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ABSTRACT

Dynamo action owing to helically forced turbulence and large-scale shear is studied using direct numerical
simulations. The resulting magnetic field displays propagating wave-like behavior. This behavior can be modeled
in terms of an αΩ dynamo. In most cases super-equipartition fields are generated. By varying the fraction of
helicity of the turbulence the regeneration of poloidal fields via the helicity effect (corresponding to the α-
effect) is regulated. The saturation level of the magnetic field in the numerical models is consistent with a
linear dependence on the ratio of the fractional helicities of the small and large-scale fields, as predicted by
a simple nonlinear mean-field model. As the magnetic Reynolds number (ReM ) based on the wavenumber
of the energy-carrying eddies is increased from 1 to 180, the cycle frequency of the large-scale field is
found to decrease by a factor of about 6 in cases where the turbulence is fully helical. This is interpreted
in terms of the turbulent magnetic diffusivity, which is found to be only weakly dependent on the ReM .
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1. INTRODUCTION

Several classes of turbulent astrophysical bodies including
stars with outer convection zones and spiral galaxies can con-
tain pronounced large-scale magnetic fields. The scales of these
fields are much larger than the scale of the energy-containing
eddies of the turbulence responsible for producing these fields.
Explaining such fields is an important aim of dynamo theory. To-
day, turbulence simulations begin to reproduce the phenomenon
of large-scale field generation (e.g., Brandenburg 2001;
Brandenburg et al. 2001, 2008a; Yousef et al. 2008a, 2008b;
Käpylä et al. 2008, 2009a; Hughes & Proctor 2009) and allow
making contact with mean-field dynamo theory, which param-
eterizes the effects of small-scale correlations such as kinetic
helicity on the evolution of the large-scale field (Moffatt 1978;
Parker 1979; Krause & Rädler 1980). Indeed, helicity has long
been known to facilitate the production of large-scale fields un-
der the condition that an appropriately defined dynamo number
exceeds a critical value.

Significant progress in the nonlinear formulation of large-
scale dynamo theory has been possible by carefully designing
and comparing simulations of turbulent magnetic fields with
mean-field theory. It is important that both are applied to equiv-
alent situations that are sufficiently simple (simple geometries
and boundary conditions, homogeneity of the turbulence, etc.).
Particularly illuminating is the case with triply-periodic bound-
ary conditions where the energy of the large-scale field can
exceed the energy of the small-scale field by a factor that is
equal to the scale-separation ratio, i.e., the scale of the sys-
tem divided by the scale of the energy-carrying eddies. The
phenomenology of this behavior based on magnetic helicity
conservation was already described by Brandenburg (2001). He
found that full saturation occurs on a resistive timescale follow-
ing a characteristic einschalt or switch-on curve pattern. The
corresponding nonlinear mean-field theory for helical dynamos
was developed by Field & Blackman (2002), and extended to the
case with shear by Blackman & Brandenburg (2002, hereafter
BB02).

One of the important and surprising findings since the early
works of Cattaneo & Vainshtein (1991), Vainshtein & Cattaneo
(1992), Gruzinov & Diamond (1994), and Bhattacharjee &
Yuan (1995) was the realization that the value of the magnetic
Reynolds number, ReM , enters the nonlinear mean-field theory.
Even today simulations have not yet been able to establish
rigorously that the large-scale dynamo solutions obtained so
far are asymptotically independent of the value of ReM . There
are many aspects of this problem; the most important one
is probably the possibility of catastrophic α quenching. This
means that the field cannot saturate to equipartition strength on
a dynamical timescale and that in a closed or periodic domain
fields of equipartition strength can only be reached on a resistive
timescale. It is fairly clear now that catastrophic quenching can
only be alleviated in the presence of magnetic helicity fluxes
(Blackman & Field 2000; Kleeorin et al. 2000). What is less
clear, however, is whether the helicity fluxes themselves depend
on the ReM and on the mean field.

