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ABSTRACT

We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during
2011 February 11–15 at 20◦ southern heliographic latitude using observational photospheric vector magnetograms.
We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field.
The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent
with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical
maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of
k ≈ 0.4 Mm−1, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for
the relative current helicity evaluated in real space based on the vertical components of magnetic field and current
density. The modulus of the magnetic helicity spectrum shows a k−11/3 power law at large wavenumbers, which
implies a k−5/3 spectrum for the modulus of the current helicity. A k−5/3 spectrum is also obtained for the magnetic
energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers
below 3 Mm−1, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy
and places limits resulting from possible instrumental artifacts at small scales.
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1. INTRODUCTION

Magnetic helicity is an important quantity that reflects the
topology of the magnetic field (Woltjer 1958a, 1958b; Taylor
1986). Pioneering studies of magnetic helicity in solar physics
have been performed by several authors focusing on the accumu-
lation of magnetic helicity in the solar atmosphere (e.g., Berger
& Field 1984; Chae 2001), the force-free α coefficient, and the
mean current helicity density in solar active regions (Seehafer
1990).

Besides the hemispheric sign distribution of large-scale heli-
cal features in active regions (Pevtsov et al. 1994; Abramenko
et al. 1997), there can be patches of right-handed and left-handed
fields corresponding respectively to positive and negative he-
licities, intermixed in a mesh-like pattern in the sunspot um-
bra and a threaded pattern in the sunspot penumbra (Su et al.
2009). Zhang (2010) showed that the individual magnetic fibrils
tend to be dominated by the current density component caused
by magnetic inhomogeneity, while the large-scale magnetic re-
gion tends to be dominated by the component of the current
density associated with the magnetic twist. Venkatakrishnan &
Tiwari (2009) pointed out that the existence of global twist for
a sunspot—even in the absence of a net current—is consistent
with a fibril structure of sunspot magnetic fields.

The redistribution of magnetic helicity contained within
different scales was argued to be the interchange of twist and
writhe due to magnetic helicity conservation (cf. Zeldovich et al.
1983; Kerr & Brandenburg 1999). Furthermore, the spectral
magnetic helicity distribution is important for understanding
the operation of the solar dynamo (Brandenburg & Subramanian
2005a). It has been argued that, if the large-scale magnetic field
is generated by an α effect (Krause & Rädler 1980), it must
produce magnetic helicity of opposite signs at large and small
length scales (Seehafer 1996; Ji 1999). We call such a magnetic

field bi-helical (Yousef & Brandenburg 2003). To alleviate
the possibility of catastrophic (magnetic Reynolds number-
dependent) quenching of the α effect (Gruzinov & Diamond
1994) and slow saturation (Brandenburg 2001), one must
invoke magnetic helicity fluxes from small-scale magnetic fields
(Kleeorin et al. 2000; Blackman & Field 2000; Brandenburg
& Subramanian 2005a; Brandenburg et al. 2009; Hubbard &
Brandenburg 2012).

In the present Letter, we determine the spectrum of magnetic
helicity and its relationship with magnetic energy from photo-
spheric vector magnetograms of a solar active region. We use
a technique that is based on the spectral representation of the
magnetic two-point correlation tensor. It is related to the method
of Matthaeus et al. (1982) for determining the magnetic helicity
spectrum from in situ measurements of the magnetic field in the
solar wind. Their key assumption allowing for the determination
of magnetic helicity spectra is that of homogeneity. This tech-
nique was recently applied to data from Ulysses to show that the
magnetic field at high heliographic latitudes has opposite signs
of helicity in the two hemispheres and also at large and small
length scales (Brandenburg et al. 2011); see also Warnecke et al.
(2011, 2012) for results from corresponding simulations. In the
present work, a variant is proposed where we assume local sta-
tistical isotropy in the horizontal plane to compute magnetic
energy and helicity spectra.

