) for l = 2, and (12) for n = 2 together with
the relation =-S 03 ,

h y

h h y

y



= ´ ´

=-  ´ + ´

=  

=

- -

- -







D Z e v e

v S e e

S e

S .

x x

x x

13
2

2 1 3

1 2
2 2 1

1 2 2
2 1

2
1

( )( )
( )

( )
( )

· ( )

·

·

Thus, Equation (37) follows from Equation(36).
5. Eddy diffusivity. We now calculate eigenvalues of the

eddy diffusivity operator (16). By Equation(32), the sums
involving bp and bt on the l.h.s. of Equations(22) and (23),
respectively, vanish, and therefore these equations yield the
same eigenvalue

åhL = - + +
-

Dq q T P q .
m l n

mn
l l n

m1
2

2
2 1

, ,
( )

By virtue of Equations(21), (32), (34), (35), and (37),

hL = - + + +D Dq q q .12
3

1
2

2
2

31
2

3
2( )

Actually, we have calculated the symbol of the eddy diffusivity
operator acting on mean fields (defined by the l.h.s.
of Equation(16)); hence, this operator for R-IV (30) is

h h-
¶
¶

+
¶
¶

+ -
¶
¶

D D
⎛
⎝⎜

⎞
⎠⎟X X X

. 3812
3

2

1
2

2

2
2 31

2
2

3
2( ) ( ) ( )

The minimum eddy diffusivity is

h h= + - -D Dmin , .eddy 12
3

31
2( )

3.2. Numerical Results

The coefficients h - D12
3 and h - D31

2 of the eddy
diffusivity operator (38) have been computed using Equa-
tion(25). Solutions Sn to auxiliary problems of type Iand
solutions Zl to auxiliary problems for the adjoint operator have
been computed by optimized iterations (Zheligovsky 1993) as
the dominant (associated with the zero eigenvalue) eigenfunc-
tions of the operators of magnetic induction L (Equation (12))
and -L (Equation (26)). Iterations were terminated when the
estimate of the dominant eigenvalue was below 10−10 in
absolute value and the norm of the discrepancy for the
normalized associated eigenvector was below 5·10−11. A

resolution of 642 Fourier harmonics was used before deal-
iasing, which was performed by discarding harmonics with
wavenumbers over 28. With this resolution, energy spectra of
solutions to auxiliary problems decay by 30 orders of
magnitude for h = 0.2 and still by 4 orders of magnitude for
h = 0.01. Plots of h - D12

3 and h - D31
2 are shown in Figure 1

for  h0.01 0.2; in this range of molecular diffusivities no
generation of small-scale magnetic fields takes place.
Figure 1 implies that a large-scale magnetic field is not

generated for horizontal wavevectors q of the harmonic large-
scale modulation, but it is generated for the vertical
wavevector. We did not check whether generation of small-
scale fields starts on further decreasing the molecular
diffusivity; the behavior of plots in Figure 1 suggests that it
may take place, and then h -  -¥D12

3 and h -  ¥D31
2

when η approaches the critical value for the onset of small-
scale magnetic field generation. If this happens, the type of the
generated large-scale field changes: for smaller η, generation of
large-scale magnetic field for the vertical wavevector q replaces
the one for horizontal wavevectors.
Plots of the two entries, h - D12

3 and h - D31
2 , of the eddy

diffusivity tensor are shown in Figure 1 for a range of
molecular diffusivities over the critical value for the onset of
generation of the small-scale magnetic field. The form (38) of
the operator of eddy diffusivity corroborates the conclusions of
Devlen et al. (2013) that the eddy diffusivity tensor for R-IV is
diagonal and has a double eigenvalue, i.e., its action on fields
depending on the vertical slow variable (which was the object

Figure 1. Entries h - D12
3 (upper panel) and h - D31

2 (lower panel) of the eddy
diffusivity operator (38) for R-IV (30).
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of the studies of Roberts 1972 and Devlen et al. 2013) is
homogeneous. However, since the two coefficients in Equa-
tion(38) are distinct (see Figure 1), eddy diffusivity is
anisotropic, differing in the vertical and horizontal directions.
Comparison of the lower panel of Figure 3 in Devlen et al.
(2013) with the plot of h - D31

2 in the lower panel of Figure 1
reveals a reasonable qualitative consistency between the large-
scale magnetic field growth rates, obtained by Devlen et al.
(2013) in DNS, and the MST minimum eddy diffusivity values,
shown in the lower panel of Figure 1, for roughly h < 0.1.
However, while here we study eddy diffusivity in the limit
e  0, Devlen et al. (2013) computed turbulent magnetic
diffusivity for finite-scale separations; in particular, the plot in
their Figure 3 shows the diagonal entry of h e( ) for e = 1,
whose behavior is clearly different from that of h - D31

2

presented in Figure 1.

4. GENERATION OF LARGE-SCALE MAGNETIC FIELD
BY THE MODIFIED TAYLOR–GREEN FLOW

As in Lanotte et al. (1999) and Devlen et al. (2013), we now
consider large-scale generation by mTG, whose components
are

= +
+ +

=- +
- +

=- +

+ -

v x x x a x x

b x x x c x x

v x x x a x x

b x x x c x x

v a x x x

d x x x x x

sin cos cos sin 2 cos 2

cos sin cos 3 sin 3 cos ,

cos sin cos sin 2 cos 2

cos cos 3 sin cos sin 3 ,

sin 2 cos 2 cos 2

sin cos cos 3 cos 3 cos . 39

1 1 2 3 1 3

3 1 2 1 2

2 1 2 3 2 3

3 1 2 1 2

3 3 1 2

3 1 2 1 2

( )

( )
( )
( ) ( )

The flow is incompressible for = -d b c3 1( ), which will be
henceforth assumed. We now consider its symmetries relevant
for simplification of the eigenvalue problem (22)–(23) and
calculate the eigenvalues.

4.1. The Effect of Symmetries

1. Symmetries in xi. A field =f f f f, ,1 2 3( ) is called
symmetric in xiif for all i and j such that  i j1 , 3

- - - = -d d d d xf x x x f1 , 1 , 1 1j j
1 2 3i i i i

j1 2 3( )( ) ( ) ( ) ( ) ( )

(cf. Equation(33)), and antisymmetric in xiif for all such i and j

- - - = -d d d d- xf x x x f1 , 1 , 1 1 ,j j
1 2 3

1i i i i
j1 2 3( )( ) ( ) ( ) ( ) ( )

where di
j is the Kronecker symbol. Since mTG is symmetric in

all xi, it is parity-invariant and lacks an α-effect.
When a flow is symmetric in xi, vector fields possessing the

symmetry or antisymmetry in xi constitute invariant subspaces
of the operators of magnetic induction L and -L . Since all
three symmetries in xi are independent, there are eight such
invariant subspaces. We label them by three-character strings;
A and S in the ith entry of the label indicate that vector fields in
the invariant subspace are symmetric or antisymmetric in xi,
respectively. For instance, SAA labels the invariant subspace, in
which vector fields are symmetric in x1 and antisymmetric in x2
and x3.

By virtue of Equations(11) and (24), invariance of the
fields, symmetric or antisymmetric in xi, implies that Sn for
¹n i and Zi are symmetric in xi, while Si and Zl for ¹l i are

antisymmetric in xi. Consequently, =D 0mn
l when none of the

indices l n, and m are equal to i. It follows that

= = = =D m n l m l n0 if , or , or . 40mn
l ( )

2. Swapping of the horizontal coordinates «x x1 2. The
mTG also has a symmetry, which we denote by γ : a field f is
γ-symmetricif

p
p
p

= +

= +

= +

f x x x f x x x

f x x x f x x x

f x x x f x x x

, , , , ,

, , , , ,

, , , , ,

1
1 2 3

2
2 1 3

2
1 2 3

1
2 1 3

3
1 2 3

3
2 1 3

( ) ( )
( ) ( )
( ) ( )

and γ-antisymmetricif

p
p
p

=- +

=- +

=- +

f x x x f x x x

f x x x f x x x

f x x x f x x x

, , , , ,

, , , , ,

, , , , .