Numerical evidence for large-scale fields in the presence of
boundaries comes from simulations of both forced turbulence
(Brandenburg 2005) as well as convection (Käpylä et al. 2008).
The latter reference was particularly effective in explaining the
reason for the absence of a significant large-scale field in the
simulations of Tobias et al. (2008), even though their boundary
conditions would have allowed a helicity flux. The reason is
that the helicity flux follows the direction of the contours of
constant shear (Brandenburg & Subramanian 2005b), but in
the simulations of Tobias et al. (2008) these contours do not
cross an open surface, because they used periodic boundary
conditions in the lateral direction. When using instead open
boundary conditions in the lateral direction, a strong large-
scale field is obtained (see Figure 17 in Käpylä et al. 2008).
Alternatively, one can use vertical contours of constant shear, as
was done in Käpylä et al. (2008). This was recently confirmed
by Hughes & Proctor (2009) in an independent study.

In the absence of magnetic helicity fluxes and without
boundaries, strong large-scale fields can only be generated on
a resistive timescale (Brandenburg 2001; Brandenburg et al.
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2001). With boundaries, and in the absence of magnetic helicity
fluxes, the strength of large-scale magnetic fields decreases like
Re−1/2

M with increasing values of ReM ; see Brandenburg &
Subramanian (2005b). Recent simulations of rigidly rotating
convection have also been successful in generating a large-
scale dynamo (Käpylä et al. 2009a). There, however, the ReM -
coverage is not sufficient to determine a scaling for the saturation
level. In the following, we focus on the former case using
periodic boundary conditions, so no magnetic helicity can leave
the domain, but large-scale fields can still emerge on a resistive
timescale. We use such a configuration to study the quenching
of the turbulent magnetic diffusivity, ηt, and whether its value
depends on ReM . The quenched value of ηt is crucial for
determining the cycle period in an oscillatory αΩ dynamo.
Indeed, BB02 showed that in the saturated regime and under
the assumption of homogeneity the cycle frequency ωcyc of an
αΩ dynamo can be written as

ωcyc = ηTk2
m, (1)

where ηT = ηt + η is the total (turbulent plus microscopic) mag-
netic diffusivity in the quenched state and km is the wavenumber
of the mean magnetic field. Experiments with nonlinear mean-
field models suggest that Equation (1) remains approximately
valid even in the mildly nonlinear regime.

Equation (1) applies to homogeneous dynamo waves of
sufficiently low amplitude, so that the field variation remains
harmonic in space and time. Such behavior can only be modeled
with periodic boundary conditions in the direction perpendicular
to the plane of the shear flow. The result is expected to change
in the presence of boundary conditions, but ωcyc should still be
proportional to ηT. Therefore, any ReM -dependent quenching
of ηT would directly affect ωcyc, regardless of whether or
not magnetic helicity fluxes would alleviate catastrophic α
quenching. This underlines the importance of studying the
quenching of ηt.

Determining the quenching of ηt has been attempted on var-
ious occasions in the past. It is now generally accepted that,
in two dimensions, ηt is catastrophically quenched proportional
to 1/ReM , provided the energy of the mean field is compara-
ble to the energy of the turbulence. However, this is because
in two dimensions the mean squared magnetic vector poten-
tial is conserved, which would not be applicable in three di-
mensions (Gruzinov & Diamond 1995). For three-dimensional
turbulence, analytic theory predicts ηt quenching proportional
to the strength of the mean field independently of ReM . Such
a behavior also emerges from forced turbulence simulations
where an initially sinusoidal magnetic field is found to decay
proportional to exp(−ηTk2

mt) (Yousef et al. 2003). The inferred
quenching formula, applied to the corresponding mean-field dy-
namo models, is also found to produce the best fit to simulations
that do show strong large-scale dynamo action (BB02). More
recently, Brandenburg et al. (2008b) have computed the full αij

and ηij tensors in the saturated state without shear, where the
mean field is a Beltrami field. In that case, the turbulent mag-
netic diffusivity was found to be reduced by a factor of about
5 as the ReM is increased from 2 to 600. However, the case
of Beltrami fields has certain limitations that are avoided when
there is shear.

