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Solitons in the noisy Burgers equation
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We investigate numerically the coupled diffusion-advective type field equations originating from the canoni-
cal phase space approach to the noisy Burgers equation or the equivalent Kardar-Parisi-Zhang equation in one
spatial dimension. The equations support stable right hand and left hand solitons and in the low viscosity limit
a long-lived soliton pair excitation. We find that two identical pair excitations scatter transparently subject to a
size-dependent phase shift and that identical solitons scatter on a static soliton transparently without a phase
shift. The soliton pair excitation and the scattering configurations are interpreted in terms of growing step and
nucleation events in the interface growth profile. Finally, we show that growing steps perform an anomalous
random walk with dynamic exponeat= 3/2.
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[. INTRODUCTION tiny in recent years owing to their paradigmatic significance
within the field theory of nonequilibrium systerh5—15|.

There is a continuing interest in the strong coupling as- In a series of papers the one-dimensional case defined by
pects of stochastically driven nonequilibrium systems. TheEgs.(1) and(2) has been analyzed in an attempt to uncover
phenomena in question are ubiquitous and comprise turbuhe physical mechanisms underlying the pattern formation
lence in fluids, interface, and growth problems, and chemica&nd scaling behavior. Emphasizing that the noise stregth
and biological systems. In this context the noisy Burgersconstitutes the relevant nonperturbative parameter that is
equation or the equivalent Kardar-Parisi-ZhdK@Z) equa-  driving the system into a statistically stationary state, the
tion, describing the nonequilibrium growth of a noise-drivenmethod was initially based on a weak noise saddle point
interface, provide a simple continuum model of an openapproximation to the Martin-Siggia-Rose functional formu-
driven nonlinear system exhibiting scaling and pattern fordation of the noisy Burgers equati¢©6—19. This work was
mation. a continuation of earlier work based on the mapping of a

In one dimension, which is our concern here, the noisysolid-on-solid model onto a continuum spin mod&0].
Burgers equation for the local slope(x,t)=Vh(x,t), of a  More recently the functional approach has been superseded
growing interface has the forii,2] by a canonical phase space methdeériving from the ca-
nonical structure of the Fokker-Planck equation associated
with the Burgers equatiof21—-27. Below we briefly sum-
marize these findings.

The functional or the equivalent phase space approach
(n(x,1) (0,0))=A S5(x) 5(1). (2 valid in the weak noise limiA—0 replaces the stochastic

Langevin-type Burgers equatigh) by coupled deterministic

erned by the equivalent KPZ equatifi®4]

Ju
E=vV2u+)\uVu+V77, )

au

dh N —v2 2

E:VVZhJFE(Vh)ZJF 7. &) E—yv u—Vp+auVu, (5
In Egs.(1) and(3) v is the damping or viscosity character- ap )
izing the linear diffusive term\ a coupling strength for the 0= vVpauvp, (6)

nonlinear mode coupling or growth term, agda Gaussian
white noise, driving the system into a statistically stationaryf the sl i q icall ‘ugat ise field
state. The noise is correlated according to &j.and char- or the slopeu(x,t) and a canonically conjugate noise fie

acterized by the strength. Moreover, the Burgers equation p(x,t), replacing the stochastic noisg The field equations

is invariant under the slope-dependent Galilean transforma{:zear _the same _relat|on to t.he Fokker-Planck equations as the
tion classical equations of motion bear to the Sclimger equa-

tion in the semiclassical WKB approximati¢a8].
X—X—AUot, U—U+Ug, (4) To justify the weak noise limit we recall the analogy with
the WKB approximation in quantum mechanics which, ow-
i.e., the interface is superimposed with a constant slope in eg to its nonperturbative character, captures features like
moving frame. bound states and tunneling amplitudes, which are generally
The Burgers equatiofil) and its KPZ equivalent in one inaccessible to perturbation theory. Therefore, we anticipate
and higher dimensions have been the subject of intense scrthat the present weak noise approach to the Burgers equation
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also accounts correctly, at least in a qualitative sense, for the {p()}

stochastic properties even at larger noise strength. p=2vu, E=0
Equations(5) and(6) derive from a principle of least ac- u

tion characterized by an acti®(u’ —u”,t) associated with
an orbitu’(x)—u”(x) traversed in time [29], / .