1
1 2 3

2
2 1 3

2
1 2 3

1
2 1 3

3
1 2 3

3
2 1 3

( ) ( )
( ) ( )
( ) ( )

The γ-symmetric and γ-antisymmetric fields constitute invar-
iant subspaces of the operators of magnetic induction L and
-L . This implies that S3 is γ-symmetric, Z3 is γ-antisymmetric,

for n = 1, 2 the field Sn is mapped by the γ-symmetry to -S n3 ,
and Zn is mapped by the γ-antisymmetry to -Z n3 . (We thus
need to compute just four solutions to the auxiliary problems,
say, S1, S3, Z1, and Z3; S2 and Z2 can then be obtained by
applying the γ-symmetry and γ-antisymmetry to S1 and Z1,
respectively.) Consequently, the remaining nonzero entries of
the eddy diffusivity correction tensor satisfy the relations

= - = - = -D D D D D D, , . 4112
3

21
3

23
1

13
2

31
2

32
1 ( )

When the γ-symmetry acts on a vector field, the symmetry or
antisymmetry in x1 becomes a symmetry or antisymmetry,
respectively, in x2, and vice versa. Thus, the γ-symmetry maps
ASA and SAA mutually one into another, as well as ASS and
SAS. Since it also maps an eigenfunction of the operator of
magnetic induction,L, to an eigenfunction, restrictions ofL on
the two invariant subspaces, constituting any of the two pairs,
have the same spectra. The subspaces AAA, AAS, SSA, and
SSS are invariant under the action of the symmetry γ ; each
of them splits into invariant subspaces of L, which consist of
γ-symmetric or γ-antisymmetric fields.
3. Wavenumber parity. Inspection of Equation(39)

revealsthat mTG is composed of Fourier harmonics e k xi · in
which all three wavenumbers ki have the same parity, e.g., the
sum of any two wavenumbers is even. Consequently, the
obvious periodicity cell 3 of the flow, which is a cube of size
2π whose edges are parallel to the Cartesian coordinate axes, is
not the smallest one. It is easily seen that a flow possessing the
parity property of this kind is invariant under shifts along any
of the periodicity vectors

z z zp p p p p p= = - =, , 0 , , , 0 , , 0, . 421 2 3( ) ( ) ( ) ( )

(Clearly, this translation invariance implies 2π-periodicity in
any Cartesian variable xi.) Therefore, elementary periodicity
cells of the flow are prisms whose edges are these vectors (see
Figure 2). Alternatively, one can regard the parallelepiped

     p p px x x0 2 , 0 , 01 2 3

as an elementary periodicity cell of the flow, assuming the
“brick wall” tiling of space by these cells, in which the
parallelepipeds are arranged in infinite “bars” parallel to the x1-
axis, and any two adjacent bars are shifted along the x1-axis by
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half a period relative to each other. The volume of the
elementary periodicity cells of both types is p2 3, e.g., a quarter
of that of 3. Nevertheless, by a small-scale dynamo we
understand the generation of magnetic fields that are 2π-
periodic in each variable xi.

Each invariant subspace ofL considered above further splits
into subspaces of the so-called even and odd fields that are
linear combinations of Fourier harmonics such that the sums of
the wavenumbers +k ki j are even or odd. We therefore extend
the labels of invariant subspaces by two additional characters
denoting the parity of the sums +k k1 2 of wavenumbers in the
horizontal directions (the fourth character), and the sums

+k k1 3 of wavenumbers in directions x1 and x3 (the fifth
character); E and O indicate even or odd such sums,
respectively. For instance, the invariant subspace SAAOE
consists of vector fields that are symmetric in x1, antisymmetric
in x2 and x3, and composed of Fourier harmonics such that the
sum of wavenumbers in the horizontal directions is odd and the
sum +k k1 3 is even; the spectrum of L is the same in this
subspace and in ASAOO.

4. Eddy diffusivity. For an eddy diffusivity correction tensor
with the properties (40) and (41) stemming from the
symmetries of the flow, in xi and γ, it is straightforward, using
Equation(21), to reduce Equations(22)–(23) to

h b b

h b b

- + + + = L

- + + + = L

D D

D D

q q q

q q q

,

,

t t

p p

12
3

1
2

2
2

31
2

3
2

23
1

1
2

2
2

31
2

3
2

( )
( )

( )
( )

respectively. Therefore, the two eigenvalues are

hL = - + + +D Dq q q , 431 12
3

1
2

2
2

31
2

3
2( ) ( )

hL = - + + +D Dq q q 442 23
1

1
2

2
2

31
2

3
2( ) ( )

(this explains Figure 3 in Lanotte et al. 1999). The minimum of
-L q1( ) and -L q2( ) over unit wavevectors q occurs either for
the vertical unit vector =q e3, or at any horizontal unit vector

q = q q, , 01 2( ), and

h h= + - - -D D Dmin , , .eddy 23
1

31
2

12
3( )

4.2. Numerical Results: Eddy Diffusivity

Using the same algorithms as employed for R-IV, we have
computed the eddy diffusivity tensor (see Figure 3) for mTG
for = =a b 1, as in Lanotte et al. (1999), the coefficient c and
the molecular diffusivity η ranging in the intervals [0.25, 0.4]
step 0.05 and [0.1, 0.16] step 0.001, respectively. Advective
terms were computed by pseudospectral methods with the
resolution of 483 Fourier harmonics. Dealiasing was performed
by keeping in the solution only harmonics with wavenumbers
not exceeding 21. Energy spectra decaying by 7–10 orders of
magnitude, this resolution is sufficient. As in the case of R-IV,
iterations were terminated, when an estimate of the dominant
eigenvalue was below 10−10 in absolute value and the norm of
the discrepancy for the normalized associated eigenvector was
below 5·10−11. Computation of one eddy diffusivity correction
tensor D requires 10–20 minutes of a 3.9 MHz Intel Core i7
processor (the code is sequential). We have also carried out
computations for the parameter values

= = = =a b c d1, 5 13, 2 13 45( )

used by Lanotte et al. (1999). Although our algorithms and
codes are independent from those applied by Lanotte et al.
(1999), our values of heddy coincide with those found
byLanotte et al. (1999) in four significant digits.
In all runs shown in Figure 3, we have found that >D 023

1

and <D 031
2 , <D 012

3 . Thus, negative eddy diffusivity gives
rise to growing large-scale magnetic modes with horizontal
wavevectors of the large-scale harmonic modulation. Physi-
cally the most interesting case occurs when generation of large-
scale fields is not obstructed by generation of small-scale fields.
The segments of the plots of the minimum eddy diffusivities
corresponding to this case are shown by thicksolid lines. Each
segment is bounded on the left by the critical point for the onset
of generation of the small-scale magnetic fields, and on the
right by the point where eddy diffusivity becomes positive. The
critical values of molecular diffusivity for the onset of the

Figure 2. Elementary periodicity cell of mTG (39): a prism whose edges are
periodicity vectors zi (42). The vertex O′ of the upper square base O′A′B′C′
projects down along the vertical into the center Q of the lower square base
OABC of the prism.

Figure 3. Minimum eddy diffusivity h h= - Deddy 23
1 (vertical axis) in mTG

(39) for = =a b 1. Thicksolid lines: the segments of plots for molecular
diffusivities η, for which a large-scalebut no small-scale magnetic field is
generated. Lower to upper curves: =c 0.25, 0.3, 0.35, 5 13, 0.4.
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generation of small-scale magnetic fields in some invariant
subspaces (see the previous section) are shown in Table 1. The
dominant magnetic eigenmodes have been computed applying
the algorithms of Zheligovsky (1993) with a resolution of 643

harmonics, and the dealiasing was performed by keeping
harmonics with wavenumbers not exceeding 29. Energy
spectra of the obtained eigenmodes decay by at least 11 orders
of magnitude. For the considered η, the dominant eigenmodes
belong to the AAAEO subspace (see Figure 4; we did not aim at
computing the dominant magnetic eigenmodes in all symmetry
subspaces). The dominant eigenmodes in the AAAEO and
SSAEE subspaces turn out to be γ-symmetric. The plots of
heddy have vertical asymptotes located at the critical values for
the onset of generation of the small-scale magnetic field in the
SSAEE subspace (see Zheligovsky 2011 for explanations).

4.3. Numerical Results: Finite-scale Separation

We now consider the case of a finite (i.e., noninfinitesimal)
scale separation ε. By comparing numerical solutions with the
multiscale predictions, we can roughly estimate the range of the
scale ratios ε, for which the asymptotic formalism qualitatively
correctly describes the large-scale dynamo driven by an array
of mTG flow cells. As established in the previous section, for a
high scale separation (i.e., in the limit of small ε), a large-scale
magnetic mode generated by mTG grows the fastest, when the
unit wavevector q is horizontal and =

~
B e3 in the large-scale

modulation (18). Such a mode is asymptotically close to

åe e

= +

+ +

e

=

b S x e

G x

e

i q

Re

O . 46

q xi

m
m m

3 3

1

2

3
2 )

(
)

( ( )

( ) ( ) ( )

·

To study directly magnetic field generation for an arbitrary
finite scale separation ε, we can employ the procedure used by
Zheligovsky et al. (2001). Namely, we consider the problem (8)
for a field of the form

= ¢eb x b xe , 47q xi( ) ( ) ( )·

where q is a constant unit wavevector. A small-scale (i.e.,
having the spatial periodicity cell 3) vector field ¢b x( ) satisfies
the eigenvalue equation10

h e

e h l





¢ º  ¢ - ¢ + ´ ´ ¢

+ ´ ´ ¢ + ¢ = ¢

eL b b q b v b

q v b q b bi 2 48

q x x

x

2 2 2( )
( )( )

∣ ∣ ( )

( ) · ( )

and the corollary of the solenoidality condition

e ¢ + ¢ =b q bi 0. 49x · · ( )