2. THE SIMULATIONS

We solve the stochastically forced isothermal hydromagnetic
equations in a cubical domain of size (2π )3 in the presence of a

uniform shear flow, U0 = (0, Sx, 0), with S = const,

DA
Dt

= −SAy x̂ − (∇U)T A + η∇2 A, (2)

DU
Dt

= −SUx ŷ − c2
s ∇ ln ρ +

1

ρ
J × B + Fvisc + f , (3)

D ln ρ

Dt
= −∇ · U, (4)

where D/Dt = ∂/∂t + (U + U0) · ∇ is the advective derivative
with respect to the total flow velocity that also includes the shear
flow, and [(∇U)T A]i = UjAi,j in component form, Fvisc is the
viscous force, and f is the forcing term. As in earlier work
(Brandenburg 2001), the forcing function is given by

f (x, t) = Re{N f k(t) exp[ik(t) · x + iφ(t)]}, (5)

where x is the position vector. The wavevector k(t) and the
random phase −π < φ(t) � π change at every time step, so
f (x, t) is δ-correlated in time. For the time-integrated forcing
function to be independent of the length of the time step δt ,
the normalization factor N has to be proportional to δt−1/2. On
dimensional grounds it is chosen to be N = f0cs(|k|cs/δt)1/2,
where f0 is a nondimensional forcing amplitude. At each time
step we select randomly one of many possible wavevectors in a
certain range around a given forcing wavenumber. The average
wavenumber is referred to as kf . We force the system with
transverse helical waves,

f k = R · f (nohel)
k with Rij = δij − iσεijkk̂k√

1 + σ 2
, (6)

where σ = 1 for the fully helical case with positive helicity of
the forcing function,

f (nohel)
k = (

k × ê
)
/

√
k2 − (k · ê)2, (7)

is a non-helical forcing function, and ê is an arbitrary unit vector
not aligned with k; note that | f k|2 = 1.

We use periodic boundary conditions in the y- and z-directions
and shearing-periodic boundary conditions in the x-direction.
The main control parameters in our simulations are the ReM

and Prandtl numbers, as well as the shear parameter,

ReM = urms

ηkf
, PrM = ν

η
, Sh = S

urmskf
. (8)

By setting k1 = cs = ρ0 = μ0 = 1, we obtain dimensionless
units of length, velocity, density, and magnetic field as

[x] = k−1
1 , [u] = cs, [ρ] = ρ0, [B] = √

μ0ρ0cs. (9)

We solve the governing equations using the Pencil Code
3

which is a high-order finite-difference code (sixth order in space
and third order in time) for solving partial differential equations
on massively parallel machines.

The three essential parameters varied in the present study are
the root-mean-square (rms) velocity (by changing the forcing
amplitude f0), the relative helicity of the turbulence (by changing
σ ) and the microscopic magnetic diffusivity η. The rms velocity

3 http://www.nordita.org/software/pencil-code
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Table 1
Summary of the Different Sets of Runs

Set Grid ReM PrM kf/k1 Sh σ B̃rms 〈B̃2

x〉1/2 〈B̃2

y〉1/2

A 643 1.5 1 10 −0.72 0.2 . . . 1 8.0 . . . 13.0 0.14 . . . 0.22 7.2 . . . 11.6
B 643 46 . . . 94 10 5 −0.33 . . . − 0.16 0.05 . . . 1 1.5 . . . 2.4 0.05 . . . 0.22 0.95 . . . 1.8
C 643 27 . . . 35 10 5 −0.57 . . . − 0.44 0.05 . . . 0.7 2.0 . . . 9.1 0.05 . . . 0.09 1.5 . . . 8.2
D 643 11 . . . 13 10 5 −1.43 . . . − 1.16 0.05 . . . 1 2.7 . . . 17.9 0.03 . . . 0.10 1.8 . . . 16.2
E 1283 11 10 5 −1.42 . . . − 1.36 0.2 . . . 1 7.9 . . . 14.4 0.07 . . . 0.10 7.2 . . . 13.1
F 1283 131 . . . 209 10 5 −0.29 . . . − 0.18 0.05 . . . 1 1.2 . . . 2.9 0.04 . . . 0.20 0.5 . . . 2.2
G 2563 29 25 5 −1.38 . . . − 1.29 0.2 . . . 1 8.3 . . . 15.9 0.05 . . . 0.06 7.5 . . . 14.3
H 643 . . . 1283 1.4 . . . 181 0.5 . . . 50 5 −0.13 . . . − 0.10 1 1.7 . . . 3.1 0.23 . . . 0.55 1.2 . . . 2.3

Note. Here, B̃rms = Brms/Beq, 〈B̃2

x〉1/2 = 〈B2
x〉1/2/Beq, and 〈B̃2

y〉1/2 = 〈B2
y〉1/2/Beq.

