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ABSTRACT

Using simulations of slowly rotating stratified turbulence, we show that the α effect responsible for the generation
of astrophysical magnetic fields is proportional to the logarithmic gradient of kinetic energy density rather than
that of momentum, as was previously thought. This result is in agreement with a new analytic theory developed
in this paper for large Reynolds numbers and slow rotation. Thus, the contribution of density stratification is less
important than that of turbulent velocity. The α effect and other turbulent transport coefficients are determined by
means of the test-field method. In addition to forced turbulence, we also investigate supernova-driven turbulence
and stellar convection. In some cases (intermediate rotation rate for forced turbulence, convection with intermediate
temperature stratification, and supernova-driven turbulence), we find that the contribution of density stratification
might be even less important than suggested by the analytic theory.
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1. INTRODUCTION

Turbulent dynamos occur in many astrophysical situations.
They tend to develop large-scale magnetic structures in space
and time that are generally understood in terms of mean-field
dynamo theory (e.g., Moffatt 1978; Parker 1979; Krause &
Rädler 1980; Zeldovich et al. 1983; Ruzmaikin et al. 1988;
Rüdiger & Hollerbach 2004; Brandenburg & Subramanian
2005). Central to this theory is the α effect, which denotes a
contribution to the mean electromotive force that is given by
a pseudo-scalar α multiplying the mean magnetic field. Such
a pseudo-scalar can be the result of rotation, �, combined
with stratification of density and/or turbulence intensity, ∇ρ
and/or ∇urms, respectively. Here, ρ is the mean gas density and
urms = (u2)1/2 is the rms value of the turbulent velocity, u.

There have been a number of analytic studies quantifying the
effects of rotating stratified turbulence on the mean electromo-
tive force (Krause & Rädler 1980; Kichatinov 1991; Rüdiger &
Kichatinov 1993; Kitchatinov et al. 1994; Rädler et al. 2003;
Kleeorin & Rogachevskii 2003). In particular, it was found,
using the quasi-linear approach (or second-order correlation ap-
proximation), that the diagonal components of the α tensor for
slow rotation rate (or small Coriolis numbers) are given by
(Steenbeck et al. 1966; Krause & Rädler 1980)

α ≈ −�2
α� · ∇ ln(ρ urms), (1)

where �α = τ0urms is a relevant length scale and τ0 is the
characteristic turbulent time related to the turnover time.

In the solar convective zone the mean fluid density ρ changes
by seven orders of magnitude, while the turbulent kinetic energy
(≈ρu2

rms/2) changes by only three orders of magnitudes and,
according to stellar mixing length theory (Vitense 1953), ρ u3

rms
would be approximately constant in the solar convective zone.
This issue has become timely because there is a new numerical
technique that allows different proposals to be examined with
sufficient accuracy. The so-called test-field method (Schrinner
et al. 2005, 2007) allows one to determine all the relevant

turbulent transport coefficients in the expression for the mean
electromotive force without the restrictions of some of the
analytic approaches such as the quasi-linear approach, the path-
integral approach or the τ approach. With the test-field method
one solves sets of equations for the small-scale fields resulting
from different prescribed mean fields—the test fields. These
equations resemble the usual induction equation, except that
they contain an additional inhomogeneous term.

This method is quite powerful because it has been shown to
be rather accurate and it gives not only the tensor coefficients
of α effect and turbulent diffusivity, but it also allows the
scale dependence to be determined, which means that these
coefficients are actually integral kernels that allow the effects of
neighboring points in space and time to be taken into account.
For details regarding scale separation, see Brandenburg et al.
(2008) and Hubbard & Brandenburg (2009). We apply this
method to numerical simulations of forced turbulence in a stably
stratified layer in the presence of rotation and a prescribed
vertical dependence of the turbulence intensity. We also use
test-field method in simulations of turbulent convection and
supernova-driven turbulence of the interstellar medium (ISM).

The goal of the present paper is to determine the correct
scaling of the α effect with mean density and rms velocity for
slow rotation, i.e., when the Coriolis number Co ≡ 2Ωτ0 is
much less than unity, and large Reynolds numbers. In addition
to the parameter �α , we determine the exponent σ in the diagonal
components of the α tensor,

α = −�2
α� · ∇ ln(ρσurms). (2)

Such an ansatz was also made by Rüdiger & Kichatinov (1993),
who found that in the high conductivity limit, σ = 3/2 for
slow rotation and σ = 1 for rapid rotation. However, as we will
show in this paper, both numerically (for forced turbulence and
for turbulent convection with stronger temperature stratification
and overshoot layer) as well as analytically, our results for slow
rotation and large fluid and magnetic Reynolds numbers are

1

http://dx.doi.org/10.1088/0004-637X/762/2/127


The Astrophysical Journal, 762:127 (11pp), 2013 January 10 Brandenburg et al.

consistent with σ = 1/2. In some simulations we also found
σ = 1/3.

2. THEORETICAL PREDICTIONS

We consider the kinematic problem, i.e., we neglect the
feedback of the magnetic field on the turbulent fluid flow.
We use a mean-field approach whereby velocity, pressure,
and magnetic field are separated into mean and fluctuating
parts. Unlike in earlier derivations, and to maintain maximum
generality, we allow the characteristic scales of the mean
fluid density, ρ, the turbulent kinetic energy, ρu2

rms/2, and the
variations of ρ u3

rms to be different. We also assume vanishing
mean motion. The strategy of our analytic derivation is to
determine the Ω dependencies of the second moments for
the velocity ui(t, x) uj (t, x) and for the cross-helicity tensor
bi(t, x) uj (t, x), where b are fluctuations of magnetic field
produced by tangling of the large-scale field. To this end we use
the equations for fluctuations of velocity and magnetic field in
rotating turbulence, which are obtained by subtracting equations
for the mean fields from the corresponding equations for the
actual (mean plus fluctuating) fields.

