
A&A 564, A2 (2014)
DOI: 10.1051/0004-6361/201322315
c© ESO 2014

Astronomy
&

Astrophysics

Magnetic flux concentrations in a polytropic atmosphere

I. R. Losada1,2, A. Brandenburg1,2, N. Kleeorin3,1,4, and I. Rogachevskii3,1,4

1 Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden
e-mail: illa.rivero.losada@gmail.com

2 Department of Astronomy, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden
3 Department of Mechanical Engineering, Ben-Gurion University of the Negev, POB 653, 84105 Beer-Sheva, Israel
4 Department of Radio Physics, N. I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhnü Novgorod, Russia

Received 18 July 2013 / Accepted 23 January 2014

ABSTRACT

Context. Strongly stratified hydromagnetic turbulence has recently been identified as a candidate for explaining the spontaneous
formation of magnetic flux concentrations by the negative effective magnetic pressure instability (NEMPI). Much of this work has
been done for isothermal layers, in which the density scale height is constant throughout.
Aims. We now want to know whether earlier conclusions regarding the size of magnetic structures and their growth rates carry over
to the case of polytropic layers, in which the scale height decreases sharply as one approaches the surface.
Methods. To allow for a continuous transition from isothermal to polytropic layers, we employ a generalization of the exponential
function known as the q-exponential. This implies that the top of the polytropic layer shifts with changing polytropic index such
that the scale height is always the same at some reference height. We used both mean-field simulations (MFS) and direct numerical
simulations (DNS) of forced stratified turbulence to determine the resulting flux concentrations in polytropic layers. Cases of both
horizontal and vertical applied magnetic fields were considered.
Results. Magnetic structures begin to form at a depth where the magnetic field strength is a small fraction of the local equipartition
field strength with respect to the turbulent kinetic energy. Unlike the isothermal case where stronger fields can give rise to magnetic
flux concentrations at larger depths, in the polytropic case the growth rate of NEMPI decreases for structures deeper down. Moreover,
the structures that form higher up have a smaller horizontal scale of about four times their local depth. For vertical fields, magnetic
structures of super-equipartition strengths are formed, because such fields survive downward advection that causes NEMPI with hori-
zontal magnetic fields to reach premature nonlinear saturation by what is called the “potato-sack” effect. The horizontal cross-section
of such structures found in DNS is approximately circular, which is reproduced with MFS of NEMPI using a vertical magnetic field.
Conclusions. Results based on isothermal models can be applied locally to polytropic layers. For vertical fields, magnetic flux con-
centrations of super-equipartition strengths form, which supports suggestions that sunspot formation might be a shallow phenomenon.

Key words. magnetohydrodynamics (MHD) – hydrodynamics – turbulence – Sun: dynamo

1. Introduction

In a turbulent medium, the turbulent pressure can lead to dynam-
ically important effects. In particular, a stratified layer can attain
a density distribution that is significantly altered compared to
the nonturbulent case. In addition, magnetic fields can change
the situation further, because it can locally suppress the turbu-
lence and thus reduce the total turbulent pressure (the sum of
hydrodynamic and magnetic turbulent contributions). On length
scales encompassing many turbulent eddies, this total turbulent
pressure reduction must be compensated for by additional gas
pressure, which can lead to a density enhancement and thus to
horizontal magnetic structures that become heavier than the sur-
roundings and sink (Brandenburg et al. 2011). This is quite the
contrary of magnetic buoyancy, which is still expected to op-
erate on the smaller scale of magnetic flux tubes and in the ab-
sence of turbulence. Both effects can lead to instability: the latter
is the magnetic buoyancy or interchange instability (Newcomb
1961; Parker 1966), and the former is now often referred to as
negative effective magnetic pressure instability (NEMPI), which
has been studied at the level of mean-field theory for the past
two decades (Kleeorin et al. 1989, 1990, 1993, 1996; Kleeorin
& Rogachevskii 1994; Rogachevskii & Kleeorin 2007). These
are instabilities of a stratified continuous magnetic field, while
the usual magnetic buoyancy instability requires nonuniform and

initially separated horizontal magnetic flux tubes (Parker 1955;
Spruit 1981; Schüssler et al. 1994).

Unlike the magnetic buoyancy instability, NEMPI occurs at
the expense of turbulent energy rather than the energy of the
gravitational field. The latter is the energy source of the mag-
netic buoyancy or interchange instability. NEMPI is caused by
a negative turbulent contribution to the effective mean magnetic
pressure (the sum of nonturbulent and turbulent contributions).
For large Reynolds numbers, this turbulent contribution to the
effective magnetic pressure is larger than the nonturbulent one.
This results in the excitation of NEMPI and the formation of
large-scale magnetic structures – even from an originally uni-
form mean magnetic field.

Direct numerical simulations (DNS) have recently demon-
strated the operation of NEMPI in isothermally stratified layers
(Brandenburg et al. 2011; Kemel et al. 2012b). This is a partic-
ularly simple case in that the density scale height is constant;
i.e., the computational burden of covering large density varia-
tion is distributed over the depth of the entire layer. In spite of
this simplification, it has been argued that NEMPI is important
for explaining prominent features in the manifestation of solar
surface activity. In particular, it has been associated with the
formation of active regions (Kemel et al. 2013; Warnecke et al.
2013) and sunspots (Brandenburg et al. 2013, 2014). However, it
is now important to examine the validity of conclusions based on
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such simplifications using more realistic models. In this paper,
we therefore now consider a polytropic stratification, for which
the density scale height is smallest in the upper layers, and the
density variation therefore greatest.