varies between 0.03 and 0.2, corresponding to f0 = 0.01–0.05.
The large-scale shear varies between S = −0.05, . . . ,−0.2 and
leads to shear parameters Sh ≈ −0.1, . . . ,−1.4. The high Sh
cases studied in Brandenburg & Käpylä (2007) tend to produce
very strong magnetic fields. The purpose of the study is to
investigate the saturated state with different values of the mean
magnetic field, B/Beq, so we need to regulate its value. One
way to decrease the magnetic fields is to increase the forcing
amplitude to reduce the relative importance of the Ω effect. On
the other hand, varying the value of σ can be used to regulate
the α effect with given Sh and ReM . This procedure was first
adopted by Maron & Blackman (2002) and later by Brandenburg
et al. (2002) in order to study the onset of large-scale dynamo
action. In most cases, σ is varied between 0.05 and 1, but small
values do not always lead to clear large-scale dynamo action.
Performing a large set of runs, we have been able to cover a range
of (B/Beq)2 from 0.3 to 270 and the ReM varies between 1.5
and roughly 210. The numerical resolution of the simulations
varies between 643 and 2563 grid points. A summary of the runs
is given in Table 1.

3. FORMALISM

In this section, we briefly review some of the main predictions
of the dynamical quenching model as applied to homogeneous
shear flows (BB02). In this approach, the quenching of α
comes from an additional contribution that is proportional to
the small-scale current helicity, which builds up at the same
time as the α effect produces large-scale magnetic fields. The
sign of the small-scale current helicity is opposite to that of
the large-scale current helicity which, in turn, is also equal to
the sign of the α effect. The evolution of the small-scale current
helicity is calculated from the magnetic helicity equation. Using
this equation together with the mean-field induction equation,
BB02 derived expressions for the saturation amplitude, the cycle
frequency, and the ratio of toroidal to poloidal field amplitudes
in closed form. We begin with a more precise definition of km
in terms of the resulting mean magnetic field via

k2
m = μ0〈J ·B〉/〈A·B〉, (10)

where μ0 is the vacuum permeability, overbars denote mean
quantities (later we shall specialize to horizontal averages), and
angular brackets denote volume averaging. Preliminary results
on turbulent diffusivity determined from the cycle frequency
were presented in Brandenburg & Käpylä (2007). In the present
study, we explore a much wider range of parameters and seek
to understand the quenching behavior of ηt as a function of the
magnetic-field strength.

For future reference we define at this point an analogously
defined wavenumber of the fluctuating field via

k2
f = μ0〈 j ·b〉/〈a·b〉. (11)

We also define effective wavenumbers of the fluctuating and
mean fields via

εfkf = μ0〈 j ·b〉/〈b2〉, (12)

εmkm = μ0〈J ·B〉/〈B
2〉, (13)

where εf and εm are the fractional helicities of the fluctuating
and mean fields, respectively. We assume these two fractional
helicities to be positive, but kf and km can have either sign. In
the stationary state the total current helicity must vanish for a
closed system (Brandenburg 2001), which means that kf and
km must have opposite sign. Throughout this work the forcing
function has positive helicity, so kf > 0, and therefore km < 0.

BB02 compared their results with those of direct simulations
of Brandenburg et al. (2001). Theoretically, in the linear regime
and at large ReMs, −km can be as large as kf/2 (Brandenburg
et al. 2002), but in the nonlinear regime, −km will decrease until
it reaches k1 (Brandenburg 2001). Here, we consider nonlinear
solutions and will therefore assume −km = k1.

BB02 predicted that the saturation level of the mean magnetic
field is given by

B2
fin

B2
eq

= εfkf

εmk1
− (

1 + Re−1
M

); . (14)

Here, εfkf and εmk1 are the effective wavenumbers correspond-
ing to the scale of the forcing and the mean field, respectively,
and are defined via Equations (12) and (13). The equipartition
value of the magnetic field is defined via

Beq = 〈μ0ρu2〉1/2. (15)

According to the calculations of BB02, εm is directly propor-
tional to the ratio of cycle frequency to shear rate. Furthermore,
εm is also proportional to the ratio of poloidal to toroidal mag-
netic field amplitudes. We have therefore multiple checks on the
consistency of this simple model.