sp
, " _ft,u”d d Ju 7
S(u'—u",t)= o t XPor H (7) ) //

with Hamiltonian density

u =0 B0, tupap

H=p( vV2u+)\uVu—EV2p). (8) , , , o
2 FIG. 1. We depict the generic behavior of the orbitsimphase

o ) _ space. The heavy lines indicate the transient zero-energy submani-

The action is of central importance and serves as a weighbid for p=0 and the stationary zero-energy submanifold for

function for the noise-driven nonequilibrium configurations. =2,u. The stationary saddle poilsp) is at the origin. The finite

The action, moreover, yields access to the time-dependefiie orbit fromu’ to u” is attracted to the saddle point for .

and stationary probability distributions,

sexd —(vA)fdx 7] [30]. Finally, in the long time limit an

p(u/ﬂun,t)mexp{ _ Sty , (99  orbitfromu’—u"is attracted to the hyperbolic saddle point
A at the origin in phase space implying ergodic behavior in the
stationary state. In Fig. 1 we have schematically depicted
Ps(u”)=I1limP(u’—u",t), (100 possible orbits in phase space.
toee The field equation$5) and (6) admit nonlinear soliton or

. . smoothed shock wave solutions which are, in the static case,
and associated moments, e.g., the stationary slope correlgf— kinklike form

tions
Mul
(u(x,H)u(0,0)) = f [T du wxu'(0) uy(x)=utanh >-=x|. (15)
XP(u'—u",t)Pg(u’). (1))  Propagating solitons are subsequently generated by the Gal-

ilean boost(4). Denoting the right and left boundary values

The canonical formulation associates the conserved erpy . and u_, respectively, the propagation velocity is
ergy E (following from time translation invariangethe con-  given by

served momentundl (from space translation invariance
and the conserved ardd (from the Burgers equation with U, +u_=—20/\. (16)
conserved noige
The amplitude of the static soliton isand the soliton is
E= J dxH, (12) Iocgted at the origin. The right hand soliton for-0, i.e., the
soliton with the larger right hand side boundary value, moves
on the noiseless manifolpi=0 and is also a solution of the
_ damped(stable noiseless Burgers equation far=0. The
I f dx uvp, (13 noise-induced left hand soliton fo<0, i.e., the soliton with
the larger left hand side boundary value, is associated with
the noisy manifoldp=2wvu, and is a solution of théun-
stablg noiseless Burgers equation withreplaced by— v.
The heuristic physical picture that emerges from our
The field equationg5) and (6) determine orbits in a ca- analysis is that of a many body formulation of the pattern
nonicalup phase space where the dynamical issue in deteformation of a growing interface in terms of a dilute gas of
mining Sand thusP is to find an orbit fromu’ to u” intime  propagating solitons matched according to the soliton condi-
t. In general the orbits in phase space lie on the manifoldgion (16). For illustration we have shown in Fig. 2 the slope
determined by the constants of motignlI, andM. Here the field u, the corresponding height field and the noise fielg
zero-energy manifolE=0 defines the stationary state. For for a four-soliton configuration.
vanishing or periodic boundary conditions the zero energy In the present paper we embark on a numerical analysis of
manifold is composed of the transient submanifofils0  the coupled field equation®) and (6) with the purpose of
and the stationary submanifolg=2vu. Generally, a finite investigating them in more detail and provide a numerical
energy orbit fromu’—u" in time t migrates to the zero- underpinning of the heuristic quasiparticle picture advanced
energy manifold in the limitt—, yielding according in the work referred to above. The paper is organized in the
to Egs. (7) and (10) the stationary distributionPg  following manner. In Sec. Il we discuss the soliton modes. In

sz dxu. (149
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FIG. 3. We show the slope fiela,, the associated noise fighg,
and the resulting height profilb, at timet=0 for a two-soliton
X configuration. The arrows indicate the propagation of the solitons.