2.1. Governing Equations

The equations for the fluctuations of velocity and magnetic
fields are given by

∂u
∂t

= −c2
s
∇ρ ′

ρ
+ 2u × � + N̂ (u), (3)

∂b
∂t

= (B · ∇)u − (u · ∇)B − B(∇ · u) + N̂ (b), (4)

∂ρ ′

∂t
= −∇ · (ρu) − ∇ · (ρ ′u), (5)

where Equation (3) is written in a reference frame rotating
with constant angular velocity �, and ρ ′ = ρ − ρ is the
fluctuating density. We consider an isothermal equation of state,
p = c2

s ρ, so that the density scale height is then constant. Here,
cs = constant is the sound speed, B is the mean magnetic field,
p and ρ are the full (mean plus fluctuating) fluid pressure and
density, respectively. The terms N̂ (u) and N̂ (b), which include
nonlinear and molecular viscous and dissipative terms, are given
by

N̂ (u) = (u · ∇)u − (u · ∇)u + f ν(u), (6)

N̂ (b) = ∇ ×
(

u × b − u × b − η∇ × b
)

, (7)

where ρ f ν(u) is the molecular viscous force and η is the
magnetic diffusion due to the electrical conductivity of the fluid.

2.2. The Derivation Procedure

To study rotating turbulence we perform derivations which
include the following steps:

1. use new variables (V , H) and perform derivations which
include the fluctuations of rescaled velocity V = ρσ u and
the mean magnetic field H = B/ρσ ;

2. derive equations for the second moments of the velocity
fluctuations Vi Vj and the cross-helicity tensor bi Vj in k
space;

3. apply the spectral closure, e.g., the spectral τ approximation
(Pouquet et al. 1976; Kleeorin et al. 1990) for large fluid and
magnetic Reynolds numbers and solve the derived second-
moment equations in k space;

4. return to physical space to obtain formulae for the Reynolds
stress and the cross-helicity tensor as functions of Ω.
The resulting equations allow us then to obtain the Ω
dependence of the α effect. In these derivations we only
take into account effects that are linear in both λ and �,
where λ = −∇ ln ρ.

To exclude the pressure term from Equation (3) we take twice
the curl of the momentum equation written in the new variables.
The equations which follow from Equations (3) and (4) are
given by

∂

∂t
[∇(λ)(λ · V ) − (∇(λ))2V ] = 2(� · ∇(λ))

× (∇(λ) × V ) + 2(� × ∇(λ))(∇(λ) · V ),

+ N̂ (V ) (8)

∂b
∂t

= (H · ∇(λ))V − (V · ∇(λ))H

+ (2σ − 1)(∇(λ) · V )H + N̂ (b), (9)

where ∇(λ) = ∇ + σλ. Furthermore, N̂ (V ) = ∇×(∇×N̂ (u))
is the nonlinear term. We consider two cases: (1) low Mach
numbers, where the fluid velocity fluctuations V satisfy the
equation ∇ · V = (1 − σ )(V ·λ) in the anelastic approximation
and (2) fluid flow with arbitrary Mach numbers, where velocity
fluctuations satisfy continuity equation (Equation (5)). To derive
Equation (8) we use the identities given in the Appendix.

2.3. Two-scale Approach

We apply the standard two-scale approach with slow and fast
variables, e.g., a correlation function,

Vi(x)Vj ( y) =
∫ ∫

dk1 dk2 Vi(k1)Vj (k2) exp{i(k1 · x

+k2· y)} =
∫ ∫

dk d K fij (k,K) exp(ik · r + i K · R)

=
∫

dk fij (k, R) exp(ik · r)

(see, e.g., Roberts & Soward 1975). Hereafter we omit the
argument t in the correlation functions, fij (k, R) = L̂(Vi;Vj ),
where

L̂(a; c) =
∫

a
(
k + 1

2 K
)
c
( − k + 1

2 K
)

exp (i K · R) d K ,

and we have introduced the new variables R = (x + y)/2,
r = x − y, K = k1 + k2, k = (k1 − k2)/2. The variables
R and K correspond to large scales, while r and k correspond
to small scales. This implies that we assume that there exists
a separation of scales, i.e., the maximum scale of turbulent
motions �0 is much smaller than the characteristic scale LB of
inhomogeneity of the mean magnetic field.
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2.4. Equations for the Second Moments

Using Equations (8) and (9) written in k space, we derive
equations for the following correlation functions: fij (k, K ) =
Vi(t, k1)Vj (t, k2) and gij (k, K ) = bi(t, k1)Vj (t, k2). The equa-
tions for these correlation functions are given by

∂fij

∂t
= −2Ωl

[
εipqΛ(1)

pl fqj + εjpqΛ(2)
pl fiq +

iλn

k2
(εjlqkqfin

− εilqkqfnj + εnpqkpl(kjfiq − kifqj ))
]

+ I
f

ij + N̂fij , (10)