4. RESULTS

4.1. Saturation Level of the Magnetic Field

In most cases, we find oscillatory solutions with dynamo
waves propagating in the positive z-direction. This is indeed ex-
pected from mean-field theory, according to which the direction
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Figure 1. Ux, Uy, Bx, and By at the periphery of the domain from a run with ReM ≈ 209, Sh ≈ −0.18, and PrM = 10. Note the absence of any large-scale pattern in
Uy, but a rather pronounced pattern in By with a fairly abrupt change of sign.

(A color version of this figure is available in the online journal.)

of propagating is given by the sign of the product of α effect and
shear. Indeed, positive helicity in the forcing should result in a
negative α effect which, together with negative shear, predicts a
direction of propagation in the positive z-direction.

Figure 1 shows the streamwise components of velocity and
magnetic field from a run with ReM ≈ 209, Sh ≈ −0.18, and
PrM = 10. The velocity field is irregular while the y-component
of the magnetic field exhibits clear large-scale structure. The
x-component of the field also has a systematic large-scale
component, but it is hard to see in a single snapshot and without
horizontal averaging because its amplitude is much lower than
that of the y-component.

This dynamo wave is well seen in animations showing the
z dependence of By versus time, but it becomes particularly
clear when the field is averaged over the horizontal directions,
indicated here by an overbar. An example of Bx(z, t) and
By(z, t) is shown in Figure 2. Note again the sharp sign changes
of By(z, t). One can now see that the locations of these sharp
sign changes coincide with the locations where Bx(z, t) achieves
positive or negative extrema. In fact, by comparing the two
panels of Figure 2 one can verify that a positive extremum of
Bx(z, t) leads to a change of sign of By(z, t ′) from a positive
value at t ′ < t to a negative value at t ′ > t , and vice versa. This
is explained by the fact that shear is negative, i.e., S < 0, which
turns a positive Bx into a negative By .

The dynamo wave has a typical anharmonic shape (see
Figure 3), just as has been seen before both in mean-field models
(Stix 1972) as well as in direct simulations (Brandenburg et al.
2001). Figure 3 shows flat positive or negative plateaus in By ,

Figure 2. Spacetime diagrams of Bx (z, t) (upper panel) and By (z, t) (lower
panel). From a run with ReM ≈ 209, Sh ≈ −0.18 and PrM = 10.

(A color version of this figure is available in the online journal.)

during which the Bx field was weak, but with a clear time
derivative: while By is positive, ∂Bx/∂t is also positive. A more
careful look reveals that the plateaus are not completely flat,
but have a negative time derivative when By is positive (and a
positive time derivative when By is negative). This relation can
be interpreted as being due to a negative α effect in the relation

∂ B
∂t

= ∇ × (αB) + ·s . (16)
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Figure 3. Five times Bx (dashed line) and By (solid line) in the midplane, i.e.,
z = 0. From the same run as in Figure 2.

Figure 4. Spacetime diagrams of Bx (z, t) (upper panel) and By (z, t) (lower
panel) from a run with ReM ≈ 1.4, Sh ≈ −0.13 and PrM = 1.

(A color version of this figure is available in the online journal.)

Using the fact that there is a dynamo wave with propagation
speed c, we have B = B(z − ct). Assuming constant α, this
means that cB

′
x = αB

′
y . Since c is positive (compare Figure 2),

the opposite signs of the time derivatives of Bx and By suggest
that α < 0. This is in agreement with the fact that the kinetic
helicity is positive and mean-field theory suggesting that for
isotropic turbulence in the high-conductivity limit (Moffatt
1978; Krause & Rädler 1980) α is a negative multiple of the
kinetic helicity.

The oscillations are also discernible in the kinematic regime
especially in runs where ReM is small enough, so that the small-
scale dynamo is not excited (see Figure 4). The cycle frequency
in the kinematic regime appears to be roughly constant in the
range ReM = 2, . . . , 10. In the following, however, we will
be concerned with the nonlinear regime where the dynamo has
reached saturation. We study the dependence of the value of ωcyc
on ReM . Using Equation (1) we then calculate ηT and hence ηt.
Figure 5 shows that the resulting value of ηt has a value roughly
2.5ηt0 for ReM � 4, where

ηt0 = 1
3τu2 , (17)

and τ is the correlation time of the turbulence. The subscript
zero refers to the kinematic case which is valid when the
magnetic field is weak. For small ReM the correlation time is no
longer determined by the turbulence but rather the microscopic
diffusivity η. Thus, in that limit ηt is expected to decreases
proportionally to η. The markedly lower value of ηt for ReM ≈ 2
can be interpreted in terms of this behavior.