~

—2vuy(x—vt—x,) for u>0, (18
_ FIG. 2. We_ depict the four-soliton representa_tion pf the slope pa(x,t)= +2uuy(x—vt—xy) for u<o. (19)
field u and noise fieldpa, and the associated height fiehd The

arrows indicate the propagation of the solitons. ] o ) ) )
By inspection it is seen that the pair mod€) is an approxi-

Sec. lll we introduce the numerical method designed to treat'iroantet;r?rl]ust'er]etoo;htief'etlfpgqvuft:n'(?u%npd (rg‘é-rrrihnegct?) rr;ahce-

the inherent instability._ In Sec. IV we present our numericr?lldistinct components ofi, and p, and thus correspond to
res.ults for the scattering of two smlgle soI.|tons on a statiq ., perturbations from a region of sizg\|u| which is
sphton and the scattering of wo ?0"“?” pairs. I.n Sec. V Wesmall in the low viscosity limitv—0. We assume that the
discuss growth and anomalous diffusion associated with thg, e ction can be treated within a linear stability analysis and
modes investigated numerically. Section VI is devoted to g ;g gives rise to a linear mode propagating between the

summary of our results and a conclusion. right hand and left hand solitori&7].
The pair mode thus forms a long-lived excitation or qua-
II. SOLITON MODES siparticle in the many body description of a growing inter-

face. Subject to periodic boundary conditions this mode cor-

The exact right and left hand soliton solutions of the fieldresponds to a simple growth situation. The propagation of the
equations do not satisfy periodic or vanishing boundary conpair mode corresponds to the propagation of a step in the
ditions in the slope fieldi; the nonvanishing boundary values height fieldh. At each revolution of the pair mode the inter-
u, andu_ in fact correspond to a deterministic current dis- face grows by a uniform layer of thicknessi|%,—x,|. In
sipated or generated at the soliton centers yielding permanehig. 3 we have depicted the pair modelnthe associated
profile solutions[31]. The kink solitons constitute the el- noise fieldp, and the height profilé. _ o
ementary building blocks or “quarks” in the present ap- ~ Generally a growing interface can at a given time instant
proach and the interface profile is then built up by matching?® represented by a gas of matched left hand and right hand
solitons according to the matching conditiéi6). solitons as depicted in Fig. 2 in the four-soliton case. A gas

The simplest mode satisfying periodic boundary condi-Of Pair solitons thus constitutes a particular growth mode
tions is the two-soliton or pair soliton configuration where the height profile between moving steps has horizontal

segments. However, since we do not posses explicit propa-

gating multisoliton solutions of the field equatiofs) and
Up(X,t) =uy(Xx—vt=x;) —us(Xx—vt=xz), (17 () the problem of soliton collisions remains unresolved

from an analytical point of view. Therefore we now turn to a

obtained by matching a right hand and a left hand solitornumerical analysis of the problem.

boosted to the velocity = —Au. The two-soliton mode has

amplitude 21 and size|x,—X;|. The associated noise field Il. NUMERICAL METHOD

vanishes for the right hand component and equals fr The coupled field equationg5) and (6) are of the

the left hand component; we thus have diffusion-advection type with the exception that the evolu-
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tion of p is governed by a negative diffusion coefficient. IV. SOLITONS, PAIR SOLITONS, AND SOLITON
Standard numerical methods designed to step the equations COLLISIONS
forward in time fail because small perturbations with wave

numberk grow in time as expfk®?t), so perturbations with the ! e . .
largest possibld grow fastest, hence rendering the integra_?huerqﬁrrgslc?ﬁtshecr)\?avt\;gnha/visfo%r:/c(ja:rr:i? 'ttﬁeegsﬁzﬁgoosfaggg
tion unstable. In order to circumvent this problem we have 9 9 y