This approach is advantageous in that it does not require
performing the asymptotic analysis of Section 2 and is
applicable for all scale ratios ε, and not only very small ones.
However, it is less general in that, on the one hand, a solution
to the eigenvalue problem (48)–(49) provides information for
only one instance of the amplitude modulation vector eq. On
the other, it is only applicable when tackling a linear stability
problem such as the kinematic dynamo problem studied here,
but it does not deliver a simplified statement of a weakly
nonlinear stability problem.
For e > 0, even and odd vector fields (that are linear

combinations of Fourier harmonics such that the sum of the
wavenumbers in the horizontal directions is even or odd,
respectively) constitute invariant subspaces of eL q (48). If
=q em for ¹i m, vector fields, symmetric or antisymmetric in

xm, also constitute invariant subspaces. The case i = m is more
subtle: vector fields, whose real part is symmetric or
antisymmetric in xm, and the imaginary part is, respectively,
antisymmetric or symmetric in xm, constitute two invariant sets.
However, these sets are not linear subspaces (over the field of
complex numbers); in other words, this property can be used in
computations, but it does not restrict an eigenmode, since
multiplying an eigenmode by the complex unity i does not give
rise to a new eigenmode—except for e = 0, when only the
symmetric or antisymmetric part of the eigenmode “from which
the branch originates” is nonzero. Consequently, for =q em we
can use labels for branches of dominant eigenfields of eL q that
have the same meaning as the labels of invariant subspaces of
the domain of the small-scale magnetic induction operator L,
except for the symmetry or antisymmetry in place m of the
label is determined only for the eigenmode for e = 0. The
symmetry γ, involving swapping of the horizontal Cartesian
coordinates together with swapping of vector field components,
does not distinguish invariant subspaces of eL q for e > 0. It
maps eigenfunctions of eL q to eigenfunctions of e ¢L q for
¢q = q q q, ,2 1 3( ).
We have computed the dominant eigenvalues (i.e., the ones

having the maximum real part among all eigenvalues for the
given parameter values) of the magnetic induction operator and

Table 1
Critical Molecular Diffusivities η for the Onset of the Generation of Small-

scale Magnetic Fields in Three Invariant Symmetry Subspaces

c AAAEO SAAOE/ASAOO SSAEE

0.25 0.1143 0.1580 0.1203
0.3 0.1091 0.1491 0.1118
0.35 0.1065 0.1333 0.0985
5/13 0.1071 0.1105 0.0849
0.4 0.1080 0.0851 0.0770

Figure 4. Growth rates (vertical axis) of dominant small-scale magnetic
eigenmodes (solid line: the AAAEO subspace; dashed line: the SAAOE/ASAOO
subspaces) generated by mTG (39), (45).

10 We have preserved the factor q 2∣ ∣ in Equation(48) for this equation to
remain valid for any vector q, and not just for a unit one.
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the associated large-scale magnetic modes generated by mTG
(39), (45)—the flow employed by Lanotte et al. (1999)—for
the wavevectors of the large-scale amplitude modulation
=q 1, 0, 0( ) (see Figures 5 and 6) and =q 1, 1, 0 2( )

(Figures 7 and 8). Since the flow possesses the symmetries in x1
and x2 and the γ-symmetry, actually the computations cover all
possible choices of q from the following list:  e e, ,1 2

 1, 1, 0 2( ) .
Plots of growth rates of large-scale magnetic modes for
=q e1 and a varying scale ratio ε are shown in Figure 5 for

η = 0.1 used by Lanotte et al. (1999), as well as for h = 0.11
and 0.12. For these molecular diffusivities the dominant
eigenvalues of the operator eL q are real. Zheligovsky et al.
(2001) noticed that a graph of the dominant growth rates is
periodic in ε with period 1 (because any large-scale field

¢e b xe q xi ( )· , where ¢b x( ) is a small-scale field, can be also
expressed as e-e qi p x( ) · ¢b xe q xip( ( ))· , and for an arbitrary integer
p the field ¢b xe q xip ( )· is also small-scale). Also, a graph of the
dominant magnetic mode growth rate as a function of the scale
ratio ε is symmetric about the vertical axis: applying complex
conjugation to Equations (48) and (49) shows that if, for a
given scale ratio ε, ¢b x( ) is a small-scale eigenfunction
associated with an eigenvalue λ, then ¢b x( ) and l are,
respectively, a small-scale eigenfunction and the associated
eigenvalue for the opposite ratio e- . Consequently, graphs of
the dominant growth rate are symmetric about each vertical line
e = q 2 for integer q. By contrast, the plots in Figures 5 and 6
show eigenvalues associated with branches of eigenfunctions
of the problem (48)–(49), smoothly parameterized by ε. They
have a period 2 in ε and are symmetric about vertical lines
e = q, where q is an arbitrary integer. The parabolic shape of
the plots near e = 0 agrees with expansion (9) for
l l= = 00 1 . That e = 0 is a local minimum of the plots in
Figure 5 corroborates that magnetic eddy diffusivity is negative
for the molecular diffusivities h = 0.1, 0.11.0.12, for which
plots are presented in this figure; the respective eigenmodes
¢b x( ) constitute SSAEE branches.
Near the origin, the plots of growth rates in Figures 5 and 7

have a parabolic shape (which is a signature of magnetic eddy
diffusivity) for ε below 0.1; this roughly estimates the range of
scale ratios for which the asymptotic formalism describes
qualitatively correctly the large-scale dynamo driven by an
array of mTG flow cells. A similar parabolic-shape correction
of growth rates due to the action of eddy diffusivity is observed

for nonneutral magnetic modes (Figures 6 and 8) in all the
symmetry subspaces considered.
Our computations demonstrate that for η = 0.1, mTG can

generate large-scale magnetic field by the mechanism of
negative eddy diffusivity in a range of parameter values. By
contrast, for η = 0.02 no large-scale magnetic field generation
was found by Devlen et al. (2013) in DNS. We have computed
four branches of dominant eigenmodes for η = 0.02 and =q e1
(see Figure 6)that belong to invariant subspaces AAAEO,
AAAEE, SSAEO, and SSAEE with the resolution of 963

harmonics (upon dealiasing, harmonics with wavenumbers up
to 45 are kept); energy spectra of the eigenmodes decay by at
least 9 orders of magnitude.
We observe two major differences with the case η = 0.1.

First, a small-scale dynamo persists for η = 0.02. Implementa-
tion of the TFM procedure requires integrating Equation (2);
the solution converges to the dominant small-scale mode,
amplitude-modulated by the large-scale harmonic eei xm. Clearly,

Figure 5. Growth rates (vertical axis) of dominant large-scale magnetic modes
(SSAEE subspace) generated by mTG (39), (45) for =q e1.

Figure 6. Growth rates (vertical axis) of dominant large-scale magnetic
eigenmodes generated by mTG (39), (45) for η = 0.02, =q e1: four branches
in symmetry subspaces AAAEO (thick line), AAAEE (thin dotted line), SSAEO
(thick dotted line and thin solid line for e< <0.73 0.78: the real and
imaginary parts of the associated eigenvalues; outside this interval, the
eigenvalue is real), and SSAEE (thin solid and dashed lines: the real and
imaginary parts of the associated eigenvalues).

Figure 7. Growth rates (vertical axis) of dominant large-scale magnetic modes
generated by mTG (39), (45) (solid lines) for =q 1, 1, 0 2( ) . For
comparison, growth rates of dominant large-scale magnetic modes for =q e1
and the same molecular diffusivities η are shown (dotted lines; cf. Figure 5).
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in the presence of a small-scale dynamo, the solution is
dominated by the growing small-scale mode, and not by the
neutral mode (46). Solutions can be expanded in the series (9)
in the scale ratio ε, the series for the eigenvalue λ now
beginning with the respective small-scale dynamo eigenvalue.
For a parity-invariant flow this modifies the molecular
diffusivity operator, acting on the amplitude-modulating factor
(called amplitude) in the respective large-scale mode; like in
the absence of a small-scale dynamo, the correction is due to
interaction of the fluctuating part of the magnetic field and the
small-scale flow, and thus again eddy diffusivity is the leading-
order eddy effect. Second, the point e = 0 is now a local
maximum, implying that eddy diffusivity is now positive.
However, the growth rates of large-scale magnetic modes are
still positive when e∣ ∣ is small, i.e., these modes do grow, albeit
slower than the small-scale modes for e = 0. In other words,
the growing large-scale modes decay relative to the faster-
growing small-scale mode, which explains the statement “a
dynamo is observed but it is not a large-scale dynamo” (Devlen
et al. 2013).