∂gij

∂t
= −2Ωl

[
εjpqΛ(2)

pl giq +
iλn

k2
(εjlqkqgin

+ kεnpqkplj giq)
]

+ i(�(1) · H)fij − Hiλnfnj

+ I
g

ij + N̂gij , (11)

where kij = kikj /k2, �(1) = k1 − iσλ, and similarly for �(2),
Λ(1)

mn = Λ(1)
m Λ(1)

n /(�(1))2, and similarly for Λ(2)
mn. The source terms

I
f

ij and I
g

ij in Equations (10) and (11) contain large-scale spatial

derivatives of H , which describe the contributions to turbulent
diffusion (I f

ij and I
g

ij are given by Equations (A4) and (A6) in

Rogachevskii & Kleeorin (2004)). The terms N̂fij and N̂gij are
related to the third-order moments that are due to the nonlinear
terms and are given by

N̂fij = Pim(�(1))N̂ [Vm(k1)]Vj (k2)

+ Vi(k1)Pjm(�(2))N̂ [Vm(k2)],

N̂gij = N̂ [bi(k1)]Vj (k2) + bi(k1)Pjm(�(2))N̂ [Vm(k2)],

where Pij (�) = δij − Λij and � = k − iσλ.

2.5. τ Approach

The equations for the second-order moments contain higher-
order moments and a closure problem arises (Orszag 1970;
Monin & Yaglom 1975; McComb 1990). We apply the spectral
τ approximation or the third-order closure procedure (Pouquet
et al. 1976; Kleeorin et al. 1990, 1996; Rogachevskii &
Kleeorin 2004). The spectral τ approximation postulates that
the deviations of the third-order-moment terms, N̂fij (k), from
the contributions to these terms afforded by the background
turbulence, N̂f

(0)
ij (k), are expressed through similar deviations

of the second moments, fij (k) − f
(0)
ij (k), i.e.,

N̂fij (k) − N̂f
(0)
ij (k) = −fij (k) − f

(0)
ij (k)

τr (k)
, (12)

and similarly for the tensor N̂gij . Here the superscript (0) cor-
responds to the background turbulence (i.e., non-rotating turbu-
lence with a zero mean magnetic field), τr (k) is the characteristic
relaxation time of the statistical moments, which can be iden-
tified with the correlation time τ (k) of the turbulent velocity
field for large Reynolds numbers. We also take into account that
g

(0)
ij (k) = 0. We apply the τ approximation (Equation (12)) only

to study the deviations from the background turbulence. The

statistical properties of the background turbulence are assumed
to be known (see below). A justification for the τ approxima-
tion in different situations has been obtained through numerical
simulations and analytical studies (see, e.g., Brandenburg &
Subramanian 2005; Rogachevskii et al. 2011).

2.6. Model for the Background Compressible Turbulence

We use the following model for the background turbulence:

f
(0)
ij ≡ V

(0)
i (k1) V

(0)
j (k2) =

{
Λ(1)

j Λ(2)
i − δij �(1) · �(2)

+ i(λikj − λjki) + μc

[
ki kj +

i

2
(ki∇j

− kj∇i)
]} E(k)

8π k4(1 + μc/2)
V 2 + O

(
�2

0λ
2
)
, (13)

where

μc = (∇ · u)2/(∇ × u)2 < 1 (14)

is the degree of compressibility of the turbulent velocity field,
the terms ∝ μc take into account finite Mach numbers com-
pressibility effects, τ (k) = 2τ0τ̄ (k), E(k) = −dτ̄ (k)/dk,
τ̄ (k) = (k/k0)1−q , 1 < q < 3 is the exponent of the spec-
trum function (q = 5/3 for Kolmogorov spectrum), k0 = �−1

0 ,
�0 is the maximum scale of turbulent motions, and u0 is the
characteristic turbulent velocity at scale �0. The motion in the
background turbulence is assumed to be non-helical. For low
Mach numbers (μc � 1), Equation (13) satisfies to the condi-
tion: ∇ · V = (1 − σ )(V · λ).

2.7. Contributions to the α Effect Caused by Rotation

Since our goal is to determine the α effect, we solve Equa-
tions (10) and (11) neglecting the sources I

f

ij and I
g

ij with large-

scale spatial derivatives of H . We subtract from Equations (10)
and (11) the corresponding equations written for the background
turbulence, and use the spectral τ approximation. We only take
into account the effects which are linear in λ and in �. We also
assume that the characteristic time of variation of the second
moments is substantially larger than the correlation time τ (k)
for all turbulence scales. This allows us to get a stationary solu-
tion for Equations (10) and (11) for the second-order moments.
Using this solution we determine the contributions to the mean
electromotive force caused by rotating turbulence:

Em = εmji

∫
bi(k) Vj (−k) dk = εmji

∫
gij (k) dk

= −2Ωlτ
2εmji

∫
dk

[
3i(�(1) · H)εjpqΛ(2)

pl f
(0)
iq

−Hiλnkpl

(
εjpqf

(0)
nq + εnpqf

(0)
qj

) − 3
λn

k2
(k · H)

× (
εjlqkqf

(0)
in + εnpqkjplf

(0)
iq

)]
. (15)

After performing the integration in k space, we obtain

E i = 4�2
0

15
Bj [(Ωi∇j + Ωj∇i − 4δij� · ∇) ln V 2

+ (2σ − 1)(Ωiλj + Ωjλi − 4δij� · λ)

+
1

2
μc(Ωjλi − 4Ωiλj + δij� · λ)]. (16)
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For low Mach numbers (μc � 1) and for σ = 1/2, the α

tensor depends only on ∇ ln V 2, i.e.,

αij = 4�2
0

15
(Ωi∇j + Ωj∇i − 4δij� · ∇) ln V 2, (17)

where we used E i = aijBj , and αij ≡ (aij + aji)/2 is
the symmetric part of aij. Furthermore, the pumping velocity,
γi ≡ (1/2)εinmamn, is independent of rotation for small Coriolis
numbers because the rotational contribution to the pumping ve-
locity vanishes. In this case the pumping velocity is determined
only by the inhomogeneity of turbulent magnetic diffusivity.