desi X . : . tons, namely, the conservation of enefdp), the conserva-
esigned a method to solve the equations iteratively startlngOn of momentum(13), and the conservation of aréad)
with a trial solution foru and p in the space intervalx| ' '
<L and time interval 6st<T. At each iteration step we
proceed in two sweeps. In the forward sweep we step only A. Solitons and pair soliton
the equation foru forward in time usingp(x,t) from the
previous iteration step. In the backward sweep we step thg0
equation forp backward in time, usingi(x,t) from the for-
ward sweep. In this manner the unwanted perturbatioms in
decrease exponentially as one moves backward in time.
A drawback of this method is that we can specify initial
v_alues_ only foru, and that we must instead specjfiat the is a long-lived excitation, hence justifying the heuristic argu-
final time t=T. In the present context where we want to ment
consider collisions of solitons this is not a serious problem, ™ "\ 4010 support to the heuristic quasiparticle pic-

e e s Dossile 10 Qs the el oo, 0fire base o the elementary ki stk and he
that a certain guess is actually a solution. Furthermore, thi omposlte par §ollton e}s'the basic quasiparticle it 'S essential
method allows us to calculate the precise functional forr’n o> consider s_ollton coI_I|3|ons. W_e _have here con5|derv_ed the
u andp during the collision, even if the initial guess around WO Ssymmetric ca_ses(:l)_the CO.”'S'On of wo propagating
the time of the collision WG{S actually wrong sol!tons with a static soliton an(ai) the poII|S|on of two pair

: solitons. In both cases the configurations are symmetric and

We haye solved the quatlons on a mesh wifk=1001 the conservation laws are satisfied at all times including the
mesh points antl;=6001 time steps. Fdr=1/2 we have a collision regime

mesh spacing oAx=0.001. For both sweeps we use sixth

order finite differences to calculate first and second deriva-

tives and a third order Runge-Kutta scheme for the time in-

tegration (see, e.g., the appendix of Rdf32] for these In the first case two propagating solitons moving in oppo-

schemes site directions collide with a static soliton located at the cen-
In order to adequately resolveandp at all times we must ter. The trial solution has the form

choose a suitable value of We found empirically that

—0.005 gave good results, which is the value adopted in the U0 =—=sgnt)[uy(x+vt)+uy(x—vt)—=2uy(2x)],

following. For smaller values o¥ the u and p functions (20

become only marginally resolved whereas for larger values

of v the length of the time step is mostly controlled by the

value of v rather than just the propagation speeds of the

In choosing soliton configurations to be verified by the

We have numerically verified that the right and left hand
litons(15) for u>0 andu<0 are solutions. By construc-
tion the two-soliton configurationl?7) carries energye,=
(—16/3\v|u|®, momentumll,= —4vulu|, and for smallv
the areaVl ,2v|x; — X,|. We have shown that, for small a
well-separated two-soliton mode, i.e., witk; —x,|>v/\u,

B. Three-soliton collisions

—2v[u(x+ovt)+u(x—vt)] for t<0 (21

solitons. Empirically we found that the maximum time stepp(x’t): —4wuy(2x) for t>0, (22)
that can be used i&t=5x10"° for »=0.005. In all cases
we have chosen=1. and the height field

2v cosrﬁ()\|u|/2v)(x—vt)]cosr[()\lu|/21/)(x+vt)]‘
h(x,t)==sgr(t) ~|In coshi (M| u/2v)x] | (23
|
with velocity v =Au. collide transparently with the static soliton, i.e., there is no