Yet another difference with the case η = 0.1 is visible in the
behavior of dominant eigenmodes constituting the SSAEE
branch. For η = 0.02, they experience two bifurcations: on
increasing the scale ratio ε, a pair of real eigenvalues (including
the dominant one) turns into a pair of complex-conjugate ones
at e » 0.34, which are superseded again by two real
eigenvalues at e » 0.98 (only the largest of which is shown
in Figure 6). We observe a characteristic feature of dependence
on the parameter near a point of such a bifurcation: the plots of
real eigenvalues and of the imaginary part of complex
eigenvalues (but not of the real part of the complex
eigenvalues) have singularities of the kind of x for x 0
near zero—the growth rate depends on ε continuously, but its
derivative is infinite. This stems from the fact that the quadratic
characteristic polynomial of eL q, reduced onto the invariant
plane of the associated eigenfunctions, has coefficients that are
differentiable in ε, and hence the discriminant is approximately
a linear function of ε near the point of bifurcation. Vanishing of
the discriminant at such points gives rise to the singularities
mentioned above (the real parts of complex eigenvalues are not

affected, since they are just proportional to the coefficient of the
linear term of the characteristic polynomial). Chertovskih et al.
(2010) observed a similar behavior in the dependence of
magnetic field generation by thermal convection on the rotation
rate (see their Figure 18).
We have also computed the small-scale parts ¢b x( ) of the

dominant large-scale magnetic modes (47), generated by the
same instance of mTG (39), (45) for the wavevector
=q 1, 1, 0 2( ) and molecular diffusivities

h = 0.1, 0.11, 0.12 (using the resolution of 643 Fourier
harmonics), and 0.02 (963 harmonics). As for =q e1, this has
been done by solving the eigenvalue problem (48)–(49) for the
modified operator of magnetic induction eL q. For all
considered η and ε, the computed dominant small-scale modes
of eL q possess now the γ-symmetry, the antisymmetry in x3,
and the symmetry about the x3-axis, which is the composition
of the symmetries in x1 and x2:

- - =- =

- - =

x

x

f x x x f i

f x x x f

, , , 1, 2,

, , .

i i
1 2 3

3
1 2 3

3

( ) ( )
( ) ( )

These small-scale modes are composed of the Fourier
harmonics, for which all three wavenumbers ki in the directions
xi have the same parity. The associated eigenvalues of the
operator eL q are real.
For mTG, eddy diffusivity is the same for all horizontal

wavevectors (see Equation (43)). Comparison of the eigenva-
lues computed for =q 1, 1, 0 2( ) and =q e1 in Figures 7
and 8 illustrates how this axisymmetry is reflected in the
eigenvalues for e > 0. We observe that the dependence of the
dominant eigenvalues on the direction of a horizontal
wavevector is very weak when ε is as large as roughly 0.8
for η = 0.1, when e 0.7 for h = 0.11 and 0.12, and only
when e 0.22 for η = 0.02.

5. TFM VERSUS MST: ANALYTIC AND NUMERICAL
COMPARISON

We have seen in Section 3 that the TFM used by Devlen
et al. (2013) for evaluating magnetic eddy diffusivity for R-IV
yielded the results compatible with those obtained by employ-
ing the homogenization techniques within the MST approach.
Given that distinct types of averaging are employed in MST
and TFM, this conformity of results may seem unexpected. In
the present section we compare the two approaches.
TFM starts by computing a zero-mean solution ¢b to

Equation (2) for the test field

= eb ee 50i x
ntest m ( )

(this is equivalent to employing the two real fields (6) for
e=k em, but simplifies the algebra). Any solenoidal small-

scale zero-mean field (for instance, 0) can serve as an initial
condition for ¢b . The solution will then automatically be
solenoidal at any time >t 0. TFM assumes that Equation (2)
does not have growing solutions for the test fields and
averaging applied. Numerical integration of Equation(2)
proceeds untiltransients decay and the solution ¢b saturates.
The eddy diffusivity correction tensor is then deduced as the
matrix that relates the obtained mean emf ¢ ´ ¢v b with the test
fields (50).

Figure 8. Growth rates (vertical axis; solid line) of dominant large-scale
magnetic eigenmodes generated by mTG for η = 0.02, =q 1, 1, 0 2( ) . For
comparison, growth rates in the branches of dominant large-scale magnetic
modes for =q e1 in the symmetry subspaces AAAEO (right) and SSAEE (left)
for the same η are shown (dotted lines; cf. Figure 6).
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5.1. TFM with Volume Averaging

We now consider a variant of TFM, in which volume
averaging is involved in extracting the fluctuating part of the
auxiliary fields, ¢b , and show that then the TFM values of eddy
quantities converge in the limit of significant scale separation to
the values yielded by MST. The demonstration, given here for
steady flows ¢v , can be readily extended to encompass time-
periodic flows.

Our solutions can be obtained as the real and imaginary parts
of the fluctuating part of the field

= + ¢ = =e  b b b b b ee , . 51i x
ntest m ( )

Note that when extracting the fluctuating part ¢b , we average b
after pulling out the factor eei xm, since averaging over xm any
field of the form e f xei xm ( ), where f is independent of ε, yields
just 0. The evolution Equation (2) for the auxiliary field ¢b is
then equivalent to the equation obtained by substituting (51)
into Equation(2) and canceling out the exponential:

¶
¶

= ¢
e

 L
b

b
t

52em( ) ( )

(the operator eL em is defined by Equation(48)); b also satisfies
the condition (49), stemming from solenoidality of ¢b , and has a
constant average á ñb = en. For small e > 0, the elliptic operator
¢eL em

on the r.h.s. of Equation(52) is an O(ε) perturbation of
the operator of magnetic induction,L. Consequently, this stage
of TFM can be readily understood in the framework of MST.
By the general theory of perturbation of linear operators
(Kato 1966; see also Vishik 1986), an eigenfunction of L and
the associated eigenvalue involved in a Jordan cell of size M
are altered by O(e M1 ).

TFM is applicable when no small-scale dynamo operates. In
this section we assume that the kernel of the operator of
magnetic induction, defined in the box of periodicity of the
flow, is three-dimensional (for a given v, this holds for all
h > 0 except only for a countable number of η values). A
solution to Equation(52) is a sum of a transient btr, whose rate
of exponential decay is O(1), and the neutral mode of the
perturbed operator, which branches from the respective neutral
mode of L (for which M= 1):

e= + + +b S x e bO 53n n
tr( ) ( ) ( )

for any permissible initial conditions for b .
1. Magnetic α-effect. For a generic steady flow v, we can

now calculate the TFM estimate of the α-tensor using the
ansatz (4). By Equations(51) and (53), after the transient
decays below eO( ) at times O(ln e),

e= + +eb S x ee O . 54i x
n nm ( )( ) ( ) ( )

Large-scale computations of ¢b are usually done for a rational
e = i i1 2 (with common factors canceled out in integers i1 and
i2) such that the periodicity of eei xm is compatible with that of
the small-scale flow v. Thus, we can assume that the
computational domain has the size pi2 2 in xm. When applied
to a steady field, the Fourier transform (5) involved in
Equation(4) differs only by a constant factor from the inverse
Fourier transform =F V1k k,0( ) that recovers coefficients in

expansion of a function in the spatial variables:

å =F
⎛
⎝⎜

⎞
⎠⎟f e f .k

m
m

m x
k

iˆ ˆ·

Here V denotes the volume of the spatial periodicity domain.
Using Equation(54), we find

ò ò ò p

e

¢ ´ ¢ = ¢ ´ ¢

= ¢ ´ +

e
p

e
p p

-F v b v b
x

v S

e
d

i2

O

55

e

i
i x

n
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2

0

2

0

2

3
2

m
m

2( ) ( )
( )

( )

(here any spatial averaging is acceptable, provided that it does
not involve averaging in xm, or otherwise special precautions
are taken as discussed above). Since eF be testm

( ) = en, by
Equation(4) the nth column of the 3 × 3 matrix a coincides
in the limit e  0 with the nth column of A.
Remark 1. TFM for evaluation of the α-effect tensor in non-

parity-invariant flow in the original formulation (Schrinner
et al. 2005, 2007) prescribed the use of constant test fields

=b entest , which coincides with Equation(50) for e = 0.
Consequently, ¢ =eL Lem

in Equation(52), and thus this
version of TFM with the spatial averaging reproduces the
MST α-effect tensor precisely.
2. Magnetic eddy diffusivity. If the flow is parity-invariant,

i.e., -v x( ) =-v x( ), the three small-scale eigenfunctions from
the kernel of L are parity-anti-invariant: -S xn ( ) = S xn ( ). The
parity-invariant part of b , even if zero initially, is subsequently
produced from the predominantly parity-anti-invariant field
(53) by the term eei m × ´ v b( ) in Equation(52). Since all
parity-invariant eigenmodes of L decay (by the original
assumption on the spectrum of L), the parity-invariant part of
b remains O(e) at all large enough times. We can seek b as a
perturbed truncated series for the neutral mode of L, known
from MST:

e= + + +b e S G bi .n n mn
new

Substituting this ansatz into Equation(52), we obtain an
equation of the form

e
¶
¶

= +eL
b

b
t

O .e

new
new 2

m ( )
We therefore find

e e= + + + +eb e S G be i O , 56i x
n n mn

2 trm ( )( ) ( )

where btr is a transient, whose rate of exponential decay is
O(1).
We now calculate the entries of the magnetic eddy

diffusivity correction tensor from the equation

åh e¢ ´ ¢ = -
¶
¶

e eF F
⎛
⎝⎜

⎞
⎠⎟v b

b
x

. 57e e
p q

pq
p q,

test
m m( ) ( ) ( )

This is ansatz (4) for steady flow and zero α-effect. As in item
1, we assume thate = i i1 2 is rational so that the periodicities
of b (Equation (56)) and the small-scale flow v are compatible,
and the computational domain has the size pi2 2 in xm. On the
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one hand, we then find
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On the other,

ed
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=eF
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By Equation(57),Dmn = h- elim mn0 for all ¹m n, i.e., TFM
does produce in the limit e  0 the respective entry of the
tensor of magnetic eddy correction. Note, however, that a
sufficiently high spatial resolution is necessary for a satisfac-
tory discretization of both the small-scale field S xn ( ) and at
least one period of the modulating harmonic ee q xi · .