For arbitrary Mach numbers and when

σ = 1

2
+

μc

16
, (18)

the diagonal part of the α effect depends only on ∇ ln V 2, i.e.,

α = −16�2
0

15
� · ∇ ln V 2. (19)

The latter equation can be rewritten in the following form:

α = −32�2
0

15
� · ∇ ln (ρσ urms) , (20)

where σ is determined by Equation (18). In the next section we
will determine the exponent σ from numerical simulations.

3. NUMERICAL SIMULATIONS

We now aim to explore the universality of the derived scaling
by comparison with results from very different astrophysical
environments. To do this, we performed three quite different
types of simulations of:

1. artificially forced turbulence of a rotating stratified gas,
where the density scale height is constant and the turbulence
is driven by plane wave forcing with a given wavenumber;

2. supernova-driven interstellar turbulence in a vertically strat-
ified local Cartesian model employing the shearing sheet
approximation;

3. turbulent convection with and without overshoot layers.

The advantage of the first approach is that it allows us to
impose a well-defined vertical gradient of turbulent intensity,
i.e., of the rms velocity of the turbulence such that ∇ ln urms is
approximately constant over a certain z interval, excluding the
region near the vertical boundaries. Naturally, the physically
more complex scenarios (2) and (3) are less well controlled but
allow to demonstrate the existence of the α effect scaling in
applications of direct interest to the astrophysical community.
We use different variants of the test-field method to measure the
α effect (and other turbulent transport coefficients).

3.1. Basic Equations

In the following we consider simulations where the turbulence
is either driven by a forcing with a function f , in which case
we assume an isothermal gas with constant sound speed cs, or
it is driven through heating and cooling either by supernovae in
the ISM or through convection with heating from below. In all
cases, we solve the equations for the velocity, U , and the density

ρ in the reference frame rotating with constant angular velocity
� and linear shear rate S:

ρ
DU
Dt

= −∇p + ρ( f Ω + f + g) + ∇ · (2νρS), (21)

∂ρ

∂t
= −∇ · (ρU), (22)

where f Ω = (2ΩUy, (S − 2Ω)Ux, 0) is a combined Cori-
olis and tidal acceleration for Ω pointing in the z di-
rection and a linear shear flow US = (0, Sx, 0), ν is
the kinematic viscosity, f is a forcing function, g is grav-
ity, and Sij = (∇jUi + ∇iUj )/2 − δij∇ · U/3 is the
traceless rate-of-strain tensor, not to be confused with the shear
rate S, and D/Dt = ∂/∂t + (U + US) ·∇ is the advective deriva-
tive with respect to the total (including shearing) velocity. In
the isothermal case, the pressure is given by p = ρc2

s , while in
all other cases we also solve an energy equation, for example
in terms of the specific entropy s = cv ln p − cp ln ρ, where
cp and cv are respectively the specific heats at constant pressure
and constant volume, their ratio γ = cp/cv is chosen to be 5/3,
and s obeys

ρT
Ds

Dt
= −∇Frad + ρΓ − ρ2Λ̃ + 2νρS2, (23)

where the temperature T obeys (cp − cv)T = p/ρ, Frad is the
radiative flux, Γ is a heating function, and Λ̃ is a cooling function.
In the isothermal case, the entropy equation is not used, and the
forcing function f consists of random, white-in-time, plane,
non-polarized waves with a certain average wavenumber, kf .

The simulations are performed with the Pencil Code
(http://pencil-code.googlecode.com) which uses sixth-order ex-
plicit finite differences in space and a third-order accurate time
stepping method (Brandenburg & Dobler 2002). The simula-
tions of supernova-driven turbulence in the ISM have been per-
formed using the Nirvana-III code (Ziegler 2004) with explicit
viscosity and resistivity.

3.2. The Test-field Method

We apply the kinematic test-field method (see, e.g., Schrinner
et al. 2005, 2007; Brandenburg et al. 2008) to determine all
relevant turbulent transport coefficients in the general relation

E i = αijBj + ηijkBj,k, (24)

where Bj,k = ∇kBj is the magnetic gradient tensor. The test-
field method works with a set of test fields BT , where the
superscript T stands for the different test fields. The corre-
sponding mean electromotive forces ET are calculated from
ET = u × bT , where bT = ∇ × aT with

∂aT

∂t
= U × bT + u × BT + (u × bT )′ + η∇2aT . (25)

Here, U and u taken from the solutions of the momentum
equation. In the case with shear, we replace ∂aT /∂t by ∂aT /∂t +
US ·∇aT +SaT

y x̂. On the top and bottom boundaries we assume
perfect conductors, and for the x and y directions periodic
boundary conditions. These small-scale fields are then used to
determine the electromotive force ET corresponding to the test

4
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field BT . The number and form of the test fields used depends
on the problem at hand.