In this mode two left hand solitons with amplitudes2 reflection, and there is no phase shift associated with the
propagate with equal and opposite velocities toward a staticollision. In terms of the associated height profile this scat-
right hand soliton with amplitude ut located at the center. tering situation corresponds to filling in a dip with subse-
During the collision the left hand solitons are absorbed, thejuent nucleation of a growing tip.
static right hand soliton flips over to a static left hand soliton, Energy and momentum are associated with the noise-
and two right hand solitons emerge, propagating away froninduced left hand solitons moving on the noisy manifpld
the center with equal and opposite velocity. The solitons thus=2vu. By inspection of Eq.20) it follows that the total
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FIG. 4. Three-soliton collision: The slope fialchs a function of FIG. 5. Three-soliton collision: The noise figdas a function of
x for different values ot. x for the same values dfas in Fig. 4.
energy E= — (32/3)vAu?, the total momentundI=0, and p(x,t)=—2v[uy(X—vt+Xy)+uy(X+ovt—x7)] (27)
the total aredM =0 are conserved during the collision.
Choosing the amplitude=2 we have depicted in Fig. 4 for x,<vt<x
the numerical verification of the slope fieldas a function of 2 b
x for different values oft. In Figs. 5 and 6 we show the
associated noise fiejoland the height profilé as a function u(x,t)=+[uy(x+ovt—x4)—u(x)]
of x for the same values df In Fig. 7 we show a gray-scale
representation afi in thext plane. We notice that there is no LU ()= us(x—vt+xy)], (28)
phase shift associated with the scattering process.
P(X,t)=—2p[uy(x) +us(x)] (29)
C. Pair soliton collisions
: . for x,<vt<2x,—X,, and
In the second case we consider the collision of two pair 1=v rre
solitons of equal size and amplitude. The trial solution propa-
gating with velocityv =\u has the form u(x,t)=+[us(X+ot—xq) —Uy(X+ovt—2x1+X5)]
u(x,t)=—[uy(x—vt+x9)—uy(Xx—vt+xy)] —[ug(X—vt+2X;—X5) —us(X—vt+Xx41)],
U (Xt ot=xp) —us(x+ut=xp], (24 (30

PO, D)= =2pfur(X—vt+x) +us(X+ot=x)] (29 p(x t)= = 20[uy(X+ vt+2X;— Xp) + Ug(X— vt + 2%, — Xp)]

for 0<vt<xs, (31
fOI’ 2X1_X2<Ut.

t)=— —vt+Xxq)— . . . )
ux.t) [Ua(x oty = Uy ()] In this mode two pair solitons of amplitudeuZropagate

+u(X) —ug(X+ovt—x49)], (26) with equal and opposite velocities toward one another. The
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FIG. 6. Three-soliton collision: The height proftle= fu dx as a
function ofx for the same values dfas in Fig. 4.
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FIG. 7. Gray-scale representation win the xt plane showing
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FIG. 8. Pair soliton collision: The slope fieldas a function of
x for different values ot.

two leading kink solitons merge to a static soliton and the
two trailing kinks are absorbed. Subsequently, the static right
hand soliton flips over to a static left hand soliton and the
two pair solitons reemerge. Analyzing the collision, it fol-
lows that the scattering of pair solitons is transparent and
accompanied by a phase shift in space equal to the soliton
size |x,—X4| or, equivalently, a time delayx,—x,|/v. In
terms of the associated height profile the scattering situation
corresponds to filling in a trough due to two colliding steps
and the subsequent nucleation of a growing plateau.

By inspection it again follows that the total energy=
—(32/3)vAu?, the total momentunbl =0, and the total area
M =0 are conserved during collision.

Choosing the amplitude (2 and the kink positions<;
=0.25 andx,=0.15 we show in Fig. 8 the numerical verifi-
cation of the slope fieldi as a function ofx for different
values oft. In Figs. 9 and 10 we show the associated noise
field p and the height profilé as a function ok for the same
values oft. In Fig. 11 we show a gray-scale representation of
u in the xt plane. We notice the phase shift engendered dur-
ing the transparent collision.

V. GROWTH AND ANOMALOUS DIFFUSION

the three-soliton collision. Note the absence of a phase shift during Since we have achieved numerical justification of three

the collision.

specific dynamical soliton configurations, naméiythe pair
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FIG. 9. Pair soliton collision: The noise fiefdlas a function of
x for the same values dfas in Fig. 8.