Above, we have investigated the algorithms for evaluating
Dnm for ¹n m. Test fields (50) for m = n are gradients and
hence incompatible with our analysis. To evaluateDnn, we can
use solutions to Equation(2) for test fields, which are real and
imaginary parts of

e = ´ e- +b ei e ,i jx x
ntest

1 n n1
2( )( )( )

where ¹n n1 , ¹n n2 , and j is an integer.

5.2. TFM with Other Spatial Averagings

We now consider briefly the canonical variants of TFM, in
which the averaging denoted by a bar is performed over one or
two Cartesian variables under the same assumptions as in
Section 5.1. For simplicity, we again ignore the memory effect
by assuming that the test field does not depend on time. As
before, we cancel out in Equation(2) the exponent eei xm,
involved in the unknown field (51), and find

¶
¶

= e
 PL
b

b
t

. 59em ( )

Here P denotes a projection that deletes the mean fieldbut
preserves the volume average:

º - + á ñPf f f f .

While Equation(2) is equivalent to Equation(59), the latter
has some advantages: (i) it can be numerically integrated in the
flow periodicity cell 3 without encountering the instabilities of
problem (59), which may exist at larger spatial scales (note that
computations must be done in a box of size p e2 in xm when
the exponential or sinusoidal dependence on exm is preserved in
¢b ). Such instability will then manifest itself by unbounded

amplification of the growing eigenfunctions of the operator
ePL em that emerge from round-off errors, and this will

progressively wipe out the contribution from the inhomogene-
ity in Equation(2) that we are looking for; (ii) it enables us to
compute auxiliary fields ¢b for irrational ε without suffering
from problems due to the presence of two incommensurate
spatial frequencies in the solution; (iii) one can apply to
solutions to Equation(59) spatial averaging over any variable,
including xm. In turbulence computations, which are made in
the large (from the prospective of the present discussion)

computational box, averaging a field after canceling out the
exponential is also a feasible operation that is just equivalent to
computing the appropriate Fourier transform.
For any permissible initial conditions, Equation(59) admits

solutions similar to (53),

e= + + +b e s bOn n
tr( )

and, for parity-invariant flows, similar to (56),

e e= + + + +b e s g bi O ,n n mn
2 tr( )

where btr are transients, whose rate of exponential decay is
O(1). The fields sn and gmn have zero averages: sn = =g 0mn ,
the fields +e sn n belong to the kernel of the operator PLP.
For parity-invariant flows, sn are parity-anti-invariant and gmn

are parity-invariant. But here the similarity ends, e.g., ¹ ¢s Sn n

and ¹ ¢g Gmn mn. Consequently, in the limit e  0 we can
expect a qualitative but not quantitative agreement of MST
results with those of TFM with a nonvolume averaging.
Remark 2. Plane-parallel flows independent of a Cartesian

coordinate xm are a special case, for which a solution (51),
harmonically modulated by the factor eei xm, involves the small-
scale part b that is independent of xm. Consequently, for such
flows, =s Sn n and =g Gjn jn for ¹ ¹j m n, and hence TFM
recovers precisely the components Djn of the eddy correction
tensor. This is the case of R-IV.

5.3. Kinematic Generation by mTG: Magnetic Structures

To understand the absence of negative magnetic eddy
diffusivity in the TFM results of Devlen et al. (2013), we first
inspect magnetic modes obtained from numerical solutions of
the underlying eigenvalue problem for mTG (39), (45) and
η = 0.1. The modes are eigenfunctions of the magnetic
induction operator and give rise to exponential in time
solutions of the magnetic induction equation

¶
¶

= L
b

b
t

. 60( )

We consider first magnetic eigenmodes with the periodicity
box of size p2 3( ) . As discussed in Section 4.1, owing to the
symmetries of the flow, magnetic modes have symmetries or
antisymmetries in Cartesian coordinates xi and in each mode
the sums of wavenumbers +k k1 2 in all harmonics have the
same parity, as well as all sums +k k1 3. These five symmetries
are independent and split the domain of the magnetic induction
operator into 32 invariant subspaces. On top of this, magnetic
modes can be symmetric or antisymmetric with respect to
swapping of the horizontal coordinates «x x1 2 (the symmetry
γ), but this symmetry is not independent of the five former
ones: it splits into invariant subspaces only 8 of the 32
aforementioned invariant subspaces—namely, thosein which
the sums of wavevectors +k k1 2 are even, and vector fields are
either symmetric in both x1 and x2or antisymmetric in both of
these Cartesian variables. Thus, the symmetries of mTG split
the domain of the magnetic induction operator into 40 invariant
subspaces. We have computed dominant (i.e., having the
largest growth rates) magnetic modes in each of them.
Only in 3 subspaces out of 40 havegrowing 2π-periodic

magnetic modes been found (see Table 2). We first inspect
suitably averaged fields; as discussed in the next section, a
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particularly revealing average is that over the x3 coordinate, the
mean field being a function of x1 and x2. In Figure 9 we show
such mean fields b x x,3 1 2( ); clearly, they do not survive
horizontal averaging over the x x,1 2( ) plane, because the
positive and negative contributions in Figure 9 cancel. This
figure also illustrates some of the symmetries of the invariant
subspaces, to which the three modes belong. Figures 10 and 11
show isosurfaces of the energy at the level =b 22∣ ∣ and of the
vertical magnetic component at the level =b 2 33 , for two
dominant modes, which are not mutually related by any of the
symmetries. (The dominant modes in subspaces SAAOE and
ASAOO are mapped onto each other by the symmetry γ, and the
mode in AAAEO is γ-symmetric.)

In slow dynamos, magnetic structures can be related to
stagnation points of the flow. Eight families of stagnation
points of mTG are listed in Table 3; we have checked
numerically that no other stagnation points exist in mTG (39),
(45). Each of the first four families is a γ-symmetric set;
families V and VI are mapped by γonto each other, as well as
families VII and VIII. Lines joining stagnation points of family
I and parallel to Cartesian axes constitute a heteroclinic
network: any such vertical line consists of heteroclinic
trajectories connecting adjacent stagnation points of families I
and II, and a horizontal line consists of heteroclinic trajectories
connecting a pair of adjacent stagnation points of family I.
Each plane, parallel to a Cartesian coordinate plane and
containing stagnation points of family I, is cut by the
aforementioned heteroclinic trajectories into squares of size
π, which are invariant sets for mTG (this stems from the
proportionality of vi to xsin i for each i). Vertical and horizontal
lines joining stagnation points of family IV constitute another
heteroclinic network: they consist of heteroclinic trajectories
connecting points of family IV with adjacent stagnation points
of families III, V, and VI.

The Jacobian matrix of a solenoidal flow generically has
either one positive eigenvalue and two eigenvalues with
negative real parts, or one negative eigenvalue and two
eigenvalues with positive real parts. In the vicinity of a
stagnation point of the former kind (having a one-dimensional
unstable manifold), magnetic flux ropes usually emerge
(Moffatt 1978; Galloway & Zheligovsky 1994) that are aligned
with the unstable direction. Near a stagnation point of the latter
kind (possessing a two-dimensional unstable manifold),
magnetic sheets typically emerge (Childress & Soward 1985)
spreading along the unstable manifold. (Formation of these
magnetic structures may be prohibited by symmetries.)

We observe such patterns of asymptotic nature, foremost,
vertically oriented flux ropesthat are centered at stagnation
points of family III (whose one-dimensional unstable manifolds
are segments of vertical lines), in the plots of isosurfaces of the
magnetic energy at the level =b 22∣ ∣ (Figure 10, left and
central panels), and of the vertical component of magnetic field
(Figure 11) for both modes, shown in the figures, from the
symmetry subspaces SAAOE and AAAEO. These “principal”
ropes terminate near stagnation points of family IV, whose
two-dimensional unstable manifolds are horizontal planes, and
which give rise to magnetic field sheets revealed by energy
isosurfaces at the low level =b 2 32∣ ∣ (Figure 10, right
panel). The sheets intermix into vertical flux ropes centered at
stagnation points of family II. In the AAAEO mode, adjacent
principal flux ropes are oppositely directed (see Figure 9);
consequently, the flux ropes associated with stagnation points
of family II are composed of two pairs of oppositely oriented
“flux fibers” (such compound flux ropes were considered by
Galloway & Zheligovsky 1994). Since fine structures are
accompanied by enhanced dissipation, the compound ropes are
weak and not seen in the right panel of Figure 10—these
relatively high-level isosurfaces only determine the region in
spacewhere the four-fiber flux ropes are located. Compound
flux ropes consisting of two oppositely directed fibers centered
at stagnation points of families V and VI are present in the
AAAEO mode (these individual fibers actually look more like
beans in the central panel of Figure 10: the width of flux ropes
is of the order of -Rm