2. DATA ANALYSIS

We have analyzed data from the solar active region NOAA
11158 during 2011 February 11–15, taken by the Helioseismic
and Magnetic Imager on board the Solar Dynamics Observatory.
The pixel resolution of the magnetogram is about 0.′′5 and the
field of view is 250′′ × 150′′. Figure 1 shows photospheric
vector magnetograms (left) and the corresponding distribution
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Figure 1. Photospheric vector magnetograms (left) and plots of JzBz (right) for the active region NOAA 11158 between 2011 February 11–15. The arrows show the
transverse component of the magnetic field. Light (dark) shades indicate positive (negative) values of Bz on the left and JzBz on the right.

(A color version of this figure is available in the online journal.)

of h
(z)
C = JzBz (right) from the vector magnetograms of that

active region on different days. Here, Jz = ∂By/∂x − ∂Bx/∂y,
and Jz/μ0 is the vertical component of the current density in
SI units with μ0 being the vacuum permeability, while in cgs
units, the current density is Jzc/4π with c being the speed of
light. The superscript “(z)” on h

(z)
C indicates that only the vertical

contribution to the current helicity density is available.
It turns out that the mean value of the current helicity density,

H(z)
C = 〈h(z)

C 〉, is positive and ≈2.7 G2 km−1. Furthermore, as a
proxy of the force-free α parameter, we determine α = Jz/Bz,
which is on average 〈α〉 ≈ 2.8 × 10−5 km−1. For future
reference, let us estimate the current helicity normalized to its
theoretical maximum value, henceforth referred to as relative
helicity. This is not to be confused with the gauge-invariant
magnetic helicity relative to that of an associated potential field
(Berger & Field 1984). Thus, we consider the ratio

rC = 〈JzBz〉
/(〈

J 2
z

〉〈
B2

z

〉)1/2
(1)

as an estimate for the relative current helicity. For the active
region NOAA 11158 we find rC = +0.034. This value is based

on one snapshot, but similar values have been found at other
times.

Let us now turn to the two-point correlation tensor,
〈Bi(x, t) Bj (x + ξ , t)〉, where x is the position vector on the
two-dimensional surface, and angle brackets denote ensemble
averaging or, in the present case, averaging over annuli of con-
stant radii, i.e., |ξ | = const. Its Fourier transform with respect
to ξ can be written as

〈B̂i(k, t)B̂∗
j(k

′, t)〉 = Γij (k, t)δ2(k − k′), (2)

where B̂i(k, t) = ∫
Bi(x, t) eik·xd2x is the two-dimensional

Fourier transform, the subscript i refers to one of the three mag-
netic field components, the asterisk denotes complex conjuga-
tion, and ensemble averaging will be replaced by averaging over
concentric annuli in wavevector space. Following Matthaeus
et al. (1982), it is possible to determine the magnetic helicity
spectrum from the spectral correlation tensor Γij (k, t) by mak-
ing the assumption of local statistical isotropy. At the end of this
Letter we consider the applicability of this assumption in more
detail. Considering that k defines the only preferred direction in
Γij , and that kiB̂i = 0, the only possible structure of Γij (k, t) is
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(cf. Moffatt 1978)

Γij (k, t) = 2EM (k, t)

4πk
(δij − k̂i k̂j ) +

iHM (k, t)

4πk
εijkkk, (3)

where k̂i = ki/k is a component of the unit vector of k, k = |k|
is its modulus with k2 = k2

x + k2
y , and EM (k, t) and HM (k, t) are

the magnetic energy and magnetic helicity spectra,6 normalized
such that

EM (t) ≡ 1

2
〈B2〉=

∫ ∞

0
EM (k, t) dk,

HM (t) ≡ 〈A · B〉=
∫ ∞

0
HM (k, t) dk. (4)

Note that the mean energy density in erg cm−3 is EM/4π . We
emphasize that the expression for Γij (k, t) differs from that
of Moffatt (1978) by a factor 2k, because we are here in two
dimensions, so the differential for the integration over shells in
wavenumber space changes from 4πk2 dk to 2πk dk.