soliton, (ii) the collision of two solitons with a static soliton,
and(iii ) the collision of two pair solitons, we can proceed to
draw some simple conclusions based on the general frame-
work discussed in Sec. |. There are two levels of description:
the stochastic Langevin level and the deterministic Fokker-
Planck or equation of motion level. On the Fokker-Planck
level yielding the canonical field equatios) and (6) the
growth of the interface is interpreted in terms of a gas of
propagating solitongand diffusive modes The stochastic
description on the Langevin level is then established in the
weak noise limitA—0 by computing the actio8 associated
with a particular dynamical mode and subsequently deduce
the probability distribution according to Eq9), i.e., P
xexp(—SA). This procedure is completely equivalent to the
WKB limit of quantum mechanics. Here the wave function
& and thus the probabilistic interpretation is given @y
«exp(S/t), whereSis the action associated with the classi-
cal motion [28]. Note that unlike in quantum mechanics
there is no phase interference in the stochastic nonequilib-
rium case. The long-lived pair solitoil7) has sizef =|x;
—X,|, amplitude 21, and propagates with velocity= —\u.
During a revolution in a system of size with periodic
boundary conditions the height field increases with a layer of

X

-

FIG. 10. Pair soliton collision: The height profite= f[u dx as a
function of x for the same values dfas in Fig. 8.

thickness 2i¢. Since the system is traversed in tinte FIG. 11. Gray-scale representationwin the xt plane showing
=L/v the integrated growth velocity is given byanR2¢/L the pair soliton collision. Note the occurrence of a phase shift dur-
which for a single pair of fixed size vanishes in the thermo-ing the collision.
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dynamic limit. On the other hand, the local growth velocity VI. SUMMARY AND CONCLUSION
dh/dt is given by 2u?=(\/2)(Vh)? which is consistent
with the averaged KPZ equatidB) in the stationary state. In the present paper we have numerically investigated the

The stochastic properties of the pair soliton growth modecoupled diffusion-advection type field equation originating
is also easily elucidated by noting that the action associateflom the canonical phase space approach applied to the noisy
with the pair mode is given b= (4/3)vA|ul’t. Denoting  Burgers equation or the equivalent KPZ equation in one spa-
the center of mass of the pair mode ky (x;+X;)/2 we tja| dimension. We have shown that the pair soliton mode in
haveu=uv/A=x/t\ and we obtain using E¢9) the transi-  the slope field corresponding to moving steps in the height

tion probability field forms a long-lived excitation. We have furthermore in-
vestigated two special scattering scenarios, namely, the col-

4 3 lision of two identical moving solitons with a static soliton

p(xlt)oce)q{ _- Y X_> (32  and the collision of two identical pair solitons. They corre-
3 AN 12 spond in the height field, respectively, to the nucleation of a

. o ) ) growing tip and the formation of a growing plateau. Finally,
for the “random walk” of independent pair solitons or steps ¢ have applied the canonical phase space approach in order
n the height proﬂle. Comparing th32) \.N'th. the distribu- to estimate the stochastic aspects following from the pair
tion for “ordinary” random walk originating from the soliton mode propagation

I;angel/inZ/ZE?uation SX/dt:tz,<t7]tr71]>(t):At§(t)’d P(X’P As discussed above the inherently unstable structure of
exp(-x ), we observe that the growth mode per O"MShe field equation makes a direct integration forward in time

anomalous diffusion. The distributiof82) also implies the . : . .
soliton mean square displacement, assuming pairs of trllggpces5|ble and we thus .cannot establlsh_ solutlons_as an
same average size, Initial value problem an_d _d|scuss the e.quat|ons gengrlcally.
Consequently, we are limited to numerically check trial so-
lutions representing a variety of scattering situations. So far
AN2\ 1z o we have been able to verify only the symmetric cases of
) t, (33 three-soliton and soliton pair collisions. As a result we are
also unable to address the issue of integrability or noninte-
with dynamic exponent= 3/2, identical to the dynamic ex- grability of the field equations. In order to extend the present
ponent defining the KPZ universality class. This resultnumerical approach and thus provide substance to the heu-
should be contrasted with the mean square displacemeristic quasiparticle representation of a growing interface, it is
(x?yoc At?2, z=2, for the ordinary random walk. The growth clearly of interest to design more involved trial solutions.

modes thus perform superdiffusion. We note that the distriAlternatively, a completely different approach to generate
bution (32) is also obtained using the mapping of the KPZ sg|utions is called for.
equation to directed polymers in a random medidh

<x2>(t)o<(
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