1 2, where Rm is the magnetic Reynolds
number, which is clearly not high for η = 0.1 considered here,
and hence the magnetic flux ropes and sheets that we observe
are rather “fat”). In the SAAOE mode, flux ropes centered at
stagnation points of family VI (but not V) are allowed by the
symmetries defining the subspace; these flux ropes do not have
a fiber structure (in the left panel of Figure 10 they are cut into
halves by the faces of the shown cube of periodicity), and their
energy content is even higher than that of the principal ropes.
All 4π-periodic magnetic modes, growing for η = 0.1, are

also listed in Table 2. Such modes can be symmetric or
antisymmetric in each Cartesian variable xi; this is coded by the
first three characters in the labels (letters S and A, respectively)
of invariant subspaces, like in the case of 2π-periodic modes.
The trailing three characters of the six-character labels now
have a new meaning: for any fixed i, the wavenumbers ki in all
Fourier harmonics e k xi 2· composing a 4π-periodic mode have
the same parity, which is indicated by letters E or O (even and
odd values, respectively) in position +i 3. We have considered
neither the more subtle parity symmetriesnor the γ-symmetry.
Since the six aforementioned symmetries are independent, they
split the domain of the magnetic induction operator into 64
invariant subspaces. We have computed dominant magnetic
modes in each of them using 1283 Fourier harmonics (before
dealiasing), which effectively provide the same spatial resolu-
tion as 643 harmonics in computations of the 2π-periodic
modes.
For the dominant growing 4π-periodic magnetic modes, we

show the same plots as for the 2π-periodic ones: the mean
fields b x x,3 1 2( ) averaged over x3 for 15 dominant 4π-periodic
modes (Figure 12), and isosurfaces of the energy =b 22∣ ∣ and
of the component =b 2 33 for six of them, which are not
mutually related by any symmetry (Figures 13 and 14). Clearly,
the averages over the x x,1 2( ) plane of the vertical component b3
for all dominant modes shown in Figure 12 are zero, as this was

Table 2
Maximum Growth Rates, λ, of 2π- and 4π-Periodic Magnetic Modes with

Different Symmetries Generated by mTG (39), (45) for η = 0.1

Period Symmetry Subspace λ

2π SAAOE,ASAOO 0.01602
2π AAAEO 0.01383

4π AAAOOE,ASAOOE,SAAOOE,SSAOOE 0.01763
4π ASAOEE,SAAEOE,SSAEOE,SSAOEE 0.01734
4π ASAEEE,SAAEEE 0.01602
4π AAAOEE,AAAEOE,ASAEOE,SAAOEE 0.01404
4π AAAEEE 0.01383
4π AAAOOO,SAAOOO,ASAOOO,SSAOOO, 0.00226

AASOOO,SASOOO,ASSOOO,SSSOOO
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Figure 9. The x3-averaged normalized mean fields á ñb x x b,3 1 2 3
2 1 2( ) for η = 0.1 in the box periodicity of size p2 3( ) . The same color-coding scheme is used in all

panels; the data outside the interval -5, 5[ ] are clipped.

Figure 10. Isosurfaces of the energy for two rms-normalized dominant 2π-periodic modes: SAAOE, =b 22∣ ∣ (left), AAAEO, =b 22∣ ∣ (center), and AAAEO,
=b 2 32∣ ∣ (right).

Figure 11. Isosurfaces of the vertical magnetic field component, =b 2 33 , for two rms-normalized dominant 2π-periodic modes, ASAOO (left) and AAAEO (right).
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the case for the 2π-periodic modes. (For the eight growing
modes composing the last group in Table 2, =b 03 , because
they involve only odd wavenumbers k3.) The most prominent
features in Figure 12 are the averages of the vertically oriented
flux ropes centered at stagnation points of family III; all other
flux ropes cancel out upon averaging over x3 either mostly or
completely. It is natural that these mean flux ropes of a similar
genesis have a similar shape in all panels in Figure 12 and, for
instance, have close extremum values, the maxima ranging
from 5.72 for dominant modes from the second group of 4π-
periodic modes in Table 2 (including subspace ASAOEE) to
6.62 in the fifth group (subspace AAAEEE). (The maxima are
computed for the normalized averages á ñb x x b,3 1 2 3

2 1 2( ) .) It
turns out that the dominant 4π-periodic modes in subspaces
ASAEEE, SAAEEE, and AAAEEE are just the tiling of the cube
of periodicity of size 4π by eight cubes of periodicity of size 2π
with 2π-periodic modes in subspaces ASAOO, SAAOE, and
AAAEO, respectively (note that the growth rates of the
respective 4π- and 2π-periodic modes coincide). In fact, in
each group of 4π-periodic modes that have the same growth
rate (see Table 2), the modes are related by symmetries. (For

instance, the eight slowest-growing modes constituting the last
group in Table 2 are mutually related by combinations of shifts
by 2π along the Cartesian axes.)

5.4. DNS and TFM Results for Eddy Diffusivity in mTG

As noted above, horizontal averaging over the x x,1 2( ) plane
cannot be applied to describe a growing mean field generated
by mTG. Indeed, averaging the solenoidality condition for b,
we find that b3 is spatially uniform at all times; then the spatial
average of the third component of Equation(1) shows that it is
also time-independent. Since b3 cannot grow or decay, such an
average is unsuitable for studying the negative eddy diffusivity
dynamo for mTG (for which we are advised by MST that

¹b 03 ; see Equation(46)). By contrast, planar averages can
describe growing solutions in the supercritical case, if one
averages along x3 and a diagonal direction, or uses any of the
two other planar averages, over x x,1 3( ) or x x,2 3( ). Note that,
for a flow with a large group of symmetries, any planar
averaging may yield, owing to cancellation, identically zero
averages for modes in certain symmetry subspaces. For
instance, for mTG, no cancellation occurs for the x x,1 3( ) or

Table 3
Stagnation Points of Modified Taylor–Green flow (39) for = =a b 1, and the Spectral Structure (Eigenvalues, σ, and the Proper Subspaces) of the Jacobian Matrix,

¶ ¶v xm
n[ ], at These Points

Family Stagnation Point Proper Subspace Eigenvalue, σ

e1 + - ++ + c2 1 2 3j j j1 2 3( ) ( )
I p j j j, ,1 2 3( ) e2 - - ++ + c2 1 2 3j j j1 2 3( ) ( )

e3 -4

e1 -2
II p +⎜ ⎟⎛

⎝
⎞
⎠j j j, ,

1

21 2 3
e2 -2

e3 4

III p + +⎜ ⎟⎛
⎝

⎞
⎠j j j

1

2
,

1

2
,1 2 3

e e,1 2{ } -  +i c2 2

e3 4

e1 2
IV p + + +⎜ ⎟⎛

⎝
⎞
⎠j j j

1

2
,

1

2
,

1

21 2 3
e2 2

e3 -4

V p + +⎜ ⎟⎛
⎝

⎞
⎠j j j

1

2
, ,

1

21 2 3
s -e 41 - -+ + ec1 3 1j j j

31 2 3( ) ( )  + - -c c1 1 4 3 1 2( )( )

e2 -2

VI p + +⎜ ⎟⎛
⎝

⎞
⎠j j j,

1

2
,

1

21 2 3
s +e 42 - -+ + ec1 3 1j j j

31 2 3( ) ( )  + - -c c1 1 4 3 1 2( )( )

e1 -2

VII px j x, ,1 3( ), where s z-e x1 5 1( ( )) + ze x x,3 6 1 3( ) z zx x x x, ,3 1 3 4 1 3( ) ( )

z z z z= -  +-xsin 42
1 2

1
1 1

2
2( ) e2 z- x x2 ,3 1 3( )

= - -x c x xcos 1 3 1 sin tanj
3 1 1( ) ( )

VIII pj x x, ,2 3( ), where e1 z- x x2 ,3 2 3( )
z z z z= -  +-xsin 42

2 2
1

1 1
2

2( ) s z z- +e ex x x,2 5 2 3 6 2 3( ( )) ( ) z zx x x x, ,3 2 3 4 2 3( ) ( )

= - -x c x xcos 1 1 3 sin tanj
3 2 2( ) ( )

Note. Here ji and j are arbitrary integers, z = +c c3 3 11 ( ), z = - -c c8 3 1 2 12 ( )( ), z x z,3 ( ) = - - + - -c c x x z1 3 1 3 2 1 sin 2 sin cos 2j 2 4( ) (( )(( ) ) ),
z x5 ( ) = - - - + - - + - + -c c c c c c x c1 6 2 4 1 3 27 4 14 54 sin 2 1j j 3 3 2(( ) ( ) (( ) ( ) ) ) ( ), z x z,6 ( ) = - -c x x z4 3 1 2 sin sin sin2( )( ) , z x z,4 ( ) = -z2 sin2(

+ - + + -c c c c x c8 5 19 3 90 sin 1 22 3 2 2( ( ) ) ( )) + - - + - -c x x z c c x4 1 3 2 sin sin sin 2 3 8 20 sin2 2 2 2( )( ) ( ( ) ) for odd j and z x z,4 ( ) = + - +z2 cos 32( (
+c c x3 9 sin2 2 2) ) + - -c x x z4 1 3 2 sin sin sin2 2 2( )( ) + - -c c x2 3 8 20 sin2( ( ) ) for even j.
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Figure 12. The x3-averaged normalized mean field á ñb x x b,3 1 2 3
2 1 2( ) for η = 0.1 in a domain of size p4 3( ) . The white dashed lines mark subdomains of size p2 2( ) .