We either use planar (xy) averages, which depend only
on z and t (hereafter referred to as test-field method I), or,
alternatively, we assume that the mean field also varies in the x
and y directions, but that the turbulence is homogeneous in those
two directions, and that the z direction constitutes a preferred
direction of the turbulence (test-field method II). In the former
case, I, only the x and y components of E are important for
dynamo action, and the magnetic gradient tensor has only two
non-vanishing components which can be expressed in terms
of the components of the mean current density alone. We put
J = ∇ × B such that J/μ0, with μ0 being the magnetic
permeability, is the mean current density. Thus, we have

E i = αijBj − ηijJ j , (26)

with i and j being either 1 or 2.
Alternatively, in case II, the mean electromotive force is

assumed to be characterized by only one preferred direction
which we describe by the unit vector ê. Then, E can be
represented in the form

E = α⊥ B + (α‖ − α⊥)(ê · B)ê + γ ê × B

− η⊥ J − (η‖ − η⊥)(ê · J)ê − δ ê × J (27)

− κ⊥ K − (κ‖ − κ⊥)(ê · K )ê − μê × K

with nine coefficients α⊥, α‖, . . . , μ. Like J = ∇ × B,
also K is determined by the gradient tensor ∇B. While J
is given by its antisymmetric part, K is a vector defined by
K = ê · (∇B)S with (∇B)S being the symmetric part of
∇B. For details of this method, referred to below as test-field
method II, see Brandenburg et al. (2012). Equation (2) is
expected to apply to α⊥, while α‖ can, in certain cases, have
opposite sign (Brandenburg et al. 1990; Ferrière 1992; Rüdiger
& Kichatinov 1993). This is why we associate in the following
α in this equation with the α⊥ defined in Equation (27).

Errors are estimated by dividing the time series into three
equally long parts and computing time averages for each of
them. The largest departure from the time average computed
over the entire time series represents an estimate of the error.

3.3. Simulations of Forced Turbulence

We begin by studying forced turbulence. We consider a
domain of size Lx × Ly × Lz in Cartesian coordinates (x, y, z),
with periodic boundary conditions in the x and y directions and
stress-free, perfectly conducting boundaries at top and bottom,
z = ±Lz/2. The gravitational acceleration, g = (0, 0,−g),
is chosen such that the density scale height Hρ = c2

s /g is
small compared with the vertical extent of the domain, i.e.,
Lz. The smallest wavenumber that fits into the cubic domain of
size L3 is k1 = 2π/L, so the density contrast between bottom
and top is exp(2π ) ≈ 535 and the mean density varies like
ρ = ρ0 exp(−z/Hρ), where ρ0 is a constant. In all cases, we
use a scale separation ratio kf /k1 = 5, a fluid Reynolds number
Re ≡ urms/νkf between 60 and 100, a magnetic Prandtl number
PrM = ν/η of unity. We use a numerical resolution of 1283

mesh points for all forced turbulence runs.
We perform simulations for different values of the rms

velocity gradient, λ(u) ≡ d ln urms/dz, but fixed logarithmic
density gradient, d ln ρ/dz ≡ −λ. Thus, we have

α⊥ = �2
αΩλ(σ − λ(u)/λ), (28)

Figure 1. Comparison of α⊥ (solid) and α‖ (dashed) for the runs with λ(u) = 0.33
(upper panel) and 0.61 (lower panel).

(A color version of this figure is available in the online journal.)

i.e., σ can be obtained conveniently as the value of λ(u)/λ for
which α vanishes. By arranging the turbulence such that λ(u)

and λ are approximately independent of z, the value of α is
also approximately constant. In that case, however, all the other
turbulent transport coefficients are z-dependent. However, by
normalizing γ by urms/6 and the other coefficients by ηt0(z) =
urms(z)/3kf , we obtain non-dimensional quantities that are
approximately independent of z. We denote the corresponding
non-dimensional quantities by a tilde and quote in the following
their average values over an interval z1 � z � z2, in which these
ratios are approximately constant.

In Figure 1, we plot the normalized profiles of α̃⊥ ≡
α⊥k2

f /k1Ω and α̃‖ ≡ α‖k2
f /k1Ω as functions of z. Note that

within the range z1 � z � z2 with k1z1 = −1 and k1z2 = 2,
both functions are approximately constant. For λ(u) � 0.5, they
are of opposite sign; see the lower panel of Figure 1 and Table 1.
As discussed above, this behavior has been seen and interpreted
in earlier calculations (Brandenburg et al. 1990; Ferrière 1992;
Rüdiger & Kichatinov 1993).

In Figure 2 we plot the dependence of the normalized mean
values of α⊥ on the value of λ(u) for two values of Co. The value
of σ can then be read off as the zero of that graph. We find
σ ≈ 1/2 for low values of Co, and a somewhat smaller value
(σ ≈ 1/3) for larger values of Co.