Note that the magnetic vector potential is not an observable
quantity, so the magnetic helicity might not be gauge-invariant.
However, if the spatial average is over all space, or if the mag-
netic field falls off sufficiently rapidly toward the boundaries,
both HM (t) and HM (k, t) are gauge-invariant. Indeed, with the
present analysis, HM (k, t) is manifestly gauge-invariant because
it has been computed directly from the magnetic field as obtained
through the photospheric vector magnetogram.

The components of the correlation tensor of the turbulent
magnetic field can be written in the form

4πk�(k, φk) =
⎛

⎝
(1 − cos2 φk)2EM − sin 2φkEM −ik sin φkHM

− sin 2φkEM (1 − sin2 φk)2EM ik cos φkHM

ik sin φkHM −ik cos φkHM 2EM

⎞

⎠ ,

(5)

where we have defined the polar angle in wavenumber space,
φk = Arctan(ky, kx), so that kx = k cos φk and ky = k sin φk .
For brevity, we have also skipped the arguments k and t on
EM (k, t) and HM (k, t).

In the following we present shell-integrated spectra. How-
ever, because we consider here two-dimensional spectra, they
correspond to the power in annuli of radius k and are obtained
as

2EM (k, t) = 2πk Re〈Γxx + Γyy + Γzz〉φk
, (6)

kHM (k, t) = 4πk Im〈cos φkΓyz − sin φkΓxz〉φk
, (7)

where the angle brackets with subscript φk denote averaging
over annuli in wavenumber space.

The realizability condition (Moffatt 1969) implies that

k|HM (k, t)| � 2EM (k, t). (8)

It is therefore convenient to plot k|HM (k, t)| and 2EM (k, t) on
the same graph, which allows one to judge how helical the

6 We use this opportunity to point out a sign error in the corresponding
Equation (3) of Brandenburg et al. (2011). Their results were however based
on the equation HM (k) = 4Im〈B̂T B̂∗

N〉, which has the correct sign. Here, B̂T

and B̂N are the transverse and normal components of the Fourier-transformed
magnetic field.

Figure 2. (a) 2EM (k) (dotted line) and k|HM (k)| (solid line) for NOAA 11158
at 23:59:54 UT on 2011 February 13. Positive (negative) values of HM (k)
are indicated by open (closed) symbols, respectively. 2E

(h)
M (k) (red, dashed)

and 2E
(v)
M (k) (blue, dash-dotted) are shown for comparison. (b) Same as upper

panel, but the magnetic helicity is averaged over broad logarithmically spaced
wavenumber bins.

(A color version of this figure is available in the online journal.)

magnetic field is at each wavenumber. Furthermore, to assess
the degree of isotropy, we also consider the magnetic energy
spectra E

(h)
M (k) and E

(v)
M (k) based respectively on the horizontal

and vertical magnetic field components, defined via

2E
(h)
M (k) = 4πk Re〈Γxx + Γyy〉φk

, (9)

2E
(v)
M (k) = 4πk Re〈Γzz〉φk

. (10)

Under isotropic conditions, we expect EM (k) ≈ E
(h)
M (k) ≈

E
(v)
M (k).
We now consider the magnetic energy and helicity spectra for

the active region NOAA 11158. The calculated region of the field
of view is 256′′×256′′, i.e., 512×512 pixels or L2 = (186 Mm)2.
We present first the results for NOAA 11158 at 23:59:54 UT on
2011 February 13; see Figure 2(a). It turns out that the magnetic
energy spectrum has a clear k−5/3 range for wavenumbers
in the interval 0.5 Mm−1 < k < 5 Mm−1. The magnetic
helicity spectrum is predominantly positive at intermediate
wavenumbers, but we also see that toward high wavenumbers
the magnetic helicity is fluctuating strongly around small values.
To determine the sign of magnetic helicity at these smaller
scales, we average the spectrum over broad, logarithmically
spaced wavenumber bins; see Figure 2(b). This shows that even
at smaller length scales the magnetic helicity is still positive,
again consistent with the fact that this active region is at southern
latitudes.
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Figure 3. Similar to Figure 2, showing EM (k, t) (upper panel) and k|HM (k, t)|
(lower panel) for the other days.