Same color-coding scheme as in Figure 9.
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x x,2 3( ) averagings for the second and third groups of 4π-
periodic modes in Table 2, and for diagonal ones for the first
and fifth groups. Thus, the average over x x,1 3( ) or x x,2 3( ) is
adequate in six subspaces; the diagonal average in five
subspaces, including the dominant one; and none in the
remaining 12 subspaces containing growing modes. Any planar
averaging that is easily implementable is not universally
applicable.

We now consider averaging over the x x,2 3( ) plane. The
evolution of the auxiliary fluctuating field is now controlled by
the operatorPLP, whereP is the projection that deletes the
mean fieldbut preserves the volume average, and L is the
operator of magnetic induction. The dominant modes of the
new operator belong to a symmetry subspace, different from
thosewhere the dominant modes of L acting alone reside (see
in the left panel of Figure 15 the mean saturated magnetic
field produced by DNS with the use of the PENCIL CODE

11).
Despite the additional projections, the main visible magnetic
structures are still the vertical flux ropes centered at the family
III stagnation points of mTG. The right panel of Figure 15
shows the mean field (which is now a function of x1).
It has positive and negative extrema at p= x 21 . Our

computations also reveal that the two possible mean fields,
b x3 1( ) and b x3 2( ), have the same shape. Again, the mean field
is anharmonic, and therefore the eddy diffusivity cannot be
spatially constant.
Owing to the anharmonic nature of the resulting mean fields,

we must consider test fields involving many Fourier harmonics.
Let us begin with the most important contribution from =k 11 .
We use again the PENCIL CODE, where TFM is readily
implemented. In all the cases presented below we have used
723 mesh points. In Figure 16 we show the results for h x22 1( )
and h x33 1( ) for η = 0.1 and =k 11 . Note that both h11 and h33
show strong spatial variations. However, while h33 is always
positive, h11 has extended regions where it is negative, giving
rise to growth of b x3 1( ).
In principle, negative diffusivities can be used in a numerical

mean-field simulation. However, one would then need to
include contributions from larger wavenumbers k1 (or ò), where
h22 eventually becomes positive for large wavenumbers. This
was demonstrated in Devlen et al. (2013), where the turbulent
diffusivity kernel was spatially constant, and so the relevant
eigenvalue problem became

h hL = - + LA k i k A,2 22 1 1
2

2( )( )ˆ ˆ

Figure 13. Isosurfaces of the energy for six rms-normalized isotypic dominant 4π-periodic modes at the level =b 22∣ ∣ .

11 http://github.com/pencil-code
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(cf. Equation(16)). HereA2
ˆ is the Fourier amplitude and, for

consistency (cf. Equations(4)–(5)), the eddy correction h22
should be calculated for w = Li , which is in general complex.
In the present case, we only find nonoscillatory growth, so Λ is
real and therefore the frequency ω, for which h22 is needed, is

purely imaginary. Since the dependence of h22 on ω is in
general nonlinear, one has a nonlinear eigenvalue problem that
can be solved iteratively. Even in the simplest cases considered
by Hubbard & Brandenburg (2009), h22 is proportional to

wt- i1 1( ), where τ is the memory time. To understand this

Figure 14. Isosurfaces of the vertical magnetic component for six rms-normalized isotypic dominant 4π-periodic modes at the level =b 2 33 .

Figure 15. The x3-averaged rms-normalized mean field á ñb x x b,3 1 2 3
2 1 2( ) from

DNS for η = 0.1 in a domain of size p2 3( ) (left panel) and the planar average
b x3 1( ) (obtained by averaging over x2 and x3, black line)and b x3 2( ) (averaging
over x1 and x3, red dashed line overplotted). Same color-coding scheme as in
Figure 12.

Figure 16. h x22 1( ) and h x33 1( ) for η = 0.1 and =k 11 . h x22 1( ) has a negative
average, indicated by the dotted line.
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proportionality for large w∣ ∣, we note that for test fields (7) we
find from Equation(2)

w w¢ = +e
- -Lb ei O ,q n

1 1( )( )∣ ∣

where e =q k in the definition (48) of the operator eL q. An
illustrative example of the iterative procedure was given by
Rheinhardt et al. (2014) for a more complicated case where
w = Li was complex. We can encounter a neutral dynamo
such that L =Re 0 (this usually occurs for a specific value of
k1) by increasing k1, i.e., decreasing the domain; see Figures 1
and 2 of Rheinhardt et al. (2014) for a related problem.

In the present case, because h x22 1( ) is nonuniform, we have
to allow for all possible wavenumbers of the resulting mean
field and compute the response for each wavenumber. This is
just opposite to the usual mean-field dynamo problem and the
MST approach where one computes the dynamo effects in the
limit k 0. The relevant eigenvalue problem for our domain
of size 2π now becomes

ò

å h h

x x

L =- + L

´
p

p
x

=

¥

-

-

A x x k i k

e A d

, ,

. 61

k

ik x

2 1
1

22 1 1 1
2

1 1

1

1 1 1

( )( )

( )( )

( )

( )

In Figure 16 we have already plotted h x , 1, 022 1( ), but we now
need h Lx k i, ,22 1 1( ) for all integer values of k1 and a suitable
value of ω.

Note that for our domain of size 2π the permissible
wavenumbers k1 are integers. Furthermore, looking at the right
panel of Figure 15, we see that the eigenfunction is odd about

=x 01 . This means that only odd values of k1 contribute to the
solution. In agreement with our earlier experience, the
amplitudes of the turbulent transport coefficients fall off
quadratically with increasing wavenumber (see, e.g., Branden-
burg et al. 2008b). We therefore expect that the compensated

expression h Lx k i k, ,22 1 1 1
2( ) should be independent of k1 for

large values. This is indeed the case, as can be seen from
Figure 17, where we plot h x k k, , 022 1 1 1

2( ) separately for odd and
even values of k1.
We should point out that these results are sensitive to the

values of η and ω, as will be demonstrated next. First, in
Figure 18 we plot h Lx k i, ,22 1 1( ) for ω = 0, i0.02 , and i0.1 , and
for =k 11 and 3. While the shapes of the different curves
remain similar, there is a significant reduction in the amplitude
as ω increases. Thus, it is in general impossible to omit the
memory effect. This agrees with earlier results for certain
steady flows (Rädler et al. 2011; Rheinhardt et al. 2014),
although it is not a typical feature of turbulent flows (Hubbard
& Brandenburg 2009). Second, we give in Table 4 the volume-
averaged values há ñ22 and há ñ33 for ω = 0 and different values of
η. It turns out that h h+ á ñ = -0.01722 for h = 0.115,
tentatively suggesting that this case is weakly supercritical,
while for h = 0.120 we have h h+ á ñ = +0.05322 , which
would be clearly subcritical. These values are close to those
obtained from DNS, which show that the critical value of η for
the onset of generation of magnetic field with the periodicities
of the flow is around 0.1105 (see also Table 1). For more
precise statements we would need to consider numerical
solutions to Equation(61).
The k1-dependence of eddy diffusivity h h+ á ñ22 is shown in

Figure 19, and numerical values are given in Table 5 for
η = 0.1 and ω = 0. Here we compare the results from TFM

Figure 17. h x k k, , 022 1 1 1
2( ) for η = 0.1 shown color-coded separately for odd

(upper panel) and even (lower panel) values of k1. Same color-coding scheme
in both panels.

Figure 18. Compensated kernel h wx , 1,22 1( ) (upper panel) and h wx , 3,22 1( )
(lower panel) for ω = 0 (black solid line), i0.02 (red dotted line), and i0.1 (blue
dashed line) using η = 0.1.

Table 4
há ñ22 and há ñ33 Computed for ω = 0 and Various η

η há ñ22 há ñ33

0.100 −1.858 0.230
0.110 −0.245 0.239
0.115 −0.117 0.242
0.120 −0.047 0.244
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obtained with the PENCIL CODE with those obtained by
canceling the exponential factor and determining steady
solutions to Equation(59); the latter were computed by the
code by Fokkema (1995), employing the biconjugate gra-
dientstabilized method BiCGstab(ℓ) for ℓ= 6 (see Sleijpen &
Fokkema 1993; Sleijpen & van der Vorst 1995, 1996). We also
show h h+ á ñ33 , which is always positive. Note that h h+ á ñ22
becomes zero at »k 1.81 . Thus, in our domain of size 2π,
where =k 11 is the smallest wavenumber, the volume-averaged
eddy diffusivity is clearly negative.