In Figure 3 we show the z-dependence of the remaining seven
normalized coefficients. They are all approximately independent
of z within the same range z1 � z � z2 as before. In Figure 4
we show the scaling of these turbulent transport coefficients
(including now also α̃‖) with λ(u). The results for α‖ and γ
suggest a dependence proportional to the gradient of ρσi urms
with σα‖ between 0 and 0.3 for α‖ and σγ between 0.7 and 1
for γ . On the other hand, all the other coefficients seem to be
independent of λ and we find β̃‖ ≈ β̃⊥ ≈ 1.1, δ̃ ≈ 0, κ̃‖ ≈ −0.1,
κ̃⊥ ≈ −0.4, and μ̃ ≈ −0.05. These results are quantitatively
and qualitatively in agreement with those of Brandenburg et al.
(2012). The fact that δ̃ turned out to be essentially zero was
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Table 1
Basic Parameters and Turbulent Transport Coefficients for the Forced Turbulence Simulations

ReM Co λ(u) α⊥k2
f /Ωk1 α‖k2

f /Ωk1 γ /ηt0(z)k1 β⊥/ηt0(z) β‖/ηt0(z) δ/ηt0(z) κ⊥/ηt0(z) κ‖/ηt0(z) μ/ηt0(z)

70 0.14 0.13 0.47 ± 0.16 0.1 ± 0.1 −0.1 ± 0.1 1.5 ± 0.2 2.1 ± 0.3 −0.2 ± 0.0 −0.1 ± 0.1 −0.6 ± 0.1 −1.8 ± 0.4
56 0.17 0.25 0.82 ± 0.10 0.7 ± 0.1 0.0 ± 0.1 1.1 ± 0.1 1.0 ± 0.1 0.0 ± 0.0 −0.2 ± 0.0 −0.7 ± 0.1 −0.1 ± 0.1
62 0.16 0.33 0.57 ± 0.03 0.5 ± 0.1 −0.1 ± 0.1 1.1 ± 0.2 1.2 ± 0.2 0.0 ± 0.0 −0.1 ± 0.0 −0.6 ± 0.1 −0.3 ± 0.2
47 0.20 0.46 0.32 ± 0.26 0.2 ± 0.3 −0.2 ± 0.1 1.1 ± 0.2 1.0 ± 0.2 −0.0 ± 0.0 −0.1 ± 0.0 −0.4 ± 0.0 −0.1 ± 0.0
65 0.15 0.61 −0.42 ± 0.06 0.1 ± 0.5 −0.4 ± 0.0 1.1 ± 0.1 1.2 ± 0.1 −0.1 ± 0.1 −0.1 ± 0.1 −0.4 ± 0.1 −0.3 ± 0.2
59 0.16 0.97 −1.29 ± 0.26 −0.2 ± 0.5 −0.6 ± 0.2 0.8 ± 0.3 0.7 ± 0.3 −0.1 ± 0.0 −0.1 ± 0.1 −0.3 ± 0.1 0.1 ± 0.1

108 0.36 0.10 0.20 ± 0.02 −0.1 ± 0.1 0.0 ± 0.0 0.9 ± 0.1 1.6 ± 0.2 0.1 ± 0.0 0.1 ± 0.0 −0.5 ± 0.1 −1.6 ± 0.2
93 0.41 0.14 0.12 ± 0.04 −0.1 ± 0.0 −0.0 ± 0.0 1.0 ± 0.1 2.2 ± 0.4 0.0 ± 0.0 0.1 ± 0.0 −0.3 ± 0.1 −1.7 ± 0.4
75 0.51 0.35 0.30 ± 0.05 0.3 ± 0.0 −0.2 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 0.0 ± 0.0 −0.3 ± 0.0 −1.1 ± 0.0 0.2 ± 0.0
74 0.52 0.59 −0.36 ± 0.02 0.2 ± 0.1 −0.7 ± 0.1 1.2 ± 0.0 0.8 ± 0.0 −0.3 ± 0.1 −0.2 ± 0.1 −0.9 ± 0.0 0.3 ± 0.0

Figure 2. Dependence of the normalized mean values of α⊥ on the value of λ(u)

for Co = 0.15 (upper panel) and 0.4 (lower panel), giving respectively σ ≈ 1/2
and ≈1/3 as the zeros in each graph.

addressed earlier (Brandenburg et al. 2012), where it was found
that significant values are only found for scale separation ratios
around unity, i.e., when the scale of the mean field is comparable
to that of the turbulent eddies.

3.4. The Case of Supernova-driven ISM Turbulence

We now turn to simulations of supernova-driven ISM turbu-
lence (see Gressel et al. 2008a, 2008b for a detailed description
of the model), similar to those of Korpi et al. (1999) and Gent
et al. (2012), but extending to larger box sizes, thus allowing for
better scale separation. In these simulations, expansion waves
are driven via localized injection of thermal energy, ΓSN(x, t).
Additionally, optically thin radiative cooling with a realistic
cooling function Λ̃(T ) and heating ρΓ(z) lead to a segregation
of the system into multiple ISM phases.

Here we solve the visco-resistive compressible MHD
equations (supplemented by a total energy equation), using

Figure 3. Transport coefficients for the run with λ(u) = 0.61.

(A color version of this figure is available in the online journal.)

the Nirvana-III code (Ziegler 2004); for the full set of equa-
tions, we refer the reader to Equations (2.1) in Gressel (2010).
For the present run, we chose a resolution of 128 × 128 × 512
mesh points, and apply a value of PrM = 2.5. The fluid Reynolds
number, defined as Re ≡ urms �0/(2πν), varies within the do-
main and takes values Re � 70–165, which is somewhat larger
than for the forced turbulence case, where �0 = 2π/kf . The
Coriolis number Co ≡ 2Ωτ0 is here � 0.24.