For ReM 	 1 the saturation formula given in Equation (14)
predicts that the ratio B2

fin/B
2
eq should be linearly proportional to

Figure 5. Cycle frequency (solid line) and turbulent diffusivity from
Equation (1) (dashed line) as functions of ReM in the kinematic regime.

Figure 6. B2
fin/B

2
eq as a function of εfkf/εmk1 − (1 + η/ηt0). The diagonal is

shown for comparison. Note the reasonable agreement with theory (solid line).

εfkf/εmk1 − (1 + η/ηt0). This is indeed in reasonable agreement
with the numerical data; see Figure 6.

BB02 gave two independent formulae for εm, one in terms
of the resulting ratio of poloidal to toroidal mean fields, Q−1,

where Q2 = 〈B2
y〉/〈B

2
x〉,

εm =
√

2Q−1 ≡
√

2
(〈
B

2
x

〉
/
〈
B

2
y

〉)1/2
, (18)

and one in terms of the resulting ratio of the cycle frequency to
the shear frequency,

εm = 2ωcyc/S. (19)

Furthermore, assuming km = −k1 in Equation (13), we arrive
at

εm = −μ0
〈J ·B〉
k1〈B

2〉
. (20)

We use the definition of εm given in Equation (20) as the
benchmark value to compare the other two expressions to. A
scatter plot of the results is given in Figure 7. We find that the
values given by Equations (18) and (19) are consistently below
the value of εm as given by Equation (20), but that the trend as
a function of σ is the same for all three quantities. Thus, we
apply scaling factors of the order of unity for the expressions in
Equations (18) and (19) in Figure 7 so that the data fall onto the
same line. An exception are a few points for the cycle frequency,
given by Equation (19), where there are departures. The points
deviating from the trend all belong to runs that have the weakest
mean fields and occur for εm > 0.1.
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Figure 7. Scatter plot of poloidal to toroidal field ratio (squares, scaled by factor
2.7) and normalized cycle frequency (plus signs, scaled by factor 2.4) vs. εm.
Note that for εm < 0.1 both squares and plus signs scatter tightly around the
diagonal.

4.2. Effects from the Vorticity Dynamo

A few runs exhibit signs of intermittent or continuous large-
scale vorticity generation in the saturated state of the dynamo,
reminiscent of a vorticity dynamo (Elperin et al. 2003; Yousef
et al. 2008a, 2008b). In Figure 8, we compare the evolution of
the rms Mach number of the total (mean and fluctuating) veloc-
ity both for hydrodynamic runs with and without shear, as well
as a run with magnetic fields and shear. It is clear that in the
absence of shear the rms Mach number reaches its final level
quite quickly. During the first few tens of turnover times the
same level is also maintained in the presence of shear, but the
velocity gradually increases to much larger values and reaches
a new saturation level that is approximately 10 times larger.
During that time a large-scale velocity field develops through-
out the entire domain; see Figure 9 for a typical example of this
behavior. In the magnetohydrodynamics (MHD) case the vortic-
ity dynamo is quenched when the magnetic field grows to high
enough level but in cases of weaker magnetic fields this quench-
ing is often only partial as demonstrated by the dashed line in
Figure 8. Unlike the anisotropic kinetic α effect (Frisch
et al. 1987), which is also suppressed by magnetic fields
(Brandenburg & von Rekowski 2001), and works only for
Re ≡ ReM/PrM � 8, the vorticity dynamo has been shown
to work well up to Re ≈ 100. A more thorough study of the
vorticity dynamo can be found elsewhere (Käpylä et al. 2009b).

The overall behavior of such runs is quite different from those
where a large-scale flow did not develop. We have therefore
excluded these runs from the plots for the sake of clarity. All in
all the agreement between the three independent checks of εm
is remarkably good especially for low values of εm.