6. CONCLUDING REMARKS

In mean-field electrodynamics, various analytical and
numerical approaches are used to express the mean emf,
originally defined in terms of small-scale fluctuations of flow
velocity and magnetic field, as functions of the large-scale
mean flow and magnetic field. Assessing the range of validity
and the clarifying conflicts in application of these approaches is
crucial in view of many applications, e.g., in laboratory
experiments for dynamo generation or in astrophysics. For
instance, a comparison of the traditional MFE approach with
those based on τ-approximations of turbulence theory was
carried out by Rädler & Rheinhardt (2007). Herewe have
compared two different methods for estimation of the mean
emf: MST, which explicitly considers steady or time-periodic
laminar flows, and TFM, which is not affected by such a
restriction. For instance, Cabanes et al. (2014) recently
observed in a rotating liquid sodium experiment “Derviche
Tourneur Sodium” a reduction of the effective magnetic
diffusivity in some regions of the flow, probably caused by

the turbulence; it is thus important to assessunder which
conditions the methods investigated here can be used to study
problems of this kind.
We have demonstrated that, in the two-scale setup, magnetic

eddy diffusivities predicted by MST in three-dimensional
small-scale steady flows are reproduced by TFM, provided that
volume averaging is used. It can be similarly shown that the
same result holds true for time-periodic flows—in this case the
averaging procedure must also involve time averaging over the
temporal period. If other types of averaging (planar or over just
one Cartesian variable) are applied, one can, in general, only
expect a qualitative agreement between the results. One must
also be aware of the following caveat: because of the
asymptotic character of the MST results, achieving agreement
with TFM eddy diffusivities requires small scale ratios ε and
thus high spatial resolution to be used when solving the TFM
test problems (2). This can be seen as a drawback of TFM in
comparison with MST.
Results coinciding with those of MST can also be obtained

by a modified TFM algorithm that proceeds by setting a test
field as theinitial condition and solving the standard magnetic
induction Equation (60) without separating the field into mean
and fluctuating parts before the saturated regime for the
magnetic field sets in, and then computing the emfdue to the
fluctuating flow and magnetic field as in the canonical TFM.
Reliance of TFM on the integral (3) approximation of the emf,
resulting in the ansatz (4) (or (57)) for the Fourier transforms,
then proves crucial. This feature of TFM implies that, in the
multiscale limit e  0, the choice of the spatial variables for
averaging becomes insignificant, because the use of the Fourier
transform over the remaining variables effectively converts all
the averages into averages over all three spatial variables (see
(55) and (58)). This observation does not hold for the
conventional version of MFE, where the emfis approximated
by local differential operators. Nevertheless, the MST α-effect
tensor in small-scale flows can be computed by TFM with the
use of constant test fields and full spatial averaging.
We have numerically confirmed the findings of Lanotte et al.

(1999) that the modified Taylor–Green flow possesses, in
certain ranges of parameter values, negative eddy diffusivities,
and we have shown that the same holds for the G. O. Roberts
flow IV. This is in contrast with Devlen et al. (2013), who did
not find negative eddy diffusivity for the former flow. Why did
Lanotte et al. (1999) and Devlen et al. (2013) arrive atdifferent
conclusions for this flow? We have seen that the results of MST
and TFM do not agree qualitatively unless TFM applies
volume averaging (R-IV depending on two spatial variables is
a special case), but a number of less important reasons make
the picture even more complicated: (i) we have now obtained
negative eddy diffusivities in mTG by TFM, but we have been
forced to employ a planar averaging different from the one used
by Devlen et al. (2013); (ii) eddy diffusivities affecting the
evolution of large-scale perturbations of distinct short-scale
magnetic modes do not coincide. While Lanotte et al. (1999)
considered eddy diffusivity for the neutral small-scale modes,
Devlen et al. (2013) aimed at evaluating it for the dominant
small-scale modes, which for η = 0.02 is a distinct branch;
hence, there are no reasons to expect their results on eddy
diffusivity to be interrelated; (iii) furthermore, at significant
scale separations (i.e., small ε) the eddy diffusivity for the
dominant branch for η = 0.02 is negative (see Figure 6); in this
case, TFM still can be used to evaluate the eddy diffusivity, but

Figure 19. Dependence of h h+ á ñ22 on k1, obtained with TFM by computing a
steady solution to Equation(59) (solid line), vs. the results of the PENCIL CODE

(filled symbols). For comparison, h h+ á ñ33 is shown (open symbols).
Hereη = 0.1, ω = 0.

Table 5
Comparison between h h+ á ñ22 , Obtained with TFM by Computing a Steady
Solution to Equation (59) (First Column, Marked by an Asterisk), and há ñ22 as
well as há ñ33 obtained with the PENCIL CODE for η = 0.1, ω = 0 and Various k1

k1 *h h+ á ñ22 há ñ22 há ñ33

2.5 +1.05656 +0.9559 0.1843
2.0 +0.20545 +0.1055 0.1843
1.5 −0.34576 −0.4460 0.1808
1.0 −1.75831 −1.858 0.2304
0.5 −2.11246 −2.213 0.3051
0.25 −2.02750 −2.127 0.3210
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special precautions must be taken in its implementation: TFM
requires solving test problems (2), which are likely to inherit
the instability of the unperturbed magnetic induction Equa-
tion (60) and have exponentially growing modes. In the course
of numerical integration, the growing modes will then set in
due to the influence of round-off errors and progressively wipe
out the contribution of the inhomogeneity in Equation(2),
which we intend to determine. A feasible strategy is to compute
directly a time-independent solution to Equation(2) regarded
as a system of linear equations (after a suitable discretization of
the problem in space).

Investigation of eddy diffusivity is supposed to yield the
effective diffusivity that can be employed, e.g., to study
nonlinear large-scale MHD regimes. Our results demonstrate
that this may be a nonrealistic goal. Magnetic field in a
nonlinear MHD regime can be decomposed into a linear
combination of eigenmodes of the magnetic induction operator,
where the coefficients are time-dependent. We have presented
growth rates in branches of dominant large-scale magnetic
eigenmodes generated by mTG in four symmetry subspaces.
The parabolic shape of their plots as functions of the scale ratio
ε near e = 0 or 1 confirms that the phenomenon of magnetic
eddy diffusivity is observed for significant scale separations in
all branches. However, Figure 6 also shows that the curvature
of the parabola varies significantly for different branches of
modes. Hence, for a given molecular diffusivity, no universal
eddy diffusivity tensor can be assigned to a given generating
flow, because the action of eddy diffusivity significantly
depends on the spectral composition of the multiscale magnetic
field itself, on which such an integral diffusivity acts. We are
thus forced to conclude that a unified description of “average”
magnetic eddy diffusivity would only be possible in the case of
a turbulent MHD regime with a well-defined statistics of the
spectral composition of magnetic field—for instance, when a
chaotic attractor of an MHD dynamical system is considered.
(As a side remark, we note that the same holds true for the α-
effect tensor: for large-scale permutations of different small-
scale magnetic modes generated by small-scale nonsymmetric
flows, generically different tensors are obtained, and hence the
integral α-effect tensor depends on the spectral composition of
the magnetic field.) From this prospective, the TFM approach
seems advantageous, since it demands to separately quantify
the influence of each Fourier harmonics in the mean magnetic
field by nominating it as a test field and computing the
fluctuating field that it induces and the respective output emf,
and afterwardto sum up such contributions of each individual
harmonics into the integral output.

Let us note some open questions, beginning with the most
important one.

1. TFM follows MFE in relying on approximations such as
(3) (e.g., the precise kernels in (3) are not translation-invariant).
It is essentialthat nevertheless in some limits (the most
important of which is the limit of small magnetic Reynolds
numbers)MFE yields results that are exact, i.e., TFM and MFE
agree exactly and in all details with DNS (see the review by
Brandenburg et al. 2010). Given that (i) we know that MST is a
precise corollary of the basic equationsand (ii) we have
observed that MST can quantitatively disagree with TFM, we
need to understand the mathematical reasons for the aforemen-
tioned agreement in the respective limits. The availability of
precise mathematical demonstrations may help to determine the
conditionsunder which TFM can be used reliably.

2. As we have mentioned in the Introduction, the generated
large-scale structures are described by amplitudes (depending
exclusively on slow variables) of the small-scale neutral
(magnetic or MHD stability) modes that constitute the leading
term in the expansion of perturbation in the scale ratio. In two-
scale systems (such as the ones considered here), the temporal
evolution of the amplitudes is governed by equations (mean-
field or otherwise)where the α-effect operator is never present
together with the eddy diffusivity operator: since the orders of
these differential operators are different, they emerge at
different orders of the scale ratio. (A joint action of molecular
diffusivity and the α-effect is encountered in flows with an
internal spatial scale;see Chapters 10 and 11 in Zheli-
govsky 2011.) Do the two operators appear simultaneously in
amplitude equations in a truly multiple-scale setup? In other
words, in such a setup can the mean emfbe a sum of the α- and
η-terms, as was assumed in the early variants of MFE?
3. Expressing entries of the magnetic eddy diffusivity

correction tensor in terms of solutions to auxiliary problems
for the adjoint operator has proved useful not only for reducing
the amount of computationsbut also in analytical work, for
establishing relations (29) between the tensors for opposite
flows, and for identifying zero entries of the tensor for
translation-invariant flow (see Section 3). In these calculations
we have relied on the similarity of the magnetic induction
operator and the adjoint operator for the reverse flow. Do
solutions to the auxiliary problem for the adjoint operator have
a physical interpretation?
4. Finally, the following technical question is of certain

interest: Equation (2) governing the evolution of the fluctuating
magnetic field involves the operatorPLP, whereP projects
out the mean field and L is the usual operator of magnetic
induction. Suppose that there is no small-scale dynamo action,
i.e., all eigenvalues of L have nonpositive real parts, and an
averaging other than volume averaging is employed. Is it then
possible, for some flows and some test fields, to have growing
fluctuating solutions, i.e., can the operator PLP have an
eigenvalue with a positive real part?
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