Despite the aforementioned differences, the basic properties
of the turbulence producing an α effect are in fact quite similar:
rotation of the system together with stratification in the mean
density and turbulence amplitude. Notably, the ISM simulations
are strongly compressible with peak Mach numbers of up to
10, corresponding to a typical value of μc � 1.9, and with

6
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Figure 4. Results for the other transport coefficients for Co = 0.15.

(A color version of this figure is available in the online journal.)

peak values up to five. We note that the ISM simulations also
include shear with S = −Ω, which may affect the production
of vorticity.

To obtain an estimate for σ from the time series of a
single simulation run, we apply a method distinct from the one
described above: we treat the αyy(z) profile (inferred with test-
field method I) as the data to be modeled and obtain error
estimates by means of the standard deviation within four equal
sub-intervals in time (see gray line and shaded areas in Figure 5).
We then compute time averages of the profiles for ∇ ln ρ
and ∇ ln urms (here without error estimates), from which we
compute a model prediction for αyy(z) based on the expression

αyy = −τ 2
αu2

rms � · ∇ ln (ρσurms) , (29)

where we have assumed that �α can be replaced by ταurms(z),
with urms(z) being the z-dependent rms velocity and τα (assumed
independent of z) is a characteristic timescale related to the α
effect. We apply a least-square optimization allowing τα and σ as
free parameters. The best-fit model according to Equation (29)
is plotted as a black line in Figure 5, along with the stated values
for τα and σ , and matches well the data within the error bars.

Because we cannot a priori assure that τα is uniform in space,
and because this might affect the precise determination of σ ,
we perform an additional test. We do this by independently es-
timating �0(z) from the two-point velocity correlation function,
computed in horizontal slabs around a given galactic height z,
and time averaged over multiple snapshots. By comparing the

Table 2
Summary of Convection Runs

Run Ra Ta Δρtotal ΔρCZ Overshoot Res.

A 1.3 × 106 3.6 × 105 64 64 − 2563

B 6.1 × 105 6.4 × 103 37 7 + 1283

C 6.1 × 105 6.4 × 103 290 296 + 1283

obtained �0(z) with urms(z), we find that our data are broadly
compatible with a uniform τ0 of about 1.2 Myr. To corroborate
the fit, we compute a likelihood map in the parameter space
spanned by τα and σ and find that the best-fit parameter set is,
in fact, located at the global minimum of the reduced-χ2 map;
see Figure 6. The best-fit value of τα is around 1.9 Myr, which
is indeed compatible with the correlation time τ0.

To conclude this section, we remark that we here find
a somewhat smaller exponent, σ � 1/3, which suggests
that this case deviates from the theoretical prediction. It has,
however, a similar exponent as in our stratified forced turbulence
simulations with larger values of Co. Note that with the
determined value for μc, Equation (18) predicts a value of σ �
0.62, which is a factor two larger than obtained from the fit. The
reason for such discrepancy between the theoretical predictions
and the simulations of supernova-driven ISM turbulence might
be caused by the fact that the theory is developed for simplified
conditions which are different from these simulations.

3.5. Convection-driven Turbulence

Many astrophysical bodies have turbulent convection zones.
Again, rotation and stratification induce helicity into the flow
and therefore drive an α effect. In stellar mixing length theory
(Vitense 1953), one assumes that the temperature fluctuation, T ′,
is proportional to u2

rms, so the convective flux (ρu)′cpT ′ is well
approximated by ρu3

rms, which is also confirmed by simulations
(Brandenburg et al. 2005). In the steady state, the total energy
flux is constant in space, so if most of the flux is carried by
convection, then ρu3

rms = constant and thus its vertical gradient
vanishes. If the scaling of Section 3.4 were also applicable
to this case, i.e., if α ∝ d ln ρu3

rms/dz, then α would vanish.
To investigate this somewhat worrisome possibility, we now
consider a simulation of turbulent convection in a stratified layer,
heated from below by a constant energy flux Frad at the bottom,
where we adopt the diffusion approximation for an optically
thick gas with Frad = −K∇T and radiative conductivity K.
We either consider a constant value of χ = K/(ρcp) with an
enhanced turbulent heat conductivity χt near the surface as in
spherical simulations of Käpylä et al. (2011), or, alternatively,
a piecewise constant profile K(z), such that g · ∇s is positive
in the middle of the domain, which corresponds to convective
instability. The latter setup is described in detail in Käpylä
et al. (2009). The hydrostatic equilibrium value of g · ∇s is
proportional to the Rayleigh number, Ra, which is here around
106; see Käpylä et al. (2008) for the definition. The rotational
influence is here measured in terms of the Taylor number
Ta = (2Ωd2/ν)2, which is 3.6 × 105 for Run A. Summary of
our convection simulations is given in Table 2. Run A without
overshoot layers and Ta = 6.4 × 103 for Runs B and C. Here
d is the thickness of the unstable layer. The density contrast,
ρmax/ρmin, in the run without overshoot layers is 64. The vertical
boundary conditions are stress-free and we use PrM = 0.5 and
ReM = 52 in Run A, and PrM = 1 and ReM = 13 in Runs B and
C. In Figure 7 we give the results for Run A without overshoot
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Figure 5. Time-averaged vertical profile of αyy from ISM turbulence (see Gressel et al. 2011), obtained with the test-field method (gray line). The best-fit model (black
line) with σ = 0.327 is obtained by method of least squares, weighted with the standard deviation (shaded area) in αyy .