4.3. Turbulent Diffusivity Quenching

According to the first order smoothing approximation
(Moffatt 1978; Krause & Rädler 1980), the turbulent diffu-
sivity for isotropic turbulence in the high-conductivity limit is
given by Equation (17). Simulations of forced turbulence with-
out shear suggest that, independent of the value of the forcing
wavenumber and amplitude, the Strouhal number is around unity
(Brandenburg & Subramanian 2005a, 2007), i.e.,

St ≡ kfurmsτ ≈ 1. (21)

Figure 8. Root-mean-square Mach number for two shearing runs with the same
initial parameters (S = −0.2, ν = 5 × 10−3) with (dashed line) and without
(solid line) magnetic fields. The dotted line shows the result for a non-shearing
hydrodynamic run for comparison.

Figure 9. Uy at the periphery of the domain from a run with ReM ≈ 80,
Sh ≈ −0.19, and PrM = 10, at a resolution of 643 mesh points at a time when
the magnetic field is saturated and a large-scale vorticity dynamo develops.

(A color version of this figure is available in the online journal.)

In the kinematic regime, the magnetic diffusivity can therefore
be written as

ηt0 = 1
3 St urmsk

−1
f ≈ 1

3urmsk
−1
f . (22)

Recent numerical simulations employing the test-field proce-
dure have shown that in the kinematic case, Equation (22) is
confirmed for ReM between 1 and 200; see Sur et al. (2008). In
order to study the quenching of ηt, i.e., the dependence on B,
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Figure 10. Turbulent diffusivity as a function of |B|/Beq. The squares and stars
denote cases where −Sh < 0.2 (weak shear) and −Sh > 0.2 (strong shear).
The upper curve is for n = 1 and η̃t0/ηt0 = 1.5, while the second curve is for
n = 2 and η̃t0/ηt0 = 1.2, and g = 0.3 in both cases.

we normalize our results with the value of ηt0 from a simulation
without magnetic fields.

Our setup is similar to that used in a number of related
simulations by Brandenburg et al. (2008a) with non-helical
turbulence, and Mitra et al. (2009) with helicity. In those
simulations the main focus was the determination of turbulent
transport coefficients in the linear regime. In these studies, it was
found that the turbulent diffusivity increases by a factor of a few
as |Sh| increases from 0.1 to unity. More recently, this work has
been extended to the nonlinear regime, but so far only in the
absence of shear (Brandenburg et al. 2008b). However, there is
then a potential difficulty in that there could be additional terms
in the functional form of the quenched α and ηt tensors that
could mimic turbulent diffusion, so the split into two α and ηt
coefficients is not unique.

In the saturated state the growth rate of the large-scale field is
zero. Thus, this situation corresponds to the marginally excited
state where the cycle frequency is given by Equation (1).
Measuring therefore the dynamo frequency in the saturated state
gives the (quenched) value of the turbulent diffusivity.

Results for all of the runs are shown in Figure 10. The data
scatter around the curve

ηt = η̃t0

1 + g(|B|/Beq)n
, (23)

with η̃t0 = (1.2–1.5) ηt0, g = 0.3 and n = 1–2 being fit
parameters. A factor greater than 1 in the definition of η̃t0 reflects
the fact that in the kinematic regime, the turbulent magnetic
diffusivity is enhanced in the presence of shear (Brandenburg
et al. 2008a, Mitra et al. 2009). Note that the data for many
of the runs with different ReMs (ReM = 1 . . . 210) seem to
fall roughly on the same line. An asymptotic quenching of ηt

inversely proportional to B instead of B
2

has been predicted
analytically by Kitchatinov et al. (1994) and Rogachevskii &
Kleeorin (2001), and BB02 found g ≈ 3 to be a good fit to the
numerical simulations of Brandenburg et al. (2001). The fact
that g is here different suggests that it is perhaps not a universal
constant, but that it may depend on other parameters.

The amount of scatter in Figure 10 does not depend in any
systematic way on the value of Sh, except for the lowest values

Figure 11. Turbulent magnetic diffusivity as a function of ReM , as obtained from
the cycle frequency (solid line) for Sh = −0.1 and σ = 1, which translates to
εf ≈ 1, compared with the corresponding result by Brandenburg et al. (2008b)
using the test-field method (Sh = 0). The inset shows the ReM dependence of
the cycle frequency ωcyc (expected to be proportional to ηT; solid line) and the
microscopic magnetic diffusivity (dotted line).

of Sh for which the values of ηt fall below the general trend.
This, and the fact that ηt seems to reach values above unity
for low magnetic field strengths, might be a consequence of
the turbulent diffusivity being enhanced when shear increases
(Brandenburg et al. 2008a, Mitra et al. 2009). In the present
case, the unquenched value of urms from a non-shearing run
with the same forcing amplitude has been used in the definition
of ηt0. If the urms from a hydrodynamic run with shear is used,
the excitation of the vorticity dynamo would enhance its value
by a factor of up to 5 (see Figure 8).