NEMPI is a large-scale instability that can be excited in strat-
ified small-scale turbulence. This requires (i) sufficient scale sep-
aration in the sense that the maximum scale of turbulent mo-
tions, �, must be much smaller than the scale of the system, L;
and (ii) strong density stratification such that the density scale
height Hρ is much smaller than L; i.e.,

� � Hρ � L. (1)

However, both the size of turbulent motions and the typical size
of perturbations due to NEMPI can be related to the density
scale height. Furthermore, earlier work of Kemel et al. (2013)
using isothermal layers shows that the scale of perturbations due
to NEMPI exceeds the typical density scale height. Unlike the
isothermal case, in which the scale height is constant, it de-
creases rapidly with height in a polytropic layer. It is then un-
clear how such structures could fit into the narrow space left by
the stratification and whether the scalings derived for the isother-
mal case can still be applied locally to polytropic layers.

NEMPI has already been studied previously for polytropic
layers in mean-field simulations (MFS; Brandenburg et al. 2010;
Käpylä et al. 2012; Jabbari et al. 2013), but no systematic com-
parison has been made with NEMPI in isothermal or in poly-
tropic layers with different values of the polytropic index. This
will be done in the present paper, both in MFS and DNS.
Those two complementary types of simulations have proved
to be a good tool for understanding the underlying physics of
NEMPI. An example are the studies of the effects of rotation
on NEMPI (Losada et al. 2012, 2013), where MFS have been
able to give quantitatively useful predictions before correspond-
ing DNS were able to confirm the resulting dependence.

2. Polytropic stratification

We discuss here the equation for the vertical profile of the fluid
density in a polytropic layer. In a Cartesian plane-parallel layer
with polytropic stratification, the temperature gradient is con-
stant, so the temperature goes linearly to zero at z∞. The tem-
perature, T , is proportional to the square of the sound speed, c2

s ,
and thus also to the density scale height Hρ(z), which is given
by Hρ = c2

s/g for an isentropic stratification, where g is the ac-
celeration due to the gravity. For a perfect gas, the density ρ is
proportional to T n, and the pressure p is proportional to T n+1,
such that p/ρ is proportional to T , where n is the polytropic in-
dex. Furthermore, we have p(z) ∝ ρ(z)Γ, where Γ = (n + 1)/n is
another useful coefficient.

For a perfect gas, the specific entropy can be defined (up to
an additive constant) as s = cv ln(p/ργ), where γ = cp/cv is the
ratio of specific heats at constant pressure and constant density,
respectively. For a polytropic stratification, we have

exp(s/cv) = p/ργ ∝ ρΓ−γ, (2)

so s is constant when Γ = γ, which is the case for an isen-
tropic stratification. In the following, we make this assumption
and specify from now only the value of γ. For a monatomic gas,
we have γ = 5/3, which is relevant for the Sun, while for a di-
atomic molecular gas, we have γ = 7/5, which is relevant for air.
In those cases, a stratification with Γ = γ can be motivated by
assuming perfect mixing across the layer. The isothermal case
with γ = 1 can be motivated by assuming rapid heating/cooling
to a constant temperature.

Fig. 1. Isothermal and polytropic relations for different values of γ
when calculated using the conventional formula ρ ∝ (z∞ − z)n with
n = 1/(γ − 1).

Our aim is to study the change in the properties of NEMPI
in a continuous fashion as we go from an isothermally strati-
fied layer to a polytropic one. In the latter case, the fluid density
varies in a power law fashion, ρ ∝ (z∞ − z)n, while in the former,
it varies exponentially, ρ ∝ exp(z∞ − z). This is shown in Fig. 1
where we compare the exponential isothermal atmosphere with
a family of polytropic atmospheres with γ = 1.2, 1.4, and 5/3.
Clearly, there is no continuous connection between the isother-
mal case and the polytropic one in the limit γ → 1. This cannot
be fixed by rescaling the isothermal density stratification, be-
cause in Fig. 1 its values would still lie closer to 5/3 than to 1.4
or 1.2. Another problem with this description is that for poly-
tropic solutions the density is always zero at z = z∞, but finite in
the isothermal case. These different behaviors between isother-
mal and polytropic atmospheres can be unified by using the gen-
eralized exponential function known as the “q-exponential” (see,
e.g., Yamano 2002), which is defined as

eq(x) =
[
1 + (1 − q)x

]1/(1−q) , (3)

where the parameter q is related to γ via q = 2 − γ. This
generalization of the usual exponential function was originally
introduced by Tsallis (1988) in connection with a possible gener-
alization of the Boltzmann-Gibbs statistics. Its usefulness in con-
nection with stellar polytropes has been employed by Plastino &
Plastino (1993). Thus, the density stratification is given by

ρ

ρ0
=

[
1 + (γ − 1)

(
− z

Hρ0

)]1/(γ− 1)

=

(
1 − z

nHρ0

)n

, (4)

which reduces to ρ/ρ0 = exp(−z/Hρ0) for isothermal stratifica-
tion with γ → 1 and n → ∞. The density scale height is then
given by

Hρ(z) = Hρ0 − (γ − 1)z = Hρ0 − z/n. (5)

In the following, we measure lengths in units of Hρ0 = Hρ(0).
In Fig. 2 we show the dependencies of ρ(z) and Hρ given by

Eqs. (4) and (5) for different values of γ. Compared with Fig. 1,
where z∞ is held fixed, in Fig. 2 it is equal to z∞ = nHρ0 =
Hρ0/(γ − 1). The total density contrast is roughly the same in
all four cases for different γ, but for increasing values of γ, the
vertical density gradient becomes progressively stronger in the
upper layers.