(A color version of this figure is available in the online journal.)

To calculate the relative magnetic helicity rM , we define the
integral scale of the magnetic field in the usual way as

�M =
∫

k−1EM (k) dk

/∫
EM (k) dk. (11)

The realizability condition of Equation (8) can be rewritten in
integrated form (e.g., Kahniashvili et al. 2013) as

|HM | =
∣∣∣
∣

∫
HMdk

∣∣∣
∣ � 2

∫
k−1EM (k)dk ≡ 2�MEM. (12)

In particular, we have |HM (t)| � 2�MEM (t). This gives

rM = HM/2�MEM, (13)

which obeys |rM | � 1. Again, this quantity is not to be confused
with the gauge-invariant helicity of Berger & Field (1984).
For the active region NOAA 11158 at 23:59:54 UT on 2011
February 13 we have �M ≈ 5.8 Mm, HM ≈ 3.3 × 104 G2 Mm,
and EM ≈ 6.7 × 104 G2, so rM ≈ 0.042. The relative magnetic
helicity has thus the same sign as the relative current helicity. The
corresponding magnetic column energy in the two-dimensional
domain of size L2 is L2EM/4π ≈ 1.8 × 1024 erg cm−1, which
is about three times larger than the values given by Song
et al. (2013). The magnetic column helicity is L2HM ≈
1.1 × 1033 Mx2 cm−1. Several estimates of the gauge-invariant
magnetic helicity of NOAA 11158 using time integration of
photospheric magnetic helicity injection (Vemareddy et al.
2012; Liu & Schuck 2012) and nonlinear force-free coronal
field extrapolation (Jing et al. 2012; Tziotziou et al. 2013)
suggest magnetic helicities of the order of 1043 Mx2. This value

Figure 4. Unsigned current helicity spectrum, |HC (k)|.
(A color version of this figure is available in the online journal.)

would be comparable to ours if the effective vertical extent were
≈100 Mm. We should remember, however, that there is no basis
for such a vertical extrapolation of our two-dimensional data.

Interestingly, the magnetic energy spectra E
(h)
M (k) and E

(v)
M (k)

based respectively on the horizontal and vertical magnetic field
components agree remarkably well at wavenumbers below k =
3 Mm−1, corresponding to length scales larger than 2 Mm. This
suggests that our assumption of isotropy might be a reasonable
one. The mutual departure between E

(h)
M (k) and E

(v)
M (k) at larger

wavenumbers could in principle be a physical effect, although
there is no good reason why the magnetic field should be
mostly vertical only at small scales. If it is indeed a physical
effect, it should then in future be possible to verify that this
wavenumber, where E

(h)
M (k) and E

(v)
M (k) depart from each other,

is independent of the instrument. Alternatively, this departure
might be connected with different accuracies of horizontal and
vertical magnetic field measurements (Zhang et al. 2012). If that
is the case, one should expect that with future measurements at
better resolution the two spectra depart from each other at larger
wavenumbers. In that case, our spectral analysis could be used
to isolate potential artifacts in the determination of horizontal
and vertical magnetic fields.

In Figure 3 we show 2EM (k) and k|HM (k)| for different days.
It turns out that on small scales the spectra are rather similar
in time, and that there are differences in the amplitude mainly
on large scales. Also the sign of HM (k) remains positive for the
different days.

We find that the mean spectral values of magnetic energy of
the active region at the solar surface is consistent with a k−5/3

power law, which is expected based on the theory of Goldreich &
Sridhar (1995) and consistent with spectra from earlier work on
solar magnetic fields (Abramenko 2005; Stenflo 2012), ruling
out the k−3/2 spectrum suggested by Iroshnikov (1963) and
Kraichnan (1965).