Figure 6. Likelihood map based on the reduced-χ2 error estimate, with the best-fit parameter set indicated by the cross.

layers. The Coriolis number varies with height and is about 0.2
in the middle of the layer. The rotation axis is anti-parallel to
the direction of gravity, corresponding thus to a location at the
north pole. The system is therefore isotropic in the xy plane and
we consequently quote the mean between the two horizontal
components, i.e., α = (αxx + αyy)/2, using test-field method I,
which corresponds to α⊥ of test-field method II. Note that in
this simulation, α(z) shows a sinusoidal profile, suggestive of
either weak stratification or effects of boundaries. Given that

density stratification is not small (the density contrast is 64), it
is plausible that the effects of boundaries are here responsible
for the extended regime with negative α.

Our simulation shows that the best fit is obtained for σ ≈
0.75. A possible reason for this unexpected behavior might
be poorer scale separation in convection simulations com-
pared with forced turbulence simulations. The other possibility
is related to the absence of convective overshoot layers dis-
cussed above. This idea is partly confirmed by comparing with

8
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Figure 7. Dependence of α on z for convective turbulence without overshoot layers (gray line, with shaded areas indicating fluctuations) compared with Equation (2)
(black line/dotted) applying σ = 0.76 and �α = 0.41 d, as obtained from a least-square fit within the highlighted interval in z/d.

Figure 8. Same as Figure 7, but the case with overshoot layers and weak temperature stratification, comparing α (gray line, shaded areas) measured via the test-field
method with Equation (2) (black line/dotted), yielding σ = 0.35 and �α = 0.6 d as best-fit values.

Figure 9. Same as Figure 7, but the case with overshoot layers and stronger temperature stratification, comparing α (gray line, shaded areas) with Equation (2) using
σ = 0.48 and �α = 0.56 d (black line/dotted).

simulations that include convective overshoot layers. Now the
best-fit value for σ is found to be about 1/3 when the temperature
stratification is weak (Figure 8) and about 1/2 when the tem-
perature stratification is strong (Figure 9).

4. CONCLUSIONS

While the present investigations confirm the old result that the
α effect in mean-field dynamo theory emerges as the combined

action of rotation and stratification of either density or of
turbulent intensity, they also now point toward a revision of
the standard formula for α. The old formula by Steenbeck
et al. (1966) predicted that the effect of stratification can be
subsumed into a dependence on the gradient of ρurms. This
formula was then generalized by Rüdiger & Kichatinov (1993)
to a dependence on ρσurms, where σ = 3/2 is the high
conductivity limit for slow rotation and σ = 1 for faster rotation.
In contrast, our new results now clearly favor a value of σ

9
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Table 3
Summary of Results for σ

Co ρmax/ρmin σ

Forced turbulence 0.15 535 1/2
0.40 535 1/3

Supernova-driven ISM 0.24 1000 1/3

Convective turbulence (CT) 0.2 64 3/4
CT with overshoot 0.2 37 1/3

0.2 290 1/2

Analytic theory 1/2

below unity. The idealized case of artificially forced turbulence
can most directly be compared to our analytic derivation, since
it agrees in all the assumptions made. The obtained value of
σ = 1/2 agrees very well with the theoretical expectation. A
similar exponent is found for the case of turbulent convection
with higher temperature stratification, but the results seem to
depend sensitively on model parameters (see Table 3). Here
more detailed studies will be required. Moreover, the result
σ = 1/2 arises naturally from analytical considerations for
large fluid and magnetic Reynolds numbers and slow rotation
as the only tenable choice, but those considerations have not
yet been performed for the cases of intermediate and rapid
rotation.

Forced turbulence simulations show a trend toward smaller
values of σ around 1/3 for faster rotation and also in cases of
supernova-driven turbulence. Turbulent convection with over-
shoot also gives 1/3 in one case of moderate temperature strat-
ification with overshoot, while simulations without overshoot
point toward values somewhat larger values around 3/4. How-
ever, in none of the cases we have found that the α effect dimin-
ishes to zero as a result of a trend toward constant convective
flux for which ρu3

rms is approximately constant. In spite of the
considerable scatter of the values of σ found from various sim-
ulations, it is worth emphasizing that in all cases σ is well
below unity. On theoretical grounds, the value 1/2 is to be ex-
pected. Except for the forced turbulence simulations that also
yield 1/2 for slow rotation, all other cases are too complex
to expect agreement with our theory that ignores, for exam-
ple, inhomogeneities of the density scale height and finite scale
separation.
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APPENDIX

IDENTITIES USED FOR THE DERIVATION
OF EQUATION (8)

To derive Equation (8) we use the following identities:

ρσ [∇× (∇×u)]i = [∇(λ)
i ∇(λ)

j − δij (∇(λ))2]Vj , (A1)

ρσ
[
∇×[∇×(u×�)]

]
i
=

[
∇(λ)

i ∇(λ)
j − δij (∇(λ))2

]

× (V×�)j , (A2)

[
∇(λ)

i ∇(λ)
j − δij (∇(λ))2

]
(V×�)j = (�×∇(λ))i(λ·V )

+ (�·∇(λ))(∇(λ)×V )i . (A3)

Equation (A3) is obtained by multiplying the identity

εijmΩm + Ωl(εjmlΛim − εimlΛjm) = εijmΛmlΩl , (A4)

by Λ2Vj , where εijk is the fully antisymmetric Levi-Civita
tensor, Λmn = ΛmΛn/Λ2, and the identity (Equation (A4)) is
valid for arbitrary vectors � and �.
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