Assuming that the radius R of the resulting structures is pro-
portional to Hρ, we sketch in Fig. 3 a situation in which R is
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Fig. 2. Polytropes (Eq. (4)) with γ = 1 (solid line), 1.2 (dash-dotted), 1.4
(dotted), and 5/3 (dashed) and density scale height (Eq. (5)) for −4 ≤
−z/Hρ0 ≤ 1.2. The total density contrast is similar for γ = 1 and 5/3.

Fig. 3. Sketch showing the expected size distribution of the nearly cir-
cular NEMPI eigenfunction structures at different heights.

half the depth. With ρ ∝ (z∞ − z)n, the density scale height is
Hρ(z) = (z∞ − z)/n. Thus, Fig. 3 applies to a case in which
R = (z∞−z)/2 = (n/2) Hρ(z). The solar convection zone is nearly
isentropic and well described by n = 3/2. This means that the
structures of Fig. 3 have R = (3/4) Hρ(z). The results of Kemel
et al. (2013) and Brandenburg et al. (2014) suggest that the hori-
zontal wavenumber of structures, k⊥, formed by NEMPI, is less
than or about H−1

ρ , so their horizontal wavelength is <∼2πHρ. One
wavelength corresponds to the distance between two nodes, i.e.,
the distance between two spheres, which is 4 R. Thus, in the
isothermal case we have R/Hρ = 2π/4 ≈ 1.5, which implies
that such a structure would not fit into the isentropic atmosphere
described above. This provides an additional motivation for our
present work.

3. DNS study

In this section we study NEMPI in DNS for the polytropic layer.
Corresponding MFS are presented in Sect. 4.

3.1. The model

We solve the equations for the magnetic vector potential A, the
velocity U, and the density ρ, in the form

∂A
∂t
= U × B − ημ0 J , (6)

DU
Dt
=

1
ρ

J × B + f − νQ − ∇H, (7)

Dρ
Dt
= −ρ∇ · U, (8)

where D/Dt = ∂/∂t+U·∇ is the advective derivative with respect
to the actual (turbulent) flow, B = B0 + ∇ × A is the magnetic
field, B0 the imposed uniform field, J = ∇ × B/μ0 the current
density, μ0 the vacuum permeability, H = h + Φ the reduced
enthalpy, h = cpT the enthalpy,Φ is the gravitational potential,

−Q = ∇2U + 1
3∇∇ · U + 2S∇ ln ρ (9)

is a term appearing in the viscous force −νQ, S is the traceless
rate-of-strain tensor with components

Si j =
1
2 (∇ jUi + ∇iU j) − 1

3δi j∇ · U, (10)

ν is the kinematic viscosity, and η is the magnetic diffusion co-
efficient caused by electrical conductivity of the fluid. As in
Losada et al. (2012), z corresponds to radius, x to colatitude,
and y to azimuth. The forcing function f consists of random,
white-in-time, plane, nonpolarized waves with a certain average
wavenumber kf .

3.2. Boundary conditions and parameters

In the DNS we use stress-free boundary conditions for the ve-
locity at the top and bottom; i.e., ∇zUx = ∇zUy = Uz = 0.
For the magnetic field we use either perfect conductor boundary
conditions, Ax = Ay = ∇zAz = 0, or vertical field conditions,
∇zAx = ∇zAy = Az = 0, again at both the top and bottom. All
variables are assumed periodic in the x and y directions.

The turbulent rms velocity is approximately independent of z
with urms = 〈u2〉1/2 ≈ 0.1 cs. The gravitational acceleration
g = (0, 0,−g) is chosen such that k1Hρ0 = 1, where k1 = 2π/L
and L is the size of the domain. With one exception (Sect. 3.5),
we always use the value kf/k1 = 30 for the scale separation ratio.
For B0 we choose either a horizontal field pointing in the y direc-
tion or a vertical one pointing in the z direction. The latter case,
B0 = (0, 0, B0), is usually combined with the use of the vertical
field boundary condition, while the former one, B0 = (0, B0, 0),
is combined with using perfect conductor boundary conditions.
The strength of the imposed field is expressed in terms of Beq0 =
Beq(z = 0), which is the equipartition field strength at z = 0.
Here, the equipartition field Beq(z) = (μ0ρ(z))1/2 urms. The im-
posed field is normalized by Beq0 and denoted as β0 = B0/Beq0,
while β = |B|/Beq is the modulus of the normalized mean mag-
netic field. Time is expressed in terms of the turbulent-diffusive
time, τtd = H2

ρ0/ηt0, where ηt0 = urms/3kf (Sur et al. 2008) is an
estimate for the turbulent magnetic diffusivity used in the DNS.

Our values of ν and η are characterized by specifying the
kinetic and magnetic Reynolds numbers,

Re = urms/νkf , Rm = urms/ηkf . (11)

In most of this paper (except in Sect. 3.5) we use Re = 36 and
Rm = 18, which are also the values used by Kemel et al. (2013).
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Fig. 4. Snapshots of By from DNS for γ = 5/3 and β0 = 0.02 (upper row), 0.05 (middle row), and 0.1 (lower row) at different times (indicated in
turbulent-diffusive times, increasing from left to right) in the presence of a horizontal field using the perfect conductor boundary condition.

The DNS are performed with the Pencil Code, http://
pencil-code.googlecode.com, which uses sixth-order ex-
plicit finite differences in space and a third-order accurate time
stepping method. We use a numerical resolution of 2563 mesh
points.

3.3. Horizontal fields

We focus on the case γ = 5/3 and show in Fig. 4 visualiza-
tions of By at different instants for three values of the imposed
horizontal magnetic field strength. For β0 = 0.02, a magnetic
structure is clearly visible at t/τtd = 1.43, while for β0 = 0.05
structures are already fully developed at t/τtd = 0.42. In that case
(β0 = 0.05), at early times (t/τtd = 0.42), there are two struc-
tures, which then begin to merge at t/τtd = 1.38. The growth
rate of the magnetic structure is found to be λ ≈ 2ηt0/H2

ρ0 for the

runs shown in Fig. 4. This is less than the value of λ ≈ 5ηt0/H2
ρ0

found earlier for the isothermal case (Kemel et al. 2012b).
For γ = 5/3 and β0 ≤ 0.02, the magnetic structures be-

come smaller (k⊥Hρ0 = 2) near the surface. In the nonlinear
regime, i.e., at late times, the structures move downward due
to the so-called “potato-sack” effect, which was first seen in
MFS (Brandenburg et al. 2010) and later confirmed in DNS
(Brandenburg et al. 2011). The magnetic structures sink in the
nonlinear stage of NEMPI, because an increase in the mean
magnetic field inside the horizontal magnetic flux tube increases
the absolute value of the effective magnetic pressure. On the
other hand, a decrease in the negative effective magnetic pres-
sure is balanced out by increased gas pressure, which in turn
leads to higher density, so the magnetic structures become heav-
ier than the surroundings and sink. This potato-sack effect has
been clearly observed in the present DNS with the polytropic
layer (see the right column in Fig. 4).

3.4. Vertical fields

Recent DNS using isothermal layers have shown that strong cir-
cular flux concentrations can be produced in the case of a verti-
cal magnetic field (Brandenburg et al. 2013, 2014). This is also

observed in the present study of a polytropic layer; see Fig. 5,
where we show the evolution of Bz on the periphery of the com-
putational domain for γ = 5/3 and β0 = 0.05 at different times. A
difference to the DNS for γ = 1 (Brandenburg et al. 2013) seems
to be that for γ = 5/3 the magnetic structures are shallower than
for γ = 1; see Fig. 6, where we show xy and xz slices of Bz

through the spot. Owing to periodicity in the xy plane, we have
shifted the location of the spot to x = y = 0. We note also that the
field lines of the averaged magnetic field show a structure rather
similar to the one found in MFS of Brandenburg et al. (2014).
The origin of circular structures is associated with a cylindrical
symmetry for the vertical magnetic field. The growth rate of the
magnetic field in the spot is found to be λ ≈ 0.9ηt0/H2

ρ0, which
is similar to the value of 1.3 found earlier for the isothermal case
(Brandenburg et al. 2013).

3.5. Effective magnetic pressure

As pointed out in Sect. 1, the main reason for the formation
of strongly inhomogeneous large-scale magnetic structures is
the negative contribution of turbulence to the large-scale mag-
netic pressure, so that the effective magnetic pressure (the sum
of turbulent and nonturbulent contributions) can be negative at
high magnetic Reynolds numbers. The effective magnetic pres-
sure has been determined from DNS for isothermally stratified
forced turbulence (Brandenburg et al. 2010, 2012) and for turbu-
lent convection (Käpylä et al. 2012). To see whether the nature of
polytropic stratification has any influence on the effective mag-
netic pressure, we use DNS.

We first explain the essence of the effect of turbulence on the
effective magnetic pressure. We consider the momentum equa-
tion in the form

∂

∂t
ρUi = − ∂

∂x j
Πi j + ρ gi, (12)

where

Πi j = ρUiU j + δi j

(
p + B2/2μ0

)
− BiB j/μ0 − 2νρSi j (13)

is the momentum stress tensor and δi j the Kronecker tensor.
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Fig. 5. Snapshots from DNS showing Bz on the periphery of the computational domain for γ = 5/3 and β0 = 0.05 at different times for the case of
a vertical field using the vertical field boundary condition.

Fig. 6. Cuts of Bz/Beq(z) in (a) the xy plane at the top boundary (z/Hρ0 = 1.2) and (b) the xz plane through the middle of the spot at y = 0 for
γ = 5/3 and β0 = 0.05. In the xz cut, we also show magnetic field lines and flow vectors obtained by numerically averaging in azimuth around the
spot axis.

Ignoring correlations between velocity and density fluctua-
tions for low-Mach number turbulence, the averaged momentum
equation is

∂

∂t
ρUi = − ∂

∂x j
Πi j + ρ gi, (14)

where an overbar means xy averaging,Πi j = Π
m
i j+Π

f
i j is the mean

momentum stress tensor, split into contributions resulting from
the mean field (indicated by superscript m) and the fluctuating
field (indicated by superscript f). The tensor Π

m
i j has the same

form as Eq. (13), but all quantities have now attained an overbar;
i.e.,

Π
m
i j = ρUiU j + δi j

(
p + B2/2μ0

)
− BiBj/μ0 − 2νρSi j. (15)

The contributions, Π
f
i j, which result from the fluctuations u =

U−U and b = B−B of velocity and magnetic fields, respectively,

are determined by the sum of the Reynolds and Maxwell stress
tensors:

Π
f
i j = ρ uiu j + δi jb2/2μ0 − bib j/μ0. (16)

This contribution, together with the contribution from the mean
field, Π

m
i j , comprises the total mean momentum tensor. The con-

tribution from the fluctuating fields is split into a contribution

that is independent of the mean magnetic field Π
f,0
i j (which deter-

mines the turbulent viscosity and background turbulent pressure)

and a contribution that depends on the mean magnetic field Π
f,B
i j .

The difference between the two, ΔΠ
f
i j = Π

f,B
i j −Π

f,0
i j , is caused by

the mean magnetic field and is parameterized in the form

ΔΠ
f
i j = μ

−1
0

(
qsBiBj − qp δi jB2/2 − qg ĝi ĝ jB2

)
, (17)

where the coefficient qp represents the isotropic turbulence con-
tribution to the mean magnetic pressure, the coefficient qs repre-
sents the turbulence contribution to the mean magnetic tension,
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Fig. 7. Effective magnetic pressure obtained from DNS in a polytropic
layer with different γ for horizontal (H, red curves) and vertical (V, blue
curves) mean magnetic fields.

while the coefficient qg is the anisotropic turbulence contribu-
tion to the mean magnetic pressure, and it characterizes the ef-
fect of vertical variations of the magnetic field caused by the
vertical magnetic pressure gradient. Here, ĝi is the unit vector
in the direction of the gravity field (in the vertical direction).
We consider cases with horizontal and vertical mean magnetic
fields separately. Analytically, the coefficients qp, qg, and qs have
been obtained using both the spectral τ approach (Rogachevskii
& Kleeorin 2007) and the renormalization approach (Kleeorin
& Rogachevskii 1994). The form of Eq. (17) is also obtained
using simple symmetry arguments; e.g., for a horizontal field,
the linear combination of three independent true tensors, δi j, ĝiĝ j

and BiBj, yields Eq. (17), while for the vertical field, the linear
combination of only two independent true tensors, δi j and BiBj.

Previous DNS studies (Brandenburg et al. 2012) have shown
that qs and qg are negligible for forced turbulence. To avoid
the formation of magnetic structures in the nonlinear stage of
NEMPI, which would modify our results, we use here a lower
scale separation ratio, kf/k1 = 5, keeping k1Hρ = 1, and us-
ing Re = 140 and Rm = 70, as in Brandenburg et al. (2012).
To determine qp(β), it is sufficient to measure the three diagonal

components of Π
f
i j both with and without an imposed magnetic

field using qp = −2μ0ΔΠ
f
xx/B

2
.

In Fig. 7 we present the results for forced turbulence in the
polytropic layer with different γ for horizontal and vertical mean
magnetic fields. It turns out that the normalized effective mag-
netic pressure,

Peff =
1
2

(1 − qp)β2, (18)

has a minimum value Pmin at βmin. Following Kemel et al.
(2012a), the function qp(β) is approximated by:

qp(β) =
qp0

1 + β2/β2
p
=
β2



β2
p + β2

, (19)

where qp0, βp, and β
 = βpq1/2
p0 are constants. This equation can

be understood as a quenching formula for the effective magnetic
pressure; see Jabbari et al. (2013). The coefficients βp and β
 are
related to Pmin at βmin via (Kemel et al. 2012a)

βp = β
2
min

/√
−2Pmin, β
 = βp +

√
−2Pmin. (20)

Fig. 8. Parameters qp0, βp, and β
 for the function qp(β) (see Eq. (19))
versus γ for horizontal (red line) and vertical (blue line) mean magnetic
fields.

In Fig. 8 we show these fitting parameters for the function qp(β)
for polytropic layer with different γ for horizontal and vertical
mean magnetic fields. The effects of negative effective magnetic
pressure are generally stronger for vertical magnetic fields (qp0
is larger and βp smaller) than for horizontal ones (qp0 is smaller
and βp larger), but the values β
 = βpq1/2

p0 are similar in both
cases, and increasing from 0.35 (for γ = 1) to 0.6 (for γ = 5/3);
see Fig. 8.

4. Mean-field study

We now consider two sets of parameters that we refer to as
Model I (with qp0 = 32 and βp = 0.058 corresponding to
β
 = 0.33) and Model II (qp0 = 9 and βp = 0.21 correspond-
ing to β
 = 0.63). These cases are representative of the strong
(large β
) and weak (small β
) effects of NEMPI. Following ear-
lier studies (Brandenburg et al. 2012), we find qs to be compati-
ble with zero. We thus neglect this coefficient in the following.

4.1. Governing parameters and estimates

The purpose of this section is to summarize the findings for the
isothermal case in MFS. One of the key results is the prediction
of the growth rate of NEMPI. The work of Kemel et al. (2013)
showed that in the ideal case (no turbulent diffusion), the growth
rate λ is approximated well by

λ ≈ β
urms/Hρ (no turbulent diffusion). (21)
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However, turbulent magnetic diffusion, ηt, can clearly not be ne-
glected and is chiefly responsible for shutting off NEMPI if the
turbulent eddies are too big and ηt too large. This was demon-
strated in Fig. 17 of Brandenburg et al. (2012). A heuristic
ansatz, which is motivated by similar circumstances in mean-
field dynamo theory (Krause & Rädler 1980), is to add a
term −ηtk2 to the righthand side of Eq. (21), where k is the
wavenumber of NEMPI.

To specify the expression for λ, we normalize the wavenum-
ber of the perturbations by the inverse density scale height and
denote this by κ ≡ kHρ. The wavenumber of the energy-carrying
turbulent eddies kf is in nondimensional form κf ≡ kf Hρ, and
the normalized horizontal wavenumber of the resulting mag-
netic structures is referred to as κ⊥ = k⊥Hρ. For NEMPI,
these values have been estimated to be κ⊥ = 0.8–1.0, and can
even be smaller for vertical magnetic fields (Brandenburg et al.
2014). Using an approximate aspect ratio of unity for magnetic
structures, we have κ =

√
2κ⊥ ≈ 1.1–1.4. In stellar mixing

length theory (Vitense 1953), the mixing length is �f = αmixHρ,
where αmix ≈ 1.6 is a nondimensional mixing length param-
eter. Since kf = 2π/�f, we arrive at the following estimate:
κf = 2πγ/αmix ≈ 6.5. [Owing to a confusion between pressure
and density scale heights, this value was underestimated by
Kemel et al. (2013) to be 2.4, although an independent calcu-
lation of this value from turbulent convection simulations would
still be useful.] Using ηt ≈ urms/3kf, the turbulent magnetic dif-
fusive rate for an isothermal atmosphere is given by

ηtk
2 =

urms

3Hρ

κ2

κf
, (22)

and the growth rate of NEMPI in that normalization is

λ

ηtk2
= 3β


κf

κ2
− 1. (23)

Using β
 = 0.23, which is the relevant value for high mag-
netic Reynolds numbers (Brandenburg et al. 2012), we find
λ/ηtk2 ≈ 2.7−1.3 for κ ≈ 1.1−1.4. However, since Fig. 8 shows
an increase of β
 with increasing polytropic index, one might
expect a corresponding increase in the growth rate of NEMPI
for a polytropic layer, in which Hρ varies strongly with height z.
Indeed, in a polytropic atmosphere, Hρ is proportional to depth.
Thus, at any given depth there is a layer beneath, where the strat-
ification is less strong and the growth rate of NEMPI is lower. In
addition, there is a thinner, more strongly stratified layer above,
where NEMPI might grow faster if only the structures generated
by NEMPI have enough room to develop before they touch the
top of the atmosphere at z∞, where the temperature vanishes.

4.2. Mean-field equations

In the following, we consider MFS and compare it with
DNS. We also compare our MFS results with those of DNS
(Brandenburg et al. 2011; Kemel et al. 2013) using a similar
polytropic setup.

The governing equations for the mean quantities (denoted by
an overbar) are fairly similar to those for the original equations,
except that in the MFS viscosity and magnetic diffusivity are
replaced by their turbulent counterparts, and the mean Lorentz
force is supplemented by a parameterization of the turbulent con-
tribution to the effective magnetic pressure.

The evolution equations for mean vector potential A, mean
velocity U, and mean density ρ, are

∂A
∂t
= U × B − ηTμ0 J , (24)

D U

Dt
=

1
ρ

[
J × B + ∇(qpB2/2μ0)

]
− νTQ − ∇H, (25)

D ρ

Dt
= −ρ∇ · U, (26)

where D/Dt = ∂/∂t + U · ∇ is the advective derivative with re-
spect to the mean flow, ρ the mean density, H = h + Φ the mean
reduced enthalpy, h = cpT the mean enthalpy, T ∝ ργ−1 the
mean temperature,Φ the gravitational potential, ηT = ηt + η, and
νT = νt + ν are the sums of turbulent and microphysical values
of magnetic diffusivity and kinematic viscosities, respectively.
Also, J = ∇ × B/μ0 is the mean current density, μ0 is the vac-
uum permeability,

−Q = ∇2U + 1
3∇∇ · U + 2S∇ ln ρ (27)

is a term appearing in the mean viscous force −νTQ, where S is
the traceless rate-of-strain tensor of the mean flow with compo-
nents Si j =

1
2 (∇ jUi + ∇iU j) − 1

3δi j∇ · U, and finally the term

∇(qpB2/2μ0) on the righthand side of Eq. (25) determines the
turbulent contribution to the effective magnetic pressure. Here,
qp depends on the local field strength; see Eq. (19). This term
enters with a plus sign, so positive values of qp correspond
to a suppression of the total turbulent pressure. The net effect
of the mean magnetic field leads to an effective mean mag-
netic pressure that becomes negative for qp > 1. This can in-
deed be the case for magnetic Reynolds numbers well above
unity (Brandenburg et al. 2012); see also Fig. 7 for a polytropic
atmosphere.

The boundary conditions for MFS are the same as for DNS,
i.e., stress-free for the mean velocity at the top and bottom. For
the mean magnetic field, we use either perfect conductor bound-
ary conditions (for horizontal, imposed magnetic fields) or ver-
tical field conditions (for vertical, imposed fields) at the top and
bottom. All mean-field variables are assumed to be periodic in
the x and y directions. The MFS are performed again with the
Pencil Code, which is equipped with a mean-field module for
solving the corresponding equations.

4.3. Expected vertical dependence of NEMPI

To get an idea about the vertical dependence of NEMPI, we
now consider the resulting dependencies of Peff(z); see the left-
hand panels of Fig. 9. We note that Peff is just a function of β
(Eqs. (18) and (19)), which allows us to approximate the local
growth rates as (Rogachevskii & Kleeorin 2007; Kemel et al.
2013)

λ0 =
vA

Hρ0

(
−2

dPeff

dβ2

) 1
2
, (28)

which are plotted in the righthand panels of Fig. 9 for Model I.

4.4. Horizontal fields

To analyze the kinematic stage of MFS, we measure the value of
the maximum downflow speed, |U |down

max at each height. We then
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Fig. 9. Comparison of Peff(z) and λ0(z) in MFS for polytropic layers
with four values of γ (top to bottom) and three values of β (different
line types).

Fig. 10. Dependence of growth rate and height where the eigenfunc-
tion attains its maximum value (the optimal depth of NEMPI) on field
strength from MFS for different values of γ in the presence of a hori-
zontal field for Model I.

determine the time interval during which the maximum down-
flow speed increases exponentially and when the height of the
peak is constant and equal to zB. This yields the growth rate of
the instability as λ = d ln |U |down

max /dt.
In Figs. 10 and 11 we plot, respectively for Models I and II,

λ (in units of ηt/H2
ρ0) and zB versus horizontal imposed magnetic

field strength, B0/Beq. The maximum growth rates for γ = 5/3

Fig. 11. Same as Fig. 10 (horizontal field), but for Model II.

Fig. 12. Snapshots of By from MFS during the kinematic growth phase
for different values of γ and B0/Beq0 for γ = 1 (top) and 5/3 (bottom)
with β0 = 0.02 (left) and 0.1 (right) in the presence of a horizontal field
for Model I.

and γ = 1 are similar for both models (4–5 ηt/H2
ρ0 for Model I

and 16–20 ηt/H2
ρ0 for Model II). It turns out that for γ = 5/3,

the growth rate λ attains a maximum at some value B0 = Bmax,
and then it decreases with increasing B0, while in an isothermal
run λ is nearly constant for greater field strength, except near
the surface where the proximity to the boundary is too small.
This close proximity reduces the growth rate. For Model I with
γ = 1, the decline of λ (toward weaker fields on the lefthand
side of the plot) begins when the distance to the top boundary
(ztop − zB ≈ 1.2 Hρ0 for β0 = 0.02) is less than the radius of
magnetic structures (R ≈ 2π/k⊥ ≈ 1.5 Hρ0 using k⊥Hρ0 = 1). In
Model II with γ = 1, the decline of λ occurs for stronger fields,
but the distance to the top boundary (≈1.0 Hρ0) is still nearly the
same as for Model I.

In an isothermal layer, the height where the eigenfunction
peaks is known to decrease with increasing field strength; see
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Fig. 13. Dependence of growth rate and optimal depth of NEMPI on
field strength from MFS for different values of γ in the presence of a
vertical field for Model I.

Fig. 6 of Kemel et al. (2012a). One might have expected this de-
crease to be less steep in the polytropic case, because the optimal
depth where NEMPI occurs cannot easily be decreased without
suffering a dramatic decrease of the growth rate. This is however
not the case, and we find that the optimal depth of NEMPI is
now falling off more quickly in Model I, but is more similar for
Model II; see the second panels of Figs. 10 and 11. This means
that in a polytropic layer, NEMPI works more effectively, and its
growth rate is fastest when the magnetic field is not too strong.
At the same time, the optimal depth of NEMPI increases, i.e.,
the resulting value of zB increases as B0 decreases.

The resulting growth rates are somewhat less for Model I
and somewhat higher for Model II than those of earlier mean-
field calculations of Kemel et al. (2012a, their Fig. 6), who found
λH2

p0/ηt ≈ 9.7 in a model with β
 = 0.32 and βp = 0.05. These
differences in the growth rates are plausibly explained by differ-
ences in the mean-field parameters.

Visualizations of the resulting horizontal field structures are
shown in Fig. 12 for two values of γ and B0. Increase in the
parameter γ results in a stronger localization of the instability at
the surface layer, where the density scale height is minimum and
the growth of NEMPI is strongest.

4.5. Vertical fields

In the presence of a vertical field, the early evolution of the in-
stability is similar to that for a horizontal field. In both cases,
the maximum field strength occurs at a somewhat larger depth
when saturation is reached, except that shortly before satura-
tion there is a brief interval during which the location of max-
imum field strength rises slightly upwards in the vertical field
case. In the saturated case, however, the flux concentrations from
NEMPI are much stronger compared to the case of a horizon-
tal field and it leads to the formation of magnetic flux con-
centrations of equipartition field strength (Brandenburg et al.
2013, 2014). This is possible because the resulting vertical flux
tube is not advected downward with the flow that develops as a

Fig. 14. Same as Fig. 13 (vertical field), but for Model II.

Fig. 15. Comparison of U rms from MFS for Models I (solid line) and II
(dashed line), showing exponential growth followed by nonlinear satu-
ration. In both cases we have γ = 5/3 and an imposed vertical magnetic
field with β0 = 0.05.

consequence of NEMPI. The latter effect is the aforementioned
“potato-sack” effect, which acts as a nonlinear saturation mech-
anism of NEMPI with a horizontal field.

In Figs. 13 and 14 we plot the growth rates λ and the heights
where the eigenfunction attains its maximum values for different
β0 = B0/Beq0 for Models I and II, respectively. For γ = 5/3, the
maximum growth rate is higher larger than for γ = 1. This is
true for Models I and II, where they are 8–10ηt/H2

ρ0 for γ = 5/3

and 5–7 ηt/H2
ρ0 for γ = 1. The nonmonotonous behavior seen in

the dependence of λ on B0 is suggestive of the presence of differ-
ent mode structures, although a direct inspection of the resulting
magnetic field did not show any obvious differences. However,
this irregular behavior may be related to artifacts resulting from
a finite domain size and were not regarded important enough to
justify further investigation.

Next we focus on a comparison of the growth rates ob-
tained from MFS for horizontal and vertical fields. The values
of β0, zB, and β(zB) = B0/Beq(zB) for horizontal and vertical
fields are compared in Table 1 for both models. We see that
NEMPI is most effective in regions where the mean magnetic
field is a small fraction of the local equipartition field and typ-
ically slightly less for γ = 5/3 than for γ = 1. Indeed, for
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Fig. 16. Snapshots from MFS showing Bz on the periphery of the computational domain for γ = 5/3 and β0 = 0.05 at different times for Model I
for the case of a vertical field.

Fig. 17. Similar to Fig. 16 of MFS, but for Model II at times similar to those in the DNS of Fig. 5. There are now more structures than in the earlier
MFS of Fig. 16, and they develop more rapidly.

Table 1. Comparison of the optimal depth zB and the corresponding
normalized magnetic field strength β(zB) for three values of γ for im-
posed horizontal and vertical magnetic fields of normalized strengths
β0 = B0/Beq0, for Model I.

Horizontal field Vertical field
Mod γ β0 zB/Hρ0 β(zB) β0 zB/Hρ0 β(zB)

I 1 0.05 −0.76 0.034 0.04 0.76 0.058

I 1.4 0.03 0.34 0.035 0.03 0.75 0.043

I 5/3 0.02 0.85 0.029 0.02 1.0 0.031
II 1 0.20 −0.29 0.17 0.12 1.2 0.22

II 5/3 0.08 0.94 0.12 0.05 1.0 0.08

Model I, β(zB) is 3–4% for horizontal fields and 3–6% for ver-
tical fields, while for Model II, β(zB) is 12–17% for horizon-
tal fields and 8–22% for vertical fields. Here, we have used
β(zB) = β0e2−γ(zB/2Hρ0), where eq(x) is the q-exponential func-
tion defined by Eq. (3).

We expect that higher values of β
 will lead to greater growth
rates. To verify this, we compare in Fig. 15 the time evolutions
of Urms for Models I (with β
 = 0.33) and Model II (with
β
 = 0.63). The growth rate has now increased by a factor of 2.4
(from λH2

ρ0/ηt = 3.9 to 9.5), which is slightly more than what is
expected from β
, which has increased by a factor of 1.9. This
change in the growth rate can also be seen in Fig. 11 and Fig. 14
for Model II (in comparison with Figs. 10 and 13 for Model I).
The dependence of the growth rate on the magnetic field strength
is qualitatively similar for Models I and II. In particular, it be-
comes constant for γ = 1, but declines for γ = 5/3 as the field
increases. The increase of zB with B0 is, however, less strong for
Model II.

Snapshots of Bz from MFS for γ = 5/3 and β0 = 0.05 at
different times for Model I are shown in Fig. 16. Comparison
with the results of MFS for Model II (see Fig. 17) shows that

Model II fits the DNS better. This is also seen by comparing
Fig. 17 with Fig. 5. However, our basic conclusions formulated
in this paper are not affected.

5. Conclusions

The present work has demonstrated that in a polytropic layer,
both in MFS and DNS, NEMPI develops primarily in the upper-
most layers, provided the mean magnetic field is not too strong.
If the field gets stronger, NEMPI can still develop, but the mag-
netic structures now occur at greater depths and the growth rate
of NEMPI is lower. However, at some point when the mag-
netic field gets too strong, NEMPI is suppressed in the case of
a polytropic layer, while it would still operate in the isothermal
case, provided the domain is deep enough. The slow down of
NEMPI is not directly a consequence of a longer turnover time
at greater depths, but it is related to stratification being too weak
for NEMPI to be excited.

By and large, the scaling relations determined previously for
isothermal layers with constant scale height still seem to apply
locally to polytropic layers with variable scale heights. In par-
ticular, the horizontal scale of structures was previously deter-
mined to be about 6–8 Hρ (Kemel et al. 2013; Brandenburg et al.
2014). Looking now at Fig. 4, we see that for β0 = 0.02 and
γ = 5/3, the structures have a wavelength of ≈3 Hρ0, but this is
at a depth where Hρ ≈ 0.3 Hρ0. Thus, locally we have a wave-
length of ≈10 Hρ. The situation is similar in the next panel of
Fig. 4 where the wavelength is ≈6 Hρ0, and the structures are at
a depth where Hρ ≈ 1.5 Hρ0, so locally we have a wavelength
of ≈9 Hρ. We can therefore conclude that our earlier results for
isothermal layers can still be applied locally to polytropic layers.

A new aspect, however, that was not yet anticipated at the
time, concerns the importance of NEMPI for vertical fields.
While NEMPI with horizontal magnetic field still leads to down-
flows in the nonlinear regime (the “potato-sack” effect), our
present work now confirms that structures consisting of vertical

A2, page 10 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322315&pdf_id=16
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322315&pdf_id=17


I. R. Losada et al.: Magnetic flux concentrations in a polytropic atmosphere

fields do not sink, but reach a strength comparable to or in excess
of the equipartition value (Brandenburg et al. 2013, 2014). This
makes NEMPI a viable mechanism for spontaneously produc-
ing magnetic spots in the surface layers. Our present study
therefore supports ideas about a shallow origin for active re-
gions and sunspots (Brandenburg 2005; Brandenburg et al. 2010;
Kitiashvili et al. 2010; Stein & Nordlund 2012), contrary to com-
mon thinking that sunspots form near the bottom of the con-
vective zone (Parker 1975; Spiegel & Weiss 1980; D’Silva &
Choudhuri 1993). More specifically, the studies of Losada et al.
(2013) point toward the possibility that magnetic flux concentra-
tions form in the top 6 Mm, i.e., in the upper part of the super-
granulation layer.

There are obviously many other issues of NEMPI that need
to be understood before it can be applied in a meaningful way
to the formation of active regions and sunspots. One question is
whether the hydrogen ionization layer and the resulting H− opac-
ity in the upper layers of the Sun are important in provid-
ing a sharp temperature drop and whether this would enhance
the growth rate of NEMPI, just like strong density stratifica-
tion does. Another important question concerns the relevance
of a radiating surface, which also enhances the density contrast.
Finally, of course, one needs to verify that the assumption of
forced turbulence is useful in representing stellar convection.
Many groups have considered magnetic flux concentrations us-
ing realistic turbulent convection (Kitiashvili et al. 2010; Rempel
2011; Stein & Nordlund 2012). However, only at sufficiently
large resolution can one expect strong enough scale separation
between the scale of the smallest eddies and the size of mag-
netic structures. That is why forced turbulence has an advantage
over convection. Ultimately, however, such assumptions should
no longer be necessary. On the other hand, if scale separation
is poor, our present parameterization might no longer be accu-
rate enough, and one would need to replace the multiplication
between qp and B2 in Eq. (25) by a convolution. This possi-
bility is fairly speculative and requires a separate investigation.
Nevertheless, in spite of these issues, it is important to empha-
size that the qualitative agreement between DNS and MFS is
already surprisingly good.
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