In order to study the behavior of ηt as a function of ReM a set
of runs were performed where PrM was varied between 0.5 and
50, keeping all the other parameters fixed, i.e., Sh ≈ −0.1 and
Re = urms/(νkf) ≈ 4. The results are shown in Figure 11, which
demonstrates that ηt, as inferred from ωcyc using Equation (1),
decreases by a factor of about 2 when ReM is increased from
10 to 180, while |B|/Beq varies from 1.7 to 2.5, with the larger
values occurring at larger values of ReM . The low value of
ηt for the smallest value of ReM might derive from the fact
that the simple model used to estimate the value of the turbulent
diffusivity may not be representative of this regime. On the other
hand, there appears to be a declining trend of ηt as a function of
ReM approximately proportional to Re1/3

M . However, higher ReM
simulations are needed to substantiate this. On the other hand,
data from nonlinear test-field calculations by Brandenburg et al.
(2008b) show that ηt decreases by a factor of 5 when ReM is
increased from 2 to 600. Within error bars this is compatible
with the present results.

5. CONCLUSIONS

Three-dimensional direct numerical simulations of helically
forced turbulence with imposed large-scale shear have been used
to study the saturation level of the dynamo, its cycle frequency,
and thereby the turbulent diffusivity and its quenching with the
magnetic field. The parameters of the study were chosen such
that a cyclic large-scale magnetic field develops with the dynamo
wave propagating to the positive z-direction.

We find that the saturation level of the energy of the mean
magnetic field is compatible with a scaling of a quantity related
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to the ratio of the fractional helicities of the small and large-scale
fields, in accordance with Equation (14) and the prediction from
nonlinear mean-field theory derived by BB02. Furthermore,
the three independent measures of εm are in reasonably good
agreement, especially for small values of εm.

The turbulent diffusivity is found to be quenched approxi-
mately inversely proportional to the large-scale magnetic field
strength. This is in agreement with earlier analytical stud-
ies (Kitchatinov et al. 1994; Rogachevskii & Kleeorin 2001).
However, a small group of data points can also be fitted to
a quadratic dependence on the inverse field strength. The de-
pendence on ReM is found to be weak which is also in accor-
dance with the analytical studies. More recent nonlinear test-
field calculations (Brandenburg et al. 2008b), indicate a similar
dependence.

The present results may have implications for solar dynamo
simulations. Clearly, the hope is that cyclic reversals occur on
timescales that are asymptotically independent of the resistive
timescale. What is less clear, however, is when asymptotic
behavior sets in. Evidently, even for the highest ReM simulations
presented here the cycle frequency shows still a shallow decline
with increasing ReM ; see the inset of Figure 11. On the other
hand, the corresponding change in the turbulent magnetic
diffusivity is only by a factor of a few, even when the ReM

changes by two orders of magnitude. This suggests that higher
resolution simulations are needed to have any hope in seeing
truly asymptotic behavior at large ReMs.

A modest level of quenching of ηt would certainly still be
compatible with solar dynamo models. In fact, already since the
early 1970s it was clear that standard solar dynamo models of
αΩ type show cycle frequencies that are too high for realistic
parameters, so the models predicted cycle periods of about three
years instead of 22 years (Köhler 1970). A modest quenching
of ηt would therefore point in the right direction, but one
would hope that the decrease in ηt would eventually level off.
Unfortunately, this is not evident from any of the simulations
presented so far.

As we have argued in the introduction, we do not expect the
results for ηt(ReM ) to depend on the presence or absence of
magnetic helicity fluxes. However, this expectation should be
verified using simulations. Allowing for such fluxes would mean
that we have to abandon the assumption of periodic boundary
conditions. Although open boundary conditions would imply
saturation on a dynamical timescale (not the resistive one,
as in the present case of periodic boundaries) the saturation
amplitude would scale inversely with ReM , if it was not
for the shear-mediated helicity fluxes that allow for large
saturation amplitudes on a dynamical timescale (Brandenburg
2005; Käpylä et al. 2008).
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Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A, 491, 353
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