Under isotropic conditions, the current helicity spectrum,
HC(k, t), is related to the magnetic helicity spectrum via
(Moffatt 1978)

HC(k, t) ≈ k2HM (k, t). (14)

It is normalized such that
∫

HC(k) dk = 〈J · B〉. In Figure 4 we
show |HC(k)| obtained in this way. For k � 1 Mm−1, the current
helicity spectrum shows a k−5/3 spectrum, which is consistent
with numerical simulations of helically forced hydromagnetic
turbulence (Brandenburg & Subramanian 2005b; Brandenburg
2009), and indicative of a forward cascade of current helicity.
Similar spectra have also been obtained for the analogous case of
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kinetic helicity (André & Lesieur 1977; Borue & Orszag 1997).
These results imply that the relative helicity decreases toward
smaller scales; see the corresponding discussion on page 286 of
Moffatt (1978).

3. CONCLUSIONS

We have applied a novel technique to estimate the magnetic
helicity spectrum using vector magnetogram data at the solar
surface. We have made use of the assumption that the spec-
tral two-point correlation tensor of the magnetic field can be
approximated by its isotropic representation. This assumption
is partially justified by the fact that the energy spectra from
horizontal and vertical magnetic fields agree at wavenumbers
below 2 Mm−1. However, it will be important to assess the as-
sumption of isotropy in future work through comparison with
simulations. An example are the simulations of Losada et al.
(2013), who employed however only a one-dimensional repre-
sentation of the spectral two-point correlation function. Never-
theless, the present results look promising, because the sign of
magnetic helicity is the same over a broad range of wavenumbers
and consistent with that theoretically expected for the southern
hemisphere. This is consistent with the right-handed twist in-
ferred from all previous studies of NOAA 11158 using different
methods. Except for the smallest wavenumbers, magnetic and
current helicities have essentially the same sign. Therefore, a
sign change is only expected at smaller wavenumbers corre-
sponding to scales comparable to those of the Sun itself.

It would be useful to extend our analysis to a larger surface
area of the Sun to see whether there is evidence for a sign change
toward small wavenumbers and thus large scales reflecting the
global magnetic field of the solar cycle. Such a change of
sign is expected from dynamo theory (Brandenburg 2001) and
is a consequence of the inverse cascade of magnetic helicity
(Pouquet et al. 1976). Figure 2 gives indications of an opposite
sign for k � 0.1 Mm−1, which corresponds to scales that are still
much smaller than those of the Sun. However, measurements of
spectral power on scales comparable to those of the observed
magnetogram itself are not sufficiently reliable.

Our results suggest that the unsigned current helicity spectrum
shows a k−5/3 power law. This is in agreement with simulations
of hydromagnetic turbulence (Brandenburg & Subramanian
2005b) and implies that the turbulence becomes progressively
less helical toward smaller scales. Our results suggest that at
a typical scale of �M ≈ 6 Mm, the relative magnetic helicity
reaches values around 0.04. This magnetic helicity must have its
origin in the underlying dynamo process, and can be traced back
to the interaction between rotation and stratification. Losada
et al. (2013) parameterized these two effects in terms of a
stratification parameter Gr and a Coriolis number Co and found
that the relative kinetic helicity is approximately 2 Gr Co. For
the Sun, they estimate Gr = 1/6.5, so a relative helicity of
0.04 might correspond to Co ≈ 0.1. For the solar rotation rate,
this corresponds to a correlation time of about 6 hr, which
translates to a depth of about 8 Mm. Again, more precise
estimates should be obtained using realistic simulations.

In addition to measuring magnetic helicity over larger regions,
it will be important to apply our technique to many active
regions covering both hemispheres of the Sun and different
times during the solar cycle. This would allow us to verify
the expected hemispheric dependence of magnetic helicity.
Compared with previous determinations of the hemispheric
dependence of current helicity (Zhang et al. 2012), our technique
might allow us to isolate instrumental artifacts resulting from

different resolutions of vector magnetograms for horizontal and
vertical magnetic